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Abstract 23 
 24 
Background and Aim. Water is an increasingly scarce resource while some crops, such as 25 

paddy rice, require large amounts of water to maintain grain production. A better understanding 26 

of rice drought adaptation and tolerance mechanisms could help to reduce this problem. There is 27 

evidence of a possible role of root-associated fungi in drought adaptation. Here, we analyzed the 28 

root fungal microbiota composition in rice and its relation to plant genotype and drought. 29 

 30 

Methods. Fifteen rice genotypes (Oryza sativa ssp. indica) were grown in the field, under well-31 

watered conditions or exposed to a drought period during flowering. The effect of genotype and 32 

treatment on the root fungal microbiota composition was analyzed by 18S ribosomal DNA mass 33 

sequencing. Grain yield was determined after plant maturation. 34 

 35 
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Results. There was a host genotype effect on the fungal community composition. Drought 38 

treatment altered the composition of the root-associated fungal community and increased fungal 39 

biodiversity. The majority of OTUs identified belonged to the Pezizomycotina subphylum and 40 

37 of these significantly correlated with a higher plant yield under drought, one of them being 41 

assigned to Arthrinium phaeospermum. 42 

 43 

Conclusion. This study shows that both plant genotype and drought affect the root-associated 44 

fungal community in rice and that some fungi are correlated with improved drought tolerance. 45 

This work opens new opportunities for basic research on the understanding of how the host 46 

affects microbiota recruitment as well as the possible use of specific fungi to improve drought 47 

tolerance in rice. 48 

 49 

Introduction 50 

Climate change is one of the main driving forces that is changing the environment. The resulting 51 

higher temperatures act to reinforce the effect of drought (Trenberth et al., 2014). Drought 52 

periods are one of the main causes of grain yield losses in crops worldwide, especially in drought 53 

sensitive crops such as rice (Oryza sativa), the second most produced and consumed crop in the 54 

world. To ensure high productivity, rice requires well-watered conditions and almost half of the 55 

fresh water used for crop production worldwide is consumed by rice (Barker et al., 2000). As 56 

such, improving yield under drought is a major goal in rice breeding. 57 

 The root system is in direct contact with the soil, from which the plant absorbs water, and 58 

thus root traits are among the critical factors that can potentially ensure good yields under 59 

drought stress. Besides the root system and the plant itself, the interaction between plant root and 60 

symbiotic microorganisms forming the root microbiota is now considered a major factor in plant 61 

performance.  These microorganisms may allow the plant to buffer the environmental constraints 62 

(Vandenkoornhuyse et al., 2015) and mitigate or suppress soil borne diseases (Kwak et al., 63 

2018). Root colonizers include arbuscular mycorrhizal fungi (Glomeromycota) (Augé, 2001; 64 

Smith & Read, 2008; Singh, 2011), non-mycorrhizal fungal endophytes from the Ascomycota 65 

(such as the Pezizomycotina) and, to a lesser extent, the Basidiomycota. Root-associated fungi 66 

have repeatedly been reported to play a role in plant tolerance to stresses (e.g. Selosse, Baudoin 67 

& Vandenkoornhuyse, 2004; Rodriguez et al., 2009). Fungal endophytes have a broad host range 68 

Deleted: , and d69 

Deleted: induced changes in70 
Deleted: the 71 

Deleted: ,72 
Deleted: of the 73 

Deleted: Global warming74 

Deleted: caused by global warming further75 

Deleted: I76 
Deleted: therefore 77 

Deleted: hence 78 

Deleted: ing79 

Deleted: Among the r80 
Deleted: , 81 
Deleted:  and 82 

Deleted:  83 

Deleted: These f84 



and colonize the shoots, roots, and rhizomes of their hosts (Rodriguez et al., 2009). They can 85 

increase plant biomass (Ernst, Mendgen & Wirsel, 2003; Redman et al., 2011; Jogawat et al., 86 

2013) and improve tolerance to biotic (Mejía et al., 2008; Maciá-Vicente et al., 2008; Chadha et 87 

al., 2015) and abiotic stresses (Hubbard, Germida & Vujanovic, 2014; Yang, Ma & Dai, 2014; 88 

Azad & Kaminskyj, 2015). 89 

 The root fungal microbiota community is not static and changes with environmental 90 

factors. Pesticide application, for example, increases the richness of the AM fungal community 91 

composition in roots (Vandenkoornhuyse et al., 2003). In contrast, farming practices such as 92 

tillage and ploughing are known to decrease species richness of AM fungi in agricultural soils 93 

(e.g. Verbruggen & Kiers, 2010). Monocropping and conventional paddy cultivation also reduce 94 

the AMF diversity and colonization in rice and favor the presence of fungal pathogens (Lumini 95 

et al., 2010; Esmaeili Taheri, Hamel & Gan, 2016). In traditionally flooded rice fields, root 96 

associated fungal species in the Pleosporales and Eurotiales were less abundant than in roots of 97 

plants grown in upland fields (Pili et al., 2015). 98 

 Despite its reported role in plant fitness, the importance of plant colonizing fungal 99 

microbiota is underestimated, both in terms of diversity and functionality (Lê Van et al., 2017). 100 

