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ABSTRACT

Background. Long non-coding RNAs (IncRNAs) can function as competing endoge-
nous RNAs (ceRNAs) to interact with miRNAs to regulate target genes and promote
cancer initiation and progression. The expression of IncRNAs and miRNAs can be
epigenetically regulated. The goal of this study was to construct an IncRNA-miRNA-
mRNA ceRNA network in laryngeal squamous cell carcinoma (LSCC) and reveal their
methylation patterns, which was not investigated previously.

Methods. Microarray datasets available from the Gene Expression Omnibus database
were used to identify differentially expressed IncRNAs (DELs), miRNAs (DEMs),
and genes (DEGs) between LSCC and controls, which were then overlapped with
differentially methylated regions (DMRs). The ceRNA network was established by
screening the interaction relationships between miRNAs and IncRNAs/mRNAs by
corresponding databases. TCGA database was used to identify prognostic biomarkers.
Results. Five DELs (downregulated: TMEM51-AS1, SND1-IT1; upregulated: HCPS5,
RUSC1-AS1, LINC00324) and no DEMs were overlapped with the DMRs, but only a
negative relationship occurred in the expression and methylation level of TMEM51-
AS1. Five DELs could interact with 11 DEMs to regulate 242 DEGs, which was
used to construct the ceRNA network, including TMEM51-AS1-miR-106b-SNX21/
TRAPPC10, LINC00324/RUSC1-AS1-miR-16-SPRY4/MICAL2/ SLC39A14, RUSCI1-
AS1-miR-10-SCG5 and RUSC1-AS1-miR-7-ZFP1 ceRNAs axes. Univariate Cox re-
gression analysis showed RUSC1-AS1 and SNX21 were associated with overall survival
(OS); LINC00324, miR-7 and ZFP1 correlated with recurrence-free survival (RFS);
miR-16, miR-10, SCG5, SPRY4, MICAL2 and SLC39A14 were both OS and RFS-related.
Furthermore, TRAPPC10 and SLC39A14 were identified as independent OS prognostic
factors by multivariate Cox regression analysis.

Conclusion. DNA methylation-mediated TMEMS51-AS1 and non-methylation-
mediated RUSC1-AS1 may function as ceRNAs for induction of LSCC. They and their
ceRNA axis genes (particularly TMEM51-AS1-miR-106b-TRAPPC10; RUSC1-AS1-
miR-16-SLC39A14) may be potentially important prognostic biomarkers for LSCC.
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INTRODUCTION

Laryngeal squamous cell carcinoma (LSCC) is one of the common malignancies of the
upper respiratory tract that has been associated with a deterioration of the environment and
an increase in the occupational stress. It was estimated that 13,360 new cases were diagnosed
in 2017 in the United States, of which over 3,660 were fatal (Siegel, Miller ¢ Jemal, 2017).
In China, an estimated 26,400 new cases of LSCC and 14,500 cancer-related deaths also
occurred in 2015 (Chen et al., 2016). Although patients with LSCC can be managed by
surgical intervention, radiation therapy and chemotherapy, the overall five-year survival
remains poor (approximately 60%) (Rudolph et al., 2011). Therefore, there is an urgent
need to deeply understand the molecular mechanisms underlying LSCC carcinogenesis or
progression in order to develop more effective therapeutic strategies.

