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ABSTRACT
Background. Hibiscus hamabo Sieb. et Zucc. is a semi-mangrove plant used for the
ecological restoration of saline-alkali land, coastal afforestation and urban landscaping.
The genetic transformationH. hamabo is currently inefficient and laborious, restricting
gene functional studies on this species. In plants, virus-induced gene silencing provides
a pathway to rapidly and effectively create targeted gene knockouts for gene functional
studies.
Methods. In this study, we tested the efficiency of a tobacco rattle virus vector in
silencing the cloroplastos alterados 1 (CLA1) gene through agroinfiltration.
Results. The leaves of H. hamabo showed white streaks typical of CLA1 gene silencing
three weeks after agroinfiltration. In agroinfiltrated H. hamabo plants, the CLA1
expression levels in leaves with white streaks were all significantly lower than those
in leaves from mock-infected and control plants.
Conclusions. The system presented here can efficiently silence genes inH. hamabo and
may be a powerful tool for large-scale reverse-genetic analyses of gene functions in
H. hamabo.

Subjects Molecular Biology, Plant Science
Keywords Tobacco rattle virus vector, Virus-induced gene silencing, Cloroplastos alterados 1,
Gene silencing, Hibiscus hamabo Sieb. et Zucc.

INTRODUCTION
Hibiscus hamabo Sieb. et Zucc., which is a shrub plant in the genus Hibiscus, family
Malvaceae, is an important semi-mangrove plant (Nakanishi, 1979). Because of its excellent
salt tolerance and morphological characteristics, H. hamabo is widely used in public parks,
waysides and coastal sands near sea level (Fowler, 2017; Li et al., 2012; Yang, Du &Wang,
2008). In addition,H. hamabo is a good plant material for exploring the salt-stress response
mechanisms of woody plants (Li et al., 2012). Gene manipulation technologies can be used
to determine the gene functions and regulatory mechanisms in H. hamabo. However, to
date, the inefficient and laborious genetic transformation procedures used have impeded
such research. Additionally, transcriptome analyses have mined many excellent genes
that are awaiting functional identification. Appropriate techniques need to be applied
successfully to allow the study of gene functions in this plant.
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Virus-induced gene silencing (VIGS) is a powerful technology that uses engineered
viruses to specifically silence host gene expression through post-transcriptional gene
silencing (Becker & Lange, 2010; Krishnan et al., 2015; Purkayastha & Dasgupta, 2009).
VIGS is an effective method for large-scale analysis of genes and their functions, and it
has been successfully performed in many plants, including tobacco, Arabidopsis, tomato,
cotton, wheat, andmanywoody plants (Burch-Smith et al., 2006; Jiang et al., 2014;Kumagai
et al., 1995; Orzaez et al., 2009; Scofield et al., 2005). VIGS works via a mechanism that is
similar to that of RNA interference (Baulcombe, 1999; Baulcombe, 2004; Burch-Smith et al.,
2004; Lu et al., 2003; Waterhouse, Wang & Lough, 2001). Double-stranded (ds) RNA is the
key to the VIGS process; the dsRNA can be cleaved into short interfering (si) RNAs of 21
to 25 nucleotides (Burch-Smith et al., 2004; Jiang et al., 2014; Lu et al., 2003). Two strands
can be obtained from the siRNAs: the guide and passenger strands. The RNA-induced
silencing complex incorporates the guide strand to degrade the specific single-stranded
RNA that is complementary to the guide RNA, and then, the passenger strand is degraded
(Mustafa et al., 2016). As a result, the target gene is silenced and large amounts of siRNAs
are produced (Fuchs, Damm-Welk & Borkhardt, 2004).

Agrobacterium-mediated VIGS protocols based on tobacco rattle virus (TRV) have
been developed and optimized in cotton, and previous studies showed that TRV is a useful
vector for VIGS in Gossypium species (Gao et al., 2011; Ge et al., 2016). Tobacco rattle
virus (TRV), belonging to genus Tobravirus (family Virgaviridae), is a suitable virus vector
system for VIGS (Jiang et al., 2014). A positive sense single-stranded RNA genome exists
in TRV, consisting of two components, RNA 1 and RNA 2 (Mustafa et al., 2016). RNA 1
encodes genes with viral replication and movement functions, while RNA 2 encodes the
coat protein and some nonessential structural proteins that can be replaced by foreign
sequences (Hayward, Padmanabhan & Dinesh-Kumar, 2011). The TRV vector has been
used in G. spp., Arabidopsis and Vernicia fordii to silence the cloroplastos alterados 1
(CLA1) gene, which is involved in chloroplast development (Jiang et al., 2014; Manhães,
De Oliveira & Shan, 2015; Mustafa et al., 2016). The CLA1 gene is highly conserved in
various plant species (Jiang et al., 2014). The silencing phenotypes of albino leaves were
observed in Vernicia fordii two weeks after inoculation using a heterologous TRV-based
VIGS system, in which CLA1 was isolated from Populus tomentosa Carr. (Jiang et al., 2014).
The silenced CLA1 is a useful marker for determining silencing efficiency because of the
bleached phenotype (Mustafa et al., 2016).