Plants cannot be regarded as standalone entities but rather as holobionts comprised of the plant 101 

and its associated microbiota, where the microbial community provides additional functions to 102 

help the cope with environmental changes and stresses (Vandenkoornhuyse et al., 2015). In this 103 

conceptual framework, recruitment by the host of microorganisms when faced with constraints 104 

could explain microbiota heterogeneity on the same host in different developmental stage or 105 

under changing environmental conditions. If the host indeed exerts control on the recruitment of 106 

microorganisms, it is likely that genetic variation for this trait exists. Indeed, the phyllosphere 107 

bacterial community in Arabidopsis thaliana (Horton et al., 2014) and wild mustard (Wagner et 108 

al., 2016) but also the barley root bacterial microbiota (Bulgarelli et al., 2015) are to some extent 109 

host-dependent suggesting that plants indeed exert control on microbial community recruitment 110 

from the microorganisms present in the soil. For the present study, we therefore hypothesized 111 

that changes that occur within the fungal microbiota community composition when plants 112 

experience an environmental constraint are (partially) determined by the plant genotype. To 113 

address this hypothesis, we analyzed the effect of drought on changes in the root associated 114 
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fungal microbiota of a range of different rice cultivars and whether these changes may play a role 131 

in protecting rice against drought. 132 

 133 

Materials & Methods 134 
Plant Materials 135 

Fifteen rice cultivars (Oryza sativa ssp. indica) from the International Rice Research Institute 136 

(IRRI, Los Baños, Philippines) were used in our study. Ten out of the 15 cultivars were selected 137 

to maximize the genetic variation using the SNP information available from a published study 138 

(Zhao et al., 2011). The five additional cultivars were selected based on their drought tolerance 139 

phenotype, and their information is available in IRGCIS database: 140 

http://www.irgcis.irri.org:81/grc/SearchData.htm (Table S3). 141 

 142 

Field site and growing conditions 143 

All rice plants were grown at IRRI facilities from December 2012 to March 2013. The upland 144 

field (used to grow rice under non-flooded conditions) was located at 14°08'50.4"N 145 

121°15'52.1"E. There were 45 field blocks (three per cultivar) (0.8 x 2.5 meters) and each block 146 

included 48 plants. The three replicates of each cultivar were analyzed separately. The minimum 147 

distance between blocks was three meters. An additional 45 blocks were used for the drought 148 

treatment, so in total there were 90 blocks. The soil was a mix of clay (36%), sand (22%) and silt 149 

(41%). The plot design was randomized through the field site. Plants were grown in waterlogged 150 

conditions until 50% of the plants reached the flowering stage. Then a drought treatment was 151 

imposed on half of the replicates by withholding irrigation. After 12 days of drought, the stressed 152 

plots reached -46 KPa of soil water potential, while the control plot was saturated with water 153 

(100% of soil field capacity). There were no rain events during the stress imposition period. 154 

Since the plots were maintained under upland conditions with higher sand and silt and during the 155 

hotter tropical months of the Philippines, the targeted stress levels were reached in a relatively 156 

short duration of 12 days. Then, three soil cores of 10 x 70 cm diameter x length were collected 157 

from the center of the plots of the cultivars, pooled together (per block, so giving three replicate 158 

samples per genotype) and stored in plastic bags at 4°C until further use. To remove all soil 159 

particles and microorganisms non-adhering to the plant samples, roots isolated from the soil 160 

cores were carefully washed with tap water, frozen in liquid N2, and stored at -80°C until use. 161 
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 164 

DNA isolation and sequencing 165 

Each root sample was grinded to powder with a mortar and pestle using liquid N2, and DNA was 166 

extracted from 60–80 mg of plant material with the DNeasy Plant Mini Kit (Qiagen) following 167 

the manufacturers protocol. From the extracted DNA, we amplified a fragment of the 18S SSU 168 

rRNA gene using general fungal primers (NS22: 5'-AATTAAGCAGACAAATCACT-3' and 169 

SSU0817: 5'-TTAGCATGGAATAATRRAATAGGA-3') (Borneman & Hartin, 2000) and the 170 

following thermocycler conditions during the PCR: 94ºC for 3 min; 35 cycles of 94ºC for 45 s, 171 

59ºC for 45 s (–0.1ºC/cycle), 72ºC for 1 min; and 72ºC for 10 min. Primers were modified to 172 

allow the amplicon multiplexing for the sequence production process. Primer modifications and 173 

PCR conditions followed Lê Van et al. (2017). To analyze the entire diversity of the fungal 174 

community that is associated with roots, including Chytridiomycota, "zygomycetes' and 175 

Glomeromycota (Sanders, Clapp & Wiemken, 1996), SSU rRNA gene primers have been shown 176 

to successfully amplify unknown fungal species or groups (Vandenkoornhuyse et al., 2002; 177 