Accumulating evidence has suggested that non-coding RNAs (ncRNAs) play crucial
roles in the initiation and development of tumors. ncRNAs are loosely categorized into
small ncRNAs and long non-coding RNAs (IncRNAs), both of which have regulatory
functions in various biological processes. The well-documented small ncRNAs are
microRNAs (miRNAs; ~22 nucleotides long) that regulate gene expression by binding to
complementary sequences in the 3’ untranslated region (UTR), leading to either inhibition
of translation or degradation of the transcripts (Jean ¢ Mihaela, 2014). Although the
mechanisms remain unclear, growing evidence supports that IncRNAs could function as
competing endogenous RNAs (ceRNAs) by competitively binding to miRNAs through
their miRNA response elements (MRE) and subsequently regulate target RNA expression
(Salmena et al., 2011). This ceRNA mechanism has generated much interest to explain
tumor development and progression in many malignancies, such as gastric cancer (Song
et al., 2018), thyroid carcinoma (Zhao et al., 2018) and hepatoblastoma (Liu et al., 2017a).
Recent studies also have preliminarily revealed several underlying ceRNA regulatory
interactions in LSCC. Luciferase reporter assay and Western blotting results suggested
that AC026166.2-001 could act as a sponge of miR-24-3p and regulate the expression of
p27 and cyclin D1 (Shen et al., 2018). IncRNA H19 was shown to serve as a ceRNA by
sponging miR-148a-3p to upregulate the target gene DNA methyltransferase 1 (Wu et al.,
2016). NEAT1 was also reported to regulate the expression of cyclin dependent kinase
6 through modulating miR-107 (Wang et al., 2016). Furthermore, a ceRNA network,
including 30 genes, 21 miRNAs and 19 IncRNAs was also built based on microarray
analysis of 6-paired clinical samples in LSCC (Zhang et al., 2016). However, analysis of
the IncRNA-miRNA-mRNA regulatory network of LSCC with larger sample sizes and
confirmation of their clinical associations are still lacking.

In addition, DNA methylation has been identified as an important mechanism to regulate
gene expression in cancer cells epigenetically, which not only regulates the expression of
protein-encoding genes, but also affects miRNAs and IncRNAs. For example, hyper-
methylation of the promoter region was observed to lead to a loss of expression of IncRNA
maternally expressed gene 3 (MEG3). Downregulated MEG3 was insufficient to sponge
miR-9 and block its inhibition effects on the expressions of E-cadherin and FOXO1,
consequentially resulting in poor prognosis in patients with esophageal squamous cell
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carcinoma (Dong et al., 2017). The study of Guo et al. (2018a) also suggested IncRNA CTC-
276P9.1 was hyper-methylated in esophageal squamous cell carcinoma. Over-expression
of CTC-276P9.1 inhibited cancer cell proliferation and invasion in vitro probably by
regulating epithelial-mesenchymal transition. Liao et al. (2015) identified 761 IncRNA
genes with DNA hyper-methylation in colorectal cancer using a free MethylCap-seq
dataset. Cheung ¢» Lee (2010) found that the loci of three miRNAs (namely miR-199a-2,
miR-124a-2 and miR-184) were linked to hyper-methylated differentially methylated
regions (DMRs) in human testicular cancer. However, the DNA methylation regulatory
mechanisms of miRNAs and IncRNAs have rarely been reported in LSCC.

The goal of this study was to establish an IncRNA-miRNA-mRNA ceRNA network in
LSCC using larger samples and to investigate their methylation patterns. Our results may
provide new clues for biologists to further understand the pathogenesis of LSCC.

MATERIAL AND METHODS

Data source

IncRNA, miRNA, mRNA and methylation data were retrieved from Gene Expression
Omnibus (GEO) database (http://www.ncbi.nlm.nih.gov/geo/) in January 2018 according
to the following inclusion criteria: (1) IncRNA, miRNA, mRNA expression or methylation
profiles; (2) laryngeal tissue samples, not blood, interstitial fluid or cells; (3) inclusion of
control; (4) human samples; and (5) patients with LSCC.

Two IncRNA microarray datasets were obtained under accession number GSE59652
(7 LSCC and 7 paired adjacent normal tissues) (Shen et al., 2014) and GSE84957 (9
LSCC and 9 paired adjacent non-neoplastic tissues) (Feng et al., 2016). The microarray
platforms of GSE59652 and GSE84957 were Agilent-033010 (GPL13825, Arraystar Human
LncRNA microarray V2.0) and Agilent-042818 (GPL17843, Agilent-042818 Human
IncRNA Micorarray 8_24_v2), respectively.

Two miRNA microarray datasets were collected under accession number GSE70289
(12 LSCC tissues and 4 adjacent normal tissues) (Karatas et al., 2015) and GSE62819
(5 LSCC carcinoma and 5 paired adjacent non-neoplastic tissues). The microarray
platforms of GSE70289 and GSE62819 were Agilent-031181 (GPL15018, Unre-
stricted_Human_miRNA_V16.0_Microarray 030840) and Affymetrix Multispecies
miRNA-3 Array (GPL16384), respectively.