In this study, we tested the feasibility of the TRV-VIGS system in H. hamabo using the
HhCLA1 gene as a reporter. The agroinfiltrated leaves of H. hamabo showed white streaks
typical at three weeks after infection, and the expression levels of theHhCLA1 gene in leaves
with white streaks were significantly lower than those in leaves from mock-infected and
control plants. Thus, the TRV-VIGS system can efficiently silence genes in H. hamabo. To
our knowledge, this is the first report of the successful application of VIGS in H. hamabo.
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Table 1 Primers used in this TRV-VIGS system.

Primer name Primer sequence

HhCLA1-F CTGTGAGTAAGGTTACCGAATTCTCATGTTGTCACTGAGAAAGG
HhCLA1-R CTCGAGACGCGTGAGCTCCATAGCAAATCTTACAGGCAG
qHhCLA1-F CGCCAGGGAACAAAGGGGTT
qHhCLA1-R AATCGTGCATCCGCGACAGT
18S rRNA-F GGTCGGATTTGGAACGGCGA
18S rRNA-R CTCCACGGGCGTATCGAGG

Notes.
Underlines indicate restriction enzyme cleavage sites used in this TRV-VIGS system.

MATERIALS & METHODS
Plant materials and growth conditions
Seeds of H. hamabo were collected from Nanjing’s Sun Yat-Sen Memorial Botanical
Garden. The seeds were then treated with concentrated sulfuric acid for 15 min and rinsed
thoroughly with sterile water. The pretreated seeds were sown into flowerpots containing
a mixture of peat and vermiculite (1: 1, v: v) in an illuminated incubator with controlled
temperatures of 26 ◦C/22 ◦C under a 16 h/8 h (day/night) photoperiod.

Sequence analysis
Based on the HhCLA1 sequence (GenBank accession no. MK229167), the deduced protein
sequence was analyzed with CLA1 proteins of other species using ClustalX (Liu et al., 2015).
The amino acid sequences were obtained from NCBI (https://www.ncbi.nlm.nih.gov/).
Then, the sequences were used to construct a phylogenetic tree, which was drawn with
MEGA 7.0 using the Neighbor-Joining (NJ) method and 1,000 bootstrap replicates.

VIGS vector construction
Total RNA was extracted from the leaves of H. hamabo using a Plant RNeasy Mini Kit
(Qiagen, Hilden, Germany). The first-strand cDNA was synthesized using a SuperScript
II reverse transcriptase kit (TaKaRa, Dalian, China). The primer pair HhCLA1-F and
HhCLA1-R (Table 1) was designed using Oligo 6.0 software (Molecular Biology Insights,
Inc., Cascade, CO, USA) based on the conserved domain of HhCLA1. To amplify partial
fragments of HhCLA1, the primer pair, cDNA and PrimeSTARTM HS DNA polymerase
(TaKaRa) were used. EcoRI enzyme cleavage sites were added to the upstream primers
and Sac I enzyme cleavage sites were added to the downstream primers. PCR product
were generated with the following reaction program: 30 cycles of 98 ◦C for 10 s, 60 ◦C
for 5 s and 72 ◦C for 1 min. The reactions final volume was 50 µL, containing 25 µL
of 2× PrimeSTARTM GC Buffer, 4 µL dNTP mixture (2.5 mM), 0.2 µM of each primer
(final), 100 ng of cDNA and 0.5 µL of PrimeSTARTM HSDNA Polymerase (2.5 U/µL). The
pTRV1 and pTRV2 vectors were used in this study as described previously (Gao et al., 2011;
Liu, Schiff & Dinesh-Kumar, 2002). The PCR products were ligated into pTRV2 (Fig. S1)
(double-digested with EcoRI and Sac I enzymes) using a ClonExpress R© IIOne Step Cloning
Kit (Vazyme, Nanjing, China). The resulting vector was designated pTRV2-HhCLA1.
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Agroinfiltration
pTRV2-HhCLA1 was transformed into Agrobacterium tumefaciens strain ‘GV3101’ using
the freeze-thawing method (Höfgen & Willmitzer, 1988). PCR-confirmed single colonies
were then selected and independently inoculated into three mL of Luria-Bertani medium
containing 25 mg/L rifampicin and 50 mg/L kanamycin and grown overnight in a shaker
at 28 ◦C. For the VIGS assay, 3-mL cultures of A. tumefaciens strain GV3101 independently
containing either pTRV1 or pTRV2 was grown overnight in the same culture conditions.
These overnight starter cultures were subsequently used to inoculate 50-mL cultures that
were grown overnight at 28 ◦C. Agrobacterium cultures were harvested by centrifugation at
4,000× g for 10min, and the pellets were resuspended in an infiltration buffer (10mMMES
(2- (4- Morpholino) Ethanesulfonic Acid), 10 mMMgCl2 and 200 µM acetosyringone, pH
5.6) at an optical density of 2.0 at 600 nmand incubated at room temperature for 3 hwithout
shaking. Agrobacterium cultures containing mixtures of pTRV1 and pTRV2-HhCLA1
(1: 1 ratio) were infiltrated with 1-mL needleless syringes into the backs of cotyledons of
2-week-old H. hamabo seedlings, following a protocol described previously (Gao et al.,
2011). To determine whether the TRV vector can directly infect H. hamabo, a mixture
of Agrobacterium cultures containing pTRV1 and pTRV2 constructs in a 1: 1 ratio was
infiltrated into the backs of cotyledons of eight 2-week-oldH. hamabo to serve as the mock.
Experimental and non-injected control plants were transferred to a growth chamber and
maintained under set conditions.