Quast et al., 2013; Lê Van et al., 2017). 178 

 PCR amplicons were purified with AMPure XP beads (Beckman Coulter). Amplicon size 179 

was verified with the Agilent High Sensitivity DNA kit (Agilent Technologies), and the 180 

concentration measured using the Quant-ITTMPicoGreen®dsDNA Assay kit (Invitrogen). 181 

Finally, the purified 560 bp amplicons were diluted to similar concentration, pooled, and 182 

sequenced (454 GS FLX+ version Titanium, Roche), following the manufacturer’s guidelines. 183 

All the PCRs were performed twice and sequenced separately. These true replicates were used 184 

within our trimming strategy. 185 

 186 

Sequence data trimming and clustering 187 

After demultiplexing, sequences were filtered to remove reads containing homopolymers longer 188 

than 6 nucleotides, undetermined nucleotides, anomalous length and differences (one or more) in 189 

the primer. Quality trimming and filtering of amplicons, OTU identification, and taxonomic 190 

assignments were carried out with a combination of amplicon data analysis tools and in-house 191 

Python scripts as described in Lê Van et al. 2017. In more detail, the sequences which passed all 192 

the filters were clustered using DNAClust (Ghodsi, Liu & Pop, 2011). Operational Taxonomic 193 

Units (OTUs) were generated out of a minimum of two 100% identical sequences that appeared 194 
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independently in the different replicates. After these steps, filtering of chimeric sequences was 207 

performed using the ‘chimeric.uchime’ tool within Mothur (v1.31.0, Schloss et al., 2009). The 208 

trimming and clustering pipeline used was the same as used in previous studies (e.g. Ben 209 

Maamar et al., 2015; Lê Van et al., 2017). The affiliation statistics to identify OTUs were run 210 

using the PHYMYCO-DB database (Mahé et al., 2012). A contingency table was produced to 211 

perform all the diversity and statistical analyses. All sequences were uploaded in the European 212 

Nucleotide Archive with the accession number PRJEB22764. 213 

 214 

The effect of Arthrinium phaeospermum on rice growth 215 

In order to assess the effect of one of the fungi associated with yield under drought in the present 216 

study, the endophytic fungus Arthrinium phaeospermum was used in a pot experiment to study 217 

its effect on rice performance. As the original A. phaeospermum strain from the field could not 218 

be isolated at the time that the experiment was done, eight strains of the species that were 219 

available from the CBS-KNAW Fungal Biodiversity Centre (Utrecht, The Netherlands) were 220 

tested (Table S4). As host, the cultivar IR36 (indica rice) was selected, because this cultivar had 221 

a higher A. phaeospermum presence in our field experiment. The seed husk was removed and 222 

seeds were sterilized with 2% sodium hypochlorite (v/v) and rinsed several times in sterile 223 

distilled water. Seeds were directly sown in small 0.3 liter (L) pots filled with sterilized sand. 224 

Plants were watered regularly with modified half-Hoagland nutrient solution and grown during 225 

seven days in a climate cell at 28°C/25°C and a 12 h photoperiod at 75% relative humidity and a 226 

light intensity of 570 μmoles m−2 s−1. The fungal cultures were grown in Potato Dextrose Agar 227 

(PDA) with rifampicin (50 µg/ml). After the fifth day, the upper part of the soil from the pot 228 

close to the plant root was inoculated with a 10 mL diameter agar disc with mycelia, then 229 

covered with a bit of soil and grown for another two days when the drought treatment was 230 

started, which consisted of water withholding for six days. In order to avoid plants wilting and 231 

dying too soon, plants received a fixed amount of water every day as to keep the stress high but 232 

not to lose all plant available soil water. After the drought period, all plants were collected and 233 

fresh and dry weight were quantified. 234 

 235 

Statistical analysis 236 
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All the statistical analyses were performed using R (R core team, 2013). From the contingency 244 

matrix, OTU richness (number of species), abundance (number of individual OTUs), evenness 245 

and diversity index (Shannon H’ index) estimators were calculated using the VEGAN (Oksanen 246 

et al., 2015) and BIODIVERSITYR (Kindt & Coe, 2005) packages. Statistical differences in 247 

these measures were analyzed using ANOVA, with the treatments (control and drought) as 248 

factors using the CAR package (Fox & Weisberg, 2011). To test for a field position effect on the 249 

microbial community results, a Mantel Test was performed using the VEGAN package. Each 250 

root sample was assigned a field position value (based on two coordinates) and the geographical 251 

Euclidean distances were calculated. These distances were subsequently compared with the 252 

ecological distances (Bray-Curtis method) calculated for the fungal community to analyze if 253 

there is a correlation between the field position and the fungal community distance. 254 

 Fungal community differences between the different treatments were studied using non-255 

metric multidimensional scaling (NMDS) analysis, after removing rare OTUs (OTUs with < 10 256 

sequences) using the Bray-Curtis statistic to quantify the compositional dissimilarity 257 