Four mRNA microarray datasets were available under accession number GSE51985
(10 LSCC and 10 paired adjacent normal tissues), GSE84957 (9 LSCC and 9 paired
adjacent normal tissues) (Feng et al., 2016), GSE59102 (29 LSCC and 13 normal margin
tissues) and GSE58911 (15 LSCC and 15 normal tissue distant to LSCC) (Sharon et al.,
2015). The microarray platforms of GSE51985, GSE84957, GSE59102 and GSE58911 were
[Mlumina HumanHT—12 V4.0 (GPL10558), Agilent-042818 (GPL17843, Human IncRNA
Micorarray 8_24_v2), Agilent-014850 (GPL6480, Whole Human Genome Microarray
4x44K G4112F) and Affymetrix Human Gene 1.0 ST Array (GPL6244), respectively.

One set of DNA methylation data was acquired under accession number GSE25093
(Poage et al., 2012; Poage et al., 2011) which included 213 blood and 109 tissue samples.
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Among the 109 tissue samples, 56 were isolated from oral, 16 from pharyngeal, and
22 from laryngeal origin, while 15 were of unclear origin. Thus, only these 22 samples
from laryngeal origin (15 LSCC tissues and 7 controls) were used in our study. The
microarray platform of GSE25093 was Illumina HumanMethylation27 BeadChip
(GPL8490, HumanMethylation27_270596_v.1.2).

The mRNA and miRNA Seq-data of head and neck squamous cell carcinoma
(Level 3) were also downloaded from The Cancer Genome Atlas (TCGA; https://tcga-
data.ncinih.gov/). After sample barcode screening, 559 were miRNA-mRNA matched
samples, of which 18 were distributed in the alveolar crest, 30 in the root of the tongue,
22 in the buccal mucosa, 67 in the mouth floor, 8 in the hard palate, 9 in the laryngeal
pharynx, 138 in the larynx, 3 in the lip, 38 in the oral cavity, 156 in the tongue, 10 in the
oropharynx, 45 in the tonsil and 15 from an unclear location. Only the 138 samples from
the larynx were used in our study.

Data preprocessing
For the data from Affy platform, the raw data in CEL. files were preprocessed using the
oligo package (version 1.41.1; Carvalho & Irizarry, 2010) in R (version 3.4.1; R Development
Core Team, 2017), including data transformation, missing value imputation with median,
background correction with MAS method and quantile normalization.

For the data from Agilent and Illumina platforms, the raw data in TXT. files
were preprocessed using the Linear Models for Microarray Data (LIMMA) package
(version 3.34.0; Ritchie et al., 2015) in R, including data log2 transformation and median
normalization.

The data (FPKM, fragment per kilobase per million mapped reads) from TCGA were
quantile normalized using the preprocessCore package (version 1.40.0; Bolstad, 2019) in R.

Differential expression analysis
The differentially expressed IncRNAs (DELs) and miRNAs (DEMs) between LSCC
and normal controls were identified using the LIMMA method in R from their two
included microarray datasets (IncRNA: GSE59652 and GSE84957; miRNA: gSE70289 and
GSE62819). The p-value <0.05 and |logFC(fold change) | > 0.263 were set as the cut-off
points. The overlap in the above two datasets was used for the following analysis of IncRNAs
and miRNAs, respectively.

The differentially expressed genes (DEGs) between LSCC and normal controls
were identified using the MetaDE.ES function in MetaDE package (version 1.0.5,
https://cran.r-project.org/web/packages/MetaDE/) of R from its four included microarray
datasets (GSE51985, GSE84957, GSE59102 and GSE58911). The p-value <0.05 and false
discovery rate (FDR) <0.05 were set as the cut-off points. The DEGs with the same
expression trend (tau? statistic = 0, p-value of Chi-square based Q-test >0.05) in the four
datasets were selected for the following analysis.