Quantitative real-time PCR (qPCR)
To determine the relative levels of the endogenous HhCLA1 transcripts in infected leaves
exhibiting visible silencing phenotypes, qPCR was performed using the primer pair
qHhCLA1-F/qHhCLA1-R (Table 1). For the experiments, leaves fromplants with significant
white streak symptoms were analyzed in comparison with leaves of the mock and control
plants after three weeks of agroinfiltration. Four groups of plants with significant white
streak symptoms, one control group, and one mock group, in order to analyze the test
results more accurately, were further analyzed in this experiment. Each group contained
three biological replicates. Total RNA was extracted from these leaves using a Plant RNeasy
Mini Kit (Qiagen) and treated with DNase I to remove residual DNA. The first-strand
cDNA was synthesized using a SuperScript II reverse transcriptase kit (TaKaRa). The qPCR
assays were performed using the SYBR Green PCR Master Mix (Bimake, Houston, TX,
USA) and a StepOneTM System (ABI, USA). The transcript level of 18S rRNA served as the
internal controls. All experiments were repeated three times. The relative gene expression
level was calculated using the 2−11Ct method (Gu et al., 2018; Liao et al., 2016).

Statistical analysis
One-way analysis of variance (ANOVA) and Duncan’s multiple range test (P < 0.05) were
performed using IBM SPSS (Version 21).
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Figure 1 Multiple alignment of the HhCLA1 amino acid sequence with sequences from different species using the ClustalW program.Multiple
alignment of protein sequences of the HhCLA1 gene in Hibiscus hamabo Sieb. et Zucc., Gossypium barbadense (ABN13970.1), Gossypium hirsutum
NP_001314056.1), Theobroma cacao (EOY06359.1), Arabidopsis thaliana (NP_193291.1) and Populus tomentosa (AGT02336.1).

Full-size DOI: 10.7717/peerj.7505/fig-1
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Figure 2 Phylogenetic analysis of the protein of HhCLA1. Phylogenetic analysis of HhCLA1 proteins in
different species.

Full-size DOI: 10.7717/peerj.7505/fig-2

RESULTS
Characterization of the HhCLA1 gene in H. hamabo
The amino acid sequence alignment indicated that the HhCLA1 protein showed high
homology to known CLA1 proteins from G. barbadense, G. hirsutum and other species
(Fig. 1 and Table S1). The phylogenetic analysis showed that HhCLA1 clustered with
G. barbadense and G. hirsutum in a clade (Fig. 2).
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Table 2 Efficiency ofHhCLA1 gene silencing inHibiscus hamabo using TRV-VIGS system at three
weeks post agroinfiltration.

Treatment Number of plants assayed Silencing efficiency*

pTRV2-HhCLA1 52 45/52 (87%)
Mock 8 0/8 (0%)
Control 8 0/8 (0%)

Notes.
*Silencing efficiency indicates the number of plants showing silencing phenotypes/number of plants treated by TRV-VIGS
system.