(Kulczynski, 1928). To test whether significant differences exist between fungal communities 258 

from control and drought treatments a permutational multivariate analysis of variance 259 

(PERMANOVA) was run with the "adonis" function using the Bray-Curtis dissimilarity matrix 260 

(VEGAN Package). 261 

 262 

 To study the correlation between plant performance and the associated fungal 263 

community, a Variation Partitioning analysis (VPA) was performed in VEGAN using the 264 

"varpart" function. The VPA model allows to include many factors as variables to study if they 265 

can explain the fungal community composition. In the model the OTU relative abundance data 266 

(without the rare OTUs) were included as response variable and ‘yield’ (described by the grain in 267 

grams per square meter) and the rice ‘host’ (described by the Kinship values from the rice 268 

genomic map) as explanatory variables. As a way to calculate the relative response between 269 

treatments, the ‘yield robustness’ was calculated by the phenotypic plasticity index (PI) 270 

(Valladares, Sanchez-Gomez & Zavala, 2006) defined as (yield control – yield drought) / yield control 271 

(calculated for each cultivar). This index was included as an explanatory variable together with 272 

the ‘host’ factor in a new VPA model to study how yield robustness under drought is correlated 273 

with the fungal community. We also ran a Spearman correlation analysis with the rcorr function 274 
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in the HMISC package, between the independent OTUs and yield under control and drought 280 

treatments; the OTUs positively correlated with plant yield with a P<0.004 were selected for 281 

further phylogenetic analyzes, as results with P-values below this threshold were not significant 282 

(the P-value cutoff was a result of the correction for multiple testing). 283 

 284 

When exploring changes in fungal communities from OTU patterns of plants fungal microbiota 285 

exposed to drought conditions, the use qualitative and discrete quantification methods are useful 286 

to limit the possibility that changes in community composition (OTUs) be blurred by differences 287 

in OTU abundance (Lozupone & Knight, 2008; Amend, Seifert & Bruns, 2010; Magurran, 288 

2013). Hence, we also estimated the OTU occurrence (presence/absence) in the different 289 

treatments for the OTUs positively correlated with yield. 290 

 291 

To study if yield is linked to phylogenetic relatedness of the root-fungal microbiota, the 292 

phylogenetic signal was calculated using the Blomberg's K statistic, which compares the 293 

observed signal in a trait to the signal under a Brownian motion model of trait evolution on a 294 

phylogeny (Blomberg, Garland & Ives, 2003) with the PICANTE package (Kembel et al., 2010). 295 

The OTU relative abundance matrix was used as a trait, where the mean and standard error was 296 

calculated for each OTU. The original Ascomycota tree generated by Maximum Likelihood 297 

Estimation was pruned by the yield correlated OTUs. The pruned tree together with the OTUs 298 

abundance data was used to calculate the phylogenetic signal. 299 

 300 

Pruned trees (i.e., where OTUs with less than 10 sequences had been removed) were separately 301 

calculated for the main phyla, Ascomycota and Basidiomycota. Sequences were aligned using 302 

MAFFT v.7.123b (Katoh & Standley, 2013) and then trimmed with Gblocks v.0.91b 303 

(Castresana, 2000). Phylogenetic trees were generated by Maximum Likelihood (ML) using 304 

RAxML v.8.00 (Stamatakis, 2014), with the General Time Reversible (GTR) model of 305 

nucleotide substitution under the Gamma model of rate heterogeneity and 1000 bootstrap 306 

replicates. For a subset of OTUs correlated with yield, a Neighbor Joining (NJ) tree was 307 

generated from a pairwise distances matrix of sequences using the SEQINR (Charif & Lobry, 308 

2007) and APE (Paradis, Claude & Strimmer, 2004) R packages. All trees were edited using 309 

iTOL (http://itol.embl.de, (Letunic & Bork, 2011).  310 
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 317 

To analyze the effect of Arthrinium phaeospermum on plant productivity in our pot experiment, 318 

a linear model analysis was performed using the STATS package. The response (plant biomass, 319 

water content, root to shoot ratio) and the predictors (treatment ‘fungus’ and treatment ‘drought’) 320 

were included in a fitted linear model that was then used to run an ANOVA analysis. 321 

 322 
Results 323 
 324 

Root - fungal microbiota in rice 325 

As the samples were selected from a large field experiment, we performed a Mantel Test to 326 

check for the presence of field position effects. This analysis showed that there was no effect of 327 

field position on the fungal community composition for both treatments (Fig. S1). We analyzed a 328 

total of 444,757 fungal sequences of 560 bp forming 902 different OTUs (Fig. 1). The 329 

sequencing depth was sufficient to describe the root fungal microbiota (Fig. S2). Given the 330 

fragment length and phylogenetic information it contains, the level of resolution of taxonomic 331 

identification of OTUs was at the species level within the fungal phyla with the exception of the 332 