Wilcoxon signed-rank test (http://www.bioconductor.org/help/search/index.html?q=
wilcox.test/) was used to screen the DMRs between LSCC and normal controls. P < 0.05
was set as the threshold value. Human annotation data were retrieved from GENCODE
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Release 19 (GRCh37.p13) (https://www.gencodegenes.org/human/release_19.html). The
sequences of miRNAs, IncRNAs and mRNAs in the corresponding platform GPL8490 were
blasted with the GRCh37.p13 to obtain the differentially methylated miRNAs, IncRNAs
and mRNAs, which were then overlapped with the DELs, DEMs and DEGs to screen
methylated-related DELs, DEMs and DEGs, respectively.

CeRNA regulatory network construction

Three reliable online databases, including miRcode (version 11; http://www.mircode.org/),
starBase (version 2.0; http://starbase.sysu.edu.cn/index.php) (Li et al., 2014) and DIANA-
LncBase (version 2.0; http://carolina.imis.athena-innovation.gr/diana_tools/web/index.
php?r=Incbasev2/index-predicted) (Paraskevopoulou et al., 2013) were used to screen
the interactions between IncRNAs and miRNAs. The union of these three datasets was
used for the following analysis. The target genes of miRNAs that were linked to the
IncRNAs were predicted using four frequently used algorithms, including TargetScan
(version 7.2; http://www.targetscan.org/vert_71/) (Agarwal et al., 2015), miRBase (version
22; https://www.ebi.ac.uk/enright-srv/microcosm/htdocs/targets/v5/) (Griffithsjones et al.,
2005), miRanda (version 1.9; http://www.microrna.org/microrna/home.do/) (John et al.,
2005) and miRTarBase (version 7.0; http://mirtarbase.mbc.nctu.edu.tw/php/index.php)
(Chou et al., 2017). The target genes predicted by at least two databases and a negative
association with miRNAs were retained. The IncRNA-miRNA and miRNA-mRNA
interactions were integrated to construct the ceRNA network, which was visualized using
Cytoscape software (version 3.4; Shannon et al., 2001-2008) (Kohl, Wiese ¢» Warscheid,
2011).

Function enrichment analysis

The Database for Annotation, Visualization and Integrated Discovery (DAVID) online tool
(version 6.8; http://david.abcc.nciferf.gov) (Da, Sherman ¢ Lempicki, 2009) was used for
Gene Ontology (GO) terms [including molecular function (MF), biological process (BP)
and cellular component (CC) categories] and Kyoto encyclopedia of genes and genomes
(KEGG) pathway enrichment analyses of genes in the ceRNA network. P-value <0.05 was
set as the cut-off value.

Clinical associations of IncRNAs, miRNAs and mRNAs in the ceRNA
network

The expression levels of IncRNAs, miRNAs and mRNAs in the ceRNA network were
downloaded from the TCGA data. Univariate Cox regression analysis was performed
to screen for the prognosis-related (including overall survival, OS; and recurrence-free
survival, RFS) IncRNAs, miRNAs and mRNAs using the survival package (version 2.40.1;
https://cran.r-project.org/package=survival), which was used to construct the prognosis-
related ceRNA network. The samples were divided into two groups based on the expression
of each IncRNA, miRNA and mRNA: a low expression group (<median) and a high
expression (>median) group. The Kaplan—-Meier method with the log-rank test was
used to estimate the difference in OS and RFS between the high and low expression
groups. P < 0.05 was considered statistically significant. Furthermore, multivariate
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Univariate Cox regression analysis
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Figure 1 The data analysis workflow.

Full-size B DOIL: 10.7717/peerj.7456/fig-1

Cox regression analysis was also performed using the survival package (version 2.40.1;

Therneau ¢ Lumley, 2019) to evaluate the prognostic independence of IncRNAs, miRNAs

and mRNAs. The association of nodes in the prognosis-related ceRNA network with

other clinical characteristics was also analyzed using the multiple linear regression
model (https://stat.ethz.ch/R-manual/R-patched/library/stats/html/Im.html) in R.