Silencing efficiency of the HhCLA1 gene in H. hamabo using the VIGS
system
In total, fifty-two H. hamabo plants were inoculated with A. tumefaciens ‘GV3101’
harboring pTRV2-HhCLA1. Two weeks after agroinfiltration, white streaks began to
appear in the emerging leaves of partially agroinoculated plants. At three weeks post
infiltration, 87% of the H. hamabo plants showed white-streak leaf symptoms similar
to the photobleached phenotype (Table 2; Fig. 3A and Fig. S2). At three weeks after
agroinfiltration, plants inoculated with pTRV1 and pTRV2 (Mock) showed no obvious
differences in leaf morphology compared with the control (Figs. 3B, 3C and Fig. S2).
The leaves in Fig. 3D are from plants infiltrated with pTRV2-HhCLA1 (CLA1), empty
vector infiltrated plant (Mock) and the control plant (CK) separately. Leaf phenotypic
characteristics suggested that the HhCLA1 gene expression might be suppressed in plants
infiltrated with pTRV2-HhCLA1 compared with mock and CK plants.

q-PCR analysis of the knockdown levels of HhCLA1
The efficiency of gene silencing was analyzed bymonitoring expression levels ofHhCLA1 in
plants showing white-streak leaf symptoms. Results showed that HhCLA1 gene expression
levels were unchanged in mock-injected plants, while the HhCLA1 expression levels
were 62.6%-76.4% lower in the pTRV2-HhCLA1 agroinfiltrated plants than in the non-
infiltrated plants (control) (Fig. 4 and Table S2 ). The phenotypic characteristics were
consistent with the expression characteristics of HhCLA1. This clearly indicates that the
expression ofHhCLA1was significantly down-regulated through TRV-VIGS inH. hamabo,
and TRV-VIGS led to an albino phenotype on leaves.

DISCUSSION
In this study, we demonstrated for the first time that TRV-VIGS can effectively down-
regulate endogenous gene expression levels in the salt-tolerant species H. hamabo.
The genetic transformation of this species is currently laborious, time-consuming and
technically challenging. To resolve these problems, effective and low-cost techniques
need to be developed to enable the rapid validation of gene functions. In future studies,
stress-responsive genes isolated in H. hamabo could be silenced in loss-of-function screens
using the TRV-VIGS system.

The CLA1 gene is involved in chloroplast development and is a useful marker in the
TRV-VIGS system (Mustafa et al., 2016). In this research, multiple sequence alignments
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Figure 3 TRV-inducedHhCLA1 silencing inH. hamabo. (A) Newly formed leaves of H. hamabo plants
infiltrated with pTRV2-HhCLA1 (CLA1) showing white-streaked leaf symptoms after three weeks. (B)
Empty vector infiltrated plants (Mock) with the normal phenotype. (C) Control plants (CK). (D) The
leaf phenotypes of the treatments. The three leaves on the left in Fig. 3D are from plants infiltrated with
pTRV2-HhCLA1 (CLA1), the leaf in the middle is from an empty vector infiltrated plant (Mock) and the
right one is from a control plant (CK).

Full-size DOI: 10.7717/peerj.7505/fig-3

indicated that HhCLA1 was similar to CLA1 proteins of other species. Additionally, the
phylogenetic analysis indicated that HhCLA1 was highly similar to CLA1 proteins in
Malvaceae, including G. barbadense and G. hirsutum.

The most cost-efficient and effective method of inoculating plants with virus-based
vectors is agroinfection (Grimsley et al., 1986), but its efficiency varies among plants (Zhang
et al., 2016). In turf grass, the silencing efficiency of the RTBV-VIGS system in Cynodon
dactylon was such that 65.8%- 72.5% of the agroinfected plants developed symptoms
typical for phytoene desaturase gene silencing, while the silencing efficiency in Zoysia
japonica was much lower, with only 52.7%–55% of agroinfected plants developing the
phenotype (Zhang et al., 2016). The ability of the TRV vector to directly infect woody plant
species has been tested, and TRV-mediated VIGS was effective in Vernicia fordii, weak
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in Populus tomentosa Carr., and ineffective in Camellia oleifera (Jiang et al., 2014). In this
study, the silencing efficiency of the TRV-VIGS system in H. hamabo was high, with 87%
of agroinfected plants developing a white-streak leaf phenotype. The HhCLA1mRNA level
was also down-regulated by TRV-VIGS in H. hamabo.

CONCLUSIONS
In conclusion, we demonstrated that TRV-mediated VIGS can effectively silence genes in
H. hamabo, which adds to the increasing list of wood species for which VIGS-mediated
studies can be used. The loss-of-function assay using TRV-mediated VIGS developed in
this study provides an alternative tool for functional genes studies of H. hamabo.
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