Ascomycota with a resolution at the species or genus level. Despite the use of a fungal 18S 333 

rRNA database, PHYMYCO-DB, most of the OTUs did not have relatives at species level (i.e. 334 

unknown species). Among the 902 OTUs detected, only two belonged to the Glomeromycota 335 

(i.e. AM fungi). The biggest OTU richness by far was observed for the Ascomycota phylum (784 336 

OTUs), followed by the Basidiomycota (32 OTUs) (Fig. S3). The remaining OTUs belonged to 337 

the Chytridiomycota (9 OTUs), Zygomycota (3 OTUs) and an unclassified phylum (72 OTUs). 338 

After filtering out the rare OTUs (here defined as OTUs with less than 10 sequences in all 339 

analyzed samples), the fungal γ-diversity measure, S, was 862 and the Shannon diversity index, 340 

H’, was 3.5. The γ-diversity in the different treatments was similar, and the majority of OTUs are 341 

present under control and drought (Fig. S4). 342 

 343 

The OTU richness and diversity per taxonomic group differ between the control and drought 344 

treatment (Fig. 2). The diversity and OTU richness for the main groups (Ascomycota and 345 

Basidiomycota) were higher under drought, whereas the unclassified phylum showed the 346 

opposite pattern. Using α-diversity, there were small differences in fungal microbiota OTU 347 
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richness under control and drought, both with non-normalized as well as with normalized data: S 355 

control = 124, S drought = 132. An uneven distribution of OTUs in the rice fungal microbiota 356 

community structure was observed (J eveness index ~ 0.5). This observation matches with the 357 

Shannon diversity index (H’), which was higher under drought for all the rice cultivars (Fig. 3), 358 

due to an increased OTU richness and the presence of less dominant species. This was confirmed 359 

by two-way ANOVA analysis (P=9.7 x 10-13). Interestingly, the magnitude of the change in 360 

diversity between control and drought was rice cultivar-dependent (Fig. 3), suggesting an effect 361 

of the host-plant on fungal biodiversity and changes therein. Community compositions differed 362 

significantly between treatments (Fig. 4). A phylogenetic analysis of all frequent OTUs (without 363 

the rare OTUs) was performed for the main phyla: Ascomycota and Basidiomycota (Fig. S4). 364 

OTUs within the Sordariomycetes (Pezizomycotina) and an unclassified group (closely related to 365 

Sordariomycetes) dominated (Fig. S3). 366 

 367 

 To test the statistical significance of host genotype and treatment visualized with the 368 

NMDS analysis, a PERMANOVA analysis was performed on the NMDS scores. The NMDS 369 

analysis was based on the dissimilarity matrix (Bray-Curtis), but using the rank orders rather 370 

than absolute distances for the PERMANOVA gave us less biases link to data transformation. 371 

 The analysis supports that there is a strong effect of the treatment (control vs. drought) 372 

(R2=0.37; P=0.001) (Fig. 4). In conclusion, the data show that rice genotype and drought have a 373 

qualitative and quantitative impact on the fungal community associated with the roots. 374 

 375 

Host and treatment effect on root fungal microbiota 376 

To further underpin the effect of drought on the fungal community composition we used 377 

Variation Partitioning analysis (VPA). This analysis compares the root associated microbial 378 

community with factors or a group of factors and tests if any of them is correlated with the 379 

microbial community structure. In a first VPA model the factors ‘treatment’ (control/drought), 380 

‘host’ (genotype Kinship values) and ‘yield’ were included. Both the ‘treatment’ effect and the 381 

combination ‘yield’ and ‘treatment’ significantly explained the variation in fungal community 382 

composition (i.e. response matrix) (P=0.001; coefficient of determination, R2, of 0.22 and 0.38, 383 

respectively) (Fig. S5a).  We observed a similar result using the PERMANOVA analysis. The 384 

‘host’ effect was very small (R2=0.01), also confirming the PERMANOVA analysis. In a second 385 
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VPA analysis, we included ‘yield robustness’ along with the factor ‘host’ and the abundance of 395 

the OTUs for the different treatments (control and drought) and demonstrated a significant ‘host’ 396 

effect on the fungal community under drought (P=0.002; coefficient of determination R2=0.13) 397 

while ‘yield robustness’ gave no significant effect (Fig S5b). Data with ‘yield robustness’ and 398 

OTU abundance under control also shows a significant 5% of explanation by the ‘host’ (P=0.05) 399 

but not by ‘yield robustness’ (not shown). 400 

 401 

Effect of fungal endophytes on rice fitness 402 

To address the link between the fungal community and plant fitness under drought, each 403 

independent OTU was correlated with seed yield (control and drought separately) as a proxy for 404 

drought tolerance. We found 37 OTUs that were positively correlated with yield in both 405 

treatments (R>0.30; P<0.004), of which 13 were occurring more under control and 22 more 406 

under drought conditions – which therefore are candidates to have a positive effect on drought 407 

tolerance - while of two the presence did not change between the treatments (Fig. 5). Thirteen 408 

out of the 37 OTUs were assigned to the Pezizomycotina while the other 24 OTUs could not be 409 

classified, although they are closely related to the Pezizomycotina sub-phylum. 410 