RESULTS

Differential expression analysis

The data analysis workflow is displayed in Fig. 1. After data normalization (Supplemental
Information 1-8), the DELs, DEMs and DEGs between LSCC and normal samples were
screened according the stated thresholds. The results showed 306 (156 downregulated and
150 upregulated) and 396 (252 downregulated and 144 upregulated) DELs were identified
in the datasets of GSE59652 (Fig. 2A) and GSE84957 (Fig. 2B) (Supplemental Information
9), respectively. After comparison, 40 DELs were found to be shared in these two datasets,

including six upregulated and 20 downregulated with the consistent expression trend
(Fig. 3A) (Supplemental Information 9); a total of 1,307 (765 downregulated and 542
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Figure 2 Hierarchical clustering and heat map analysis. (A—B) heat map for differentially expressed
IncRNAs identified in GSE59652 (A) and GSE84957 (B) datasets; (C-D), heat map for differentially ex-
pressed miRNAs identified in GSE62819 (C) and GSE70289 (D) datasets; (E) heat map for differentially
expressed genes identified by meta-analysis of GSE51985, GSE84957, GSE59102 and GSE58911 datasets;
(F) heat map for differentially methylated regions identified in the GSE25093 dataset. The datasets of la-
ryngeal squamous cell carcinoma collected from Gene Expression Omnibus database. Red, high expres-
sion (hyper-methylation); green, low expression (hypo-methylation).

Full-size & DOLI: 10.7717/peerj.7456/fig-2

upregulated) and 491 (126 downregulated and 365 upregulated) DEMs were identified
in the datasets GSE62819 (Fig. 2C) and GSE70289 (Fig. 2D), respectively (Supplemental
Information 9). After comparison, 443 DEMs were found to be common in these two
datasets, among which 152 upregulated and 63 downregulated DEMs were shown to
have a consistent expression trend (Fig. 3B) (Supplemental Information 9); 2,975 DEGs
were found to display the similar expression trend in four mRNA expression profiles
GSE51985, GSE84957, GSE59102 and GSE58911 (Fig. 2E) (Supplemental Information 9);
and 4,567 DMRs were identified in the LSCC genome of GSE25093 dataset, including 1616
hypomethylated and 2,951 hypermethylated (Fig. 2F) (Supplemental Information 9). After
GENCODE annotation and blast analysis, 122 IncRNAs, but no miRNAs were found to
be located in DMRs. Subsequently, the IncRNAs and mRNAs in DMRs were overlapped
with their expression level data above to obtain the methylation-related DELs and DEGs.
Consequently, five DELs (TMEM51-AS1, HCP5, SND1-IT1, RUSC1-AS1 and LINC00324)
were screened (Fig. 3C). Among these DELs, only the expression and methylation levels
of IncRNA TMEM51-AS1 (Figs. 3D-3F) were opposite, indicating its expression may be
regulated by methylation. These methylation-related genes were used to construct the
ceRNA network.
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Figure 3 Overlapped genes identification. Venn diagram drawing to display the overlap of differentially
expressed IncRNAs (A) and miRNAs (B) in different datasets of laryngeal squamous cell carcinoma col-
lected from Gene Expression Omnibus database and their overlap with differentially methylated regions
(C) to screen methylation related IncRNAs and miRNAs. The expression (D—E) and methylated (F) levels
of overlapped IncRNAs are displayed in a histogram. *p < 0.05; **p < 0.01; ***p < 0.001. Contra-regulated:
the expression trend of IncRNAs or miRNAs was different in two datasets. Upregulated or downregulated:
IncRNAs or miRNAs exhibited the similar expression trend in two datasets, high or down expressed.
Full-size 4 DOI: 10.7717/peerj.7456/fig-3