 411 

The effect of specific taxa groups on rice yield was calculated from the phylogenetic signal for 412 

yield robustness in comparison with the OTU abundance showing that there was phylogenetic 413 

conservation for yield (K=6.6, P=0.01) implying that phylogenetically related OTUs are more 414 

associated with similar yields than random OTUs. This relatedness is solely due to the data under 415 

drought (K=8.7; P=0.03). 416 

 417 

One of the OTUs identified at the species level, Arthrinium phaeospermum, was among the ones 418 

contributing significantly to plant yield (R=0.08; P=0.01) and yield robustness (R=0.15; P=0.01) 419 

in the VPA analysis. We found other Sordariomycetes (e.g. Chaetomium sp.), Saccharomycetes 420 

and Dothideomycetes that also were associated with increased plant yield. Interestingly, this 421 

OTU, Arthrinium phaeospermum, belongs to the Pezizomycotina subphylum, which is a group 422 

that includes the majority of beneficial fungal endophytes, and the species has been described to 423 

promote plant growth (Khan et al., 2008). Therefore, we decided to study it in further detail and 424 

used a pot experiment to study its effect on rice. Since we did not have access to sufficient field-425 
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collected material for isolation of the corresponding field strain, we ordered 6 different A. 429 

phaeospermum strains from CBS and tested their effect on rice growth under control and drought 430 

conditions. The A. phaeospermum strains tested did not have a significant positive effect on the 431 

plant shoot biomass under control nor drought conditions (Table S1). We did see an interaction 432 

between the factors ‘fungus’ and ‘drought’ for the majority of variables measured (Table S1). 433 

Indeed, the majority of the fungal strains reduced root biomass under drought (Fig. S6) and 434 

affected the root to shoot ratio significantly in the case of strains 2, 4, 7 and 8 (Table S2). 435 

 436 

Discussion 437 

 438 

Endospheric fungal microbiota detection 439 

There is an increased understanding of the complexity of the root fungal microbiota which is not 440 

solely limited to Glomeromycota forming AM association, but also includes other fungi 441 

belonging to the Zygomycota, Ascomycota and Basiodiomycota (e.g. Vandenkoornhuyse et al., 442 

2002; Lê Van et al., 2017). In the present study we report for the first time the analysis of the 443 

whole fungal microbiome associated with the roots of rice. The largest group of OTUs we 444 

detected was the Ascomycota phylum (784 OTUs), followed by the Basidiomycota (32 OTUs) 445 

(Fig. S4). The Ascomycota and Basidiomycota are also dominant in the roots of other plant 446 

species such as maize (Kuramae et al., 2013), wheat (Vujanovic, Mavragani & Hamel, 2012), 447 

poplar (Shakya et al., 2013) and Agrostis stolonifera (Lê Van et al., 2017), and they are known to 448 

include “dark septate endophytes” (DSEs), which are facultative plant symbionts (Rodriguez et 449 

al., 2009). 450 

 451 

In this study, the diversity values (H’=3,5; S=862) are of the same order of magnitude as in other 452 

crops. We found a lower H’ and different community structure than in chickpea for which a H’ 453 

of about 4.7 and S of about 800 have been reported (Bazghaleh et al., 2015) but a higher H’ and 454 

S than in arctic plants for which an H’ of 2.8 and S of 60 have been reported (Zhang & Yao, 455 

2015). For other monocots such as wheat: H’~1.8; S~18, and maize: H’~0.9; S~9 (Bokati, 456 

Herrera & Poudel, 2016) the values are also quite a bit lower than our values, although for the 457 

latter the fungal community analysis was done in a very different way. Thus, the rice genotypes 458 

used in the present study appeared to recruit a rather high number of fungal species. The high 459 
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OTU richness found in our study when compared with other studies could be an effect of the 463 

primer choice, analytical methods, and also could be related to the fact that rice is growing in a 464 

very different and specific environment in comparison to the other plant species (i.e. in the 465 

tropics in a water saturated agroecosystem). 466 

 467 

Drought affects the endophytic fungal microbiota 468 

It has been reported that the soil fungal community composition changes under drought resulting 469 

in a decreased α-diversity (Hawkes et al., 2011; Cregger et al., 2012; Seema B. Sharma & 470 

Thivakaran A. Gobi, 2016; Zhang et al., 2016). As far as we know, the consequence of drought 471 

on the root associated fungal microbiota has not been investigated before. In the present study we 472 

clearly demonstrate that the rice endospheric fungal microbiota composition changes under 473 

drought stress (Fig. 4) and results in an increased richness of fungal OTUs for all the 15 rice 474 

cultivars tested (Fig. 3). Increased fungal richness could be interpreted as an active recruitment 475 

of additional fungi by the rice root to face the environmental stress although we cannot exclude 476 

that this is the result of the reverse process: fungi actively colonize the root compartment to 477 

escape from the drought effect. Nevertheless, a higher fungal diversity could represent a better 478 

pool for subordinate species (less abundant ones), which may have a large influence on certain 479 

ecosystems and can potentially improve plant productivity under drought conditions (Mariotte et 480 

al., 2015). The increase in fungal species richness may result in the enrichment in additional 481 

functions enabling to mitigate the consequences of drought on host-plants. This could include 482 

other studies where it was explored how drought influences plant-microbe interactions, showing 483 

that fungi have an important effect on plant fitness under drought conditions (Lau & Lennon, 484 

2012; Kaisermann et al., 2015; Classen et al., 2015). In sorghum it has been shown that when 485 

water levels are extreme (drought or flooding), roots are colonized by fewer AM fungal species, 486 

however at the same time the abundance of these species increases probably because they are 487 

more adapted to the new conditions. In those experiments, plant biomass was not affected by the 488 

water regime, but phosphate uptake was increased as a result of a change in the root colonization 489 

of plants under non-flooded conditions (Deepika & Kothamasi, 2015). 490 

 Similar to the present study, Glomeromycota species richness and abundance increased 491 

under drought within a diverse panel of plants including wild and cultivated species (Tchabi et 492 

al., 2008). Strikingly, in the present study, we only observed two OTUs representing 493 

Deleted: enrichment 494 

Deleted: This OTU enrichment495 

Deleted: the enrichment496 

Commented [MOU34]: See comment above regarding 
host defenses. 

Deleted: possibly 497 
Deleted: s498 

Deleted: less 499 

Deleted: Just as in our500 



Glomeromycota within the fungal microbial community and they were not affected by drought. 501 

Although we know that the fungal microbiota is not only composed of Glomeromycota (e.g. 502 

(Vandenkoornhuyse et al., 2002), in our experiment rice is unexpectedly poor in AM fungal 503 

colonizers in comparison to other Poaceae. For example, in a study on Agrostis stolonifera and 504 

using the same methodological approach as in the present study, the Glomeramycota represented 505 

10% of the root fungal microbiota (Lê Van et al., 2017). As already commented in the 506 

introduction, monocropping and conventional paddy cultivation reduce the AMF diversity and 507 

colonization in rice, which likely explains the low Glomeramycota representation in the present 508 

study.  509 

The majority of the OTUs that increased in frequency under drought in our study belong to the 510 

Pezizomycotina subphylum, the most abundant subphylum in the Class II fungal endophytes. 511 

They are well-known for their role in plant performance, boosting plant growth and buffering the 512 

effect of environmental stresses and protecting their host against pathogens (Maciá-Vicente et 513 

al., 2009; Jogawat et al., 2013; Azad & Kaminskyj, 2015). 514 

 515 

Host genotype affects the fungal microbiome response to drought 516 

We showed with the VPA analysis that the host genotype affects the structure of the root 517 

associated fungal community, also in response to drought (‘host’ effect: R2=0.13; P=0.01) (Fig. 518 

S5). Previous studies using Arabidopsis thaliana and barley also show a host-genotype effect on 519 

the root associated microbiome (Lundberg et al., 2012; Bulgarelli et al., 2015), However, in 520 

maize and Microthlaspi spp. the root endophyte community composition did not seem to depend 521 

on the host genotype, but was largely determined by the geographical distribution where these 522 

cultivars grew (Peiffer et al., 2013; Glynou et al., 2016). Using a GWAS approach for the 523 

phyllosphere microbiome composition of Arabidopsis thaliana, it was shown that the fungal and 524 

bacterial community on leaves is determined at least in part by plant loci, in this case by loci 525 

responsible for defense and cell wall integrity (Horton et al., 2014). Recently, a new study has 526 

shown that drought induces changes in the root bacterial endophytic community in rice, and also 527 

that these changes are different in the root compartments (Santos-Medellín et al., 2017). 528 

 529 

The results of the present study clearly show that changes occur within the fungal microbiota 530 

community composition when plants experience an environmental constraint (Fig. 4). The 531 
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increased root fungal endophytic diversity could be the result of migration of soil fungi to the 535 

roots to survive the drought conditions. However, the significant genotype effect on the fungal 536 

community structure under drought (Fig. S5) strongly suggests that active recruitment by the 537 

plant host of fungal species also occurs. Potentially, this enrichment of plant-microbiota can 538 

buffer the effects of the drought stress (Vandenkoornhuyse et al., 2015). A host-plant preference 539 

has also been shown in studies analyzing AM fungal communities (Martínez-García & Pugnaire, 540 

2011; Torrecillas, Alguacil & Roldán, 2012), even considering co-occurring plant species within 541 

the Poaceae (Vandenkoornhuyse et al., 2003). This observation was later explained by the ability 542 

of plants to filter the colonizer by a carbon embargo toward less beneficial AM fungi (Kiers et 543 

al., 2011; Duhamel & Vandenkoornhuyse, 2013). We are currently further exploring the role of 544 

the plant-host in the recruitment of root-associated fungal microbiota using plant genetics 545 

approaches. 546 

 547 

Root fungal microbiota and rice grain yield 548 

OTUs that are closely related to each other showed similar correlation values with rice grain 549 

yield as there is a strong phylogenetic signal between all yield correlated OTUs (K=6.6; P=0.01). 550 