CeRNA network construction

Twenty-four interaction pairs between five DELs and 14 DEMs were predicted using
miRcode, starBase and DIANA-LncBase databases (Table 1). The expression trends of
these DELs and DEMs were opposite. Subsequently, the target genes of these 14 DEMs were
predicted using four algorithms, with the resultant interaction pairs of 700 in TargetScan,
486 in miRBase, 341 in miRanda and 268 in miRTarBase. A total of 404 interaction pairs
were ultimately left due to prediction by at least two databases and a negative association
between them. These interaction pairs between DELs and DEMs, and between DEMs and
DEGs were used to construct a ceRNA network, which contained 258 nodes (five DELs,
11 DEMs and 242 DEGs) (Fig. 4). In this network, TMEM51-AS1 functioned as a ceRNA
to regulate SNX21 (sorting nexin family member 21) and TRAPPCI0 (trafficking protein
particle complex 10) by sponging miR-106b; LINC00324 and RUSC1-ASI acted as ceRNAs
to regulate SPRY4 (sprouty RTK signaling antagonist 4), PAWR (pro-apoptotic WT1
regulator), MICAL2 (microtubule associated monooxygenase, calponin and LIM domain
containing 2) and SLC39A14 (solute carrier family 39 member 14) by sponging miR-16;
RUSC1-AS1 regulated SCG5 (SCG5 secretogranin V) and PRDM5 (PR/SET domain 5) by
competitively binding to miR-10; RUSC1-AS1 also served as ceRNAs for ZFP1 (ZFP1 zinc
finger protein) by binding to miR-7; HCP5 could interact with miR-143 to regulate RRM2
(ribonucleotide reductase regulatory subunit M2).
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Table 1 Interaction relationship between IncRNA and miRNAs.

IncRNA miRNA
HCP5 hsa-miR-10, hsa-miR-16, hsa-miR-186, hsa-miR-214, hsa-miR-7, hsa-miR-641,
hsa-miR-143, hsa-miR-4770, hsa-miR-216b, hsa-miR-876
LINC00324 hsa-miR-143, hsa-miR-16, hsa-miR-214, hsa-miR-216b, hsa-miR-4770
RUSC1-AS1 hsa-miR-214, hsa-miR-10, hsa-miR-16, has-miR-216b, hsa-miR-7
TMEMS51-AS1 hsa-miR-106b, hsa-miR-765
SND1-IT1 hsa-miR-708, hsa-miR-4306
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Figure4 Competing endogenous RNAs (ceRNAs) interaction network of IncRNA-miRNA-mRNA in laryngeal squamous cell carcinoma. (A)
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Full-size & DOI: 10.7717/peerj.7456/fig-4

Function enrichment analysis

The DEGs in the ceRNA network was subjected to DAVID to predict their potential
functions in LSCC. The results showed that 17 significant GO BP terms were enriched,
including GO:0042981~ regulation of apoptosis (PAWR), GO:001503 1~ protein transport
(SNX21; SCG5), cell cycle (PRDMS5) and GO:0043407~ negative regulation of MAP kinase
activity 4 (SPRY4). Six KEGG pathways were also enriched, including hsa05210: colorectal
cancer, hsa04210:Apoptosis and hsa05205:Proteoglycans in cancer (Table 2).
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Table 2 Function enrichment analysis for the genes in ceRNA network.

Category Term P-value Genes
Biology G0:0006793~ phosphorus 0.00122 STK38, SLC20A1, ERBB3, NUAK1, MKNKI1, ABI1, PIP5K1A, TRIBI,
process metabolic process MAP3K3, SRPK2, MINPP1, ADAM10, STK24, MSH2, PRKCI, PKN2,
PTPN12, GAK, MAP4K4, MTMR11, MAPK6, GSK3B, DYRK1A,
PTPN1, MAP3K14, ERC1, IKBKB, DUSP7
G0O:0006796~ phosphate 0.00122 STK38, SLC20A1, ERBB3, NUAK1, MKNK1, ABI1, PIP5K1A, TRIBI,
metabolic process MAP3K3, SRPK2, MINPP1, ADAM10, STK24, MSH2, PRKCI, PKN2,
PTPN12, GAK, MAP4K4, MTMRI11, MAPK6, GSK3B, DYRK1A,
PTPN1, MAP3K14, ERC1, IKBKB, DUSP7
GO:0006468~ protein amino 0.00498 SRPK2, ADAMI10, STK38, STK24, NUAK1, ERBB3, PRKCI, PKN2,
acid phosphorylation MKNKI1, ABI1, TRIB1, GAK, MAP4K4, MAPK6, MAP3K3, GSK3B,
DYRKI1A, IKBKB, ERC1, MAP3K14
GO:0016310~ phosphorylation 0.00801 SRPK2, ADAMI10, STK38, ERBB3, MSH2, STK24, NUAK1, PRKCI,
PKN2, MKNK1, ABI1, PIP5K1A, TRIB1, GAK, MAP4K4, MAPK®6,
MAP3K3, GSK3B, DYRKI1A, IKBKB, ERC1, MAP3K14
G0O:0008104~ protein 0.01176 STON2, SEC23A, XPO1, AP1M1, NUP160, PRKCI, CENPF, TMSB10,
localization TRAM2, TAP2, GSK3B, NUP210, TAP1, PIKFYVE, SNX21, RAB23,
SCG5, SUPT7L, SAR1B, RAB10, ERC1, KPNA2, KPNB1
G0:0043407~ negative 0.00991 STK38, PTPN1, SPRY4, DUSP7
regulation of MAP kinase
activity
GO:0042981~ regulation of 0.0165 DLC1, DPF2, IER3, ING3, SYVNI1, ERBB3, MSH2, KLF10, PRKCI,
apoptosis AKAP13, CD70, PAWR, SOD2, TNFRSF10A, BAG4, TIAM1, GSK3B,
GLO1, APBB2, IKBKB, MYC
G0:0043067~ regulation of 0.0181 DLCI1, DPF2, IER3, ING3, SYVNI1, ERBB3, MSH2, KLF10, PRKCI,
programmed cell death AKAP13, CD70, PAWR, SOD2, TNFRSF10A, BAG4, TIAM1, GSK3B,
GLO1, APBB2, IKBKB, MYC
GO:0015031~ protein transport 0.0188 STONZ2, SEC23A, XPO1, AP1M1, NUP160, PRKCI, CENPF, TRAM2,
TAP2, GSK3B, NUP210, TAP1, SNX21, RAB23, SCG5, SAR1B, RAB10,
ERCI1, KPNA2, KPNB1
G0O:0010941~ regulation of cell 0.0188 DLCI, DPF2, IER3, ING3, SYVN1, ERBB3, MSH2, KLF10, PRKCI,
death AKAP13, CD70, PAWR, SOD2, TNFRSF10A, BAG4, TIAM1, GSK3B,
GLO1, APBB2, IKBKB, MYC
GO:0045184~ establishment of 0.0204 STON2, SEC23A, XPO1, AP1M1, NUP160, PRKCI, CENPF, TRAM2,
protein localization TAP2, GSK3B, NUP210, TAP1, SNX21, RAB23, SCG5, SAR1B, RAB10,
ERC1, KPNA2, KPNB1
GO:0008219~ cell death 0.0211 FUS, DPF2, DLC1, IER3, MICB, ERBB3, MSH2, AKAP13, RNF216,
PAWR, ITPR1, SOD2, TNFRSF10A, BAG4, UNC5B, TIAMI, SIAH1,
MYC, SPAST
GO:0010033~ response to 0.0217 ADAMI10, KAT2B, ERBB3, MSH2, KLF10, PRKCI, CALCOCO?2,
organic substance APPLI, TRIB1, B2M, HDAC4, PRKAR2A, SDC1, HDAC2, ADM,
TAP2, CTSC, PTPN1, MYC
GO:0016265~ death 0.0225 FUS, DPF2, DLCI, IER3, MICB, ERBB3, MSH2, AKAP13, RNF216,
PAWR, ITPR1, SOD2, TNFRSF10A, BAG4, UNC5B, TIAM1, SIAH1,
MYC, SPAST
G0O:0044265~ cellular 0.0228 ADAMI10, SYVNI, USP1, RNHI1, UBE2V2, RNF216, MYLIP, UBE2Q2,

macromolecule catabolic
process

ZFP36L2, FBXW7, GMCL1, PSMD3, ZMPSTE24, SIAH1, PCYOX1,
USP33, MYC, FBXO11, USP31

(continued on next page)
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Table 