Intriguingly, these OTUs are more abundant under drought (Fig. 5), suggesting that they may 551 

play a role in the tolerance of rice to drought. In an earlier study, inoculation of rice with fungal 552 

Type II endophytes such as Fusarium culmorum and Curvularia protuberata resulted in a higher 553 

growth rate and yield and a reduced water consumption. Moreover, the rice plants grown under 554 

drought stress were more intensively colonized by these fungi in comparison to control plants 555 

(Redman et al., 2011). In the present study we identified 37 different OTUs that belong, or are 556 

closely related, to the Pezizomycotina which all positively correlated with yield in plants that 557 

were exposed to drought (Fig. 5). This might be due to one particular fungal OTU or 558 

alternatively might be the consequence of a complex synergistic effect of different OTUs. 559 

 560 

Among these fungi, one OTU, Arthrinium phaeospermum, was found to correlate with plant 561 

yield and could be identified at the species level. The presence of Arthrinium species is often 562 

associated with plants from the Poaceae family, suggesting a certain level of host specificity 563 

(Yuan et al., 2011). To confirm the role of A. phaeospermum, different strains of this species 564 

were used in a pot experiment. Under control conditions no significant effect of the inoculation 565 
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was observed on plant shoot biomass, while root biomass was decreased by some of the strains 571 

under drought (Table S2). Root biomass investment (root to shoot ratio) under drought was 572 

lower for plants inoculated with some of the strains (Table S2; P<0.05). 573 

 These results seem counter-intuitive because in the community analysis A. 574 

phaeospermum was correlated with yield, especially under drought as shown by the VPA 575 

analysis. The most likely explanation for this is that we did not use the A. phaeospermum strain 576 

that caused the effect in the field because we used publicly available strains. Also, in the pot 577 

experiment biomass was analyzed instead of yield. To further examine this discrepancy it will be 578 

necessary to isolate the corresponding strain from the field and/or plant material analyzed. Other 579 

possible explanations rely on the fact that the yield effect it is not directly due to A. 580 

phaeospermum but to another microorganism(s) that was not measured in our study (e.g., 581 

bacteria) which was correlated with the presence of A. phaeospermum. Other explanations for 582 

the discrepancy may be that drought induced resistance is the result of a synergistic/antagonistic 583 

effect between A. phaeospermum and other microorganisms (Larimer, Bever & Clay, 2010; 584 

Aguilar-Trigueros & Rillig, 2016), while we studied the effect of a single fungal isolate. 585 

Likewise, a perturbation of the root microbial community induced by the inoculation may have 586 

blurred any positive effects. 587 

 A higher root:shoot ratio and a longer root length are often characteristics for rice 588 

cultivars that are more drought tolerant, as they are good indicators for a higher water uptake 589 

capacity (Comas et al., 2013; Paez-Garcia, 2015). We did not record the root length in the pot 590 

experiment, so it could be that some of the fungal strains may have had an impact on root length 591 

rather than on root biomass. Furthermore, the effect of drought on the root to shoot ratio depends 592 

on the plant growth stage, and is most evident in older plants (Silva, Kane & Beeson, 2012). 593 

Therefore, in the relatively young plants that were used in the present study we may have missed 594 

the effect that the fungi may have on root architectural changes in older plants. These 595 

possibilities should be considered for future studies with the same research questions. 596 

 597 

Conclusions 598 
 599 

Our study illustrates that the root associated fungal community in rice is altered under drought 600 

conditions, resulting in a higher species diversity. It also shows the presence of specific OTUs 601 
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(belonging to the Pezizomycotina) is correlated with yield, and the relative abundance of these 614 

OTUs increases under drought. Finally, we show that under drought conditions rice genotype has 615 

a significant effect on the fungal community composition. 616 

 Roots are an interesting pool to search for beneficial-plant growth promoting fungi 617 

(Fonseca-García et al., 2016; Angel et al., 2016). With sufficient knowledge, we can potentially 618 

compose ‘functional OTU clusters’, specifically tailored for a crop plant species, that may have a 619 

positive impact on plant performance.  This microbiota could then be applied in the field to boost 620 

plant productivity under periods of stress. However, only a maximum of 1.0 % of soil 621 

microorganisms can be cultured under standard conditions.  Thus, studying the roles of 622 

microbiota in biological and ecological soil processes remains a challenge (Rehman, Sayeed, 623 

Mohd Akhtar & Siti Nor Akmar Abdullah, 2016), especially for possible application in 624 

agriculture. Nonetheless, metagenomics and metabarcoding studies can yield valuable 625 

information that could help us to exploit microbial communities and further investigate how 626 

microbial ‘clusters’ are working together to improve plant fitness under stressful environments. 627 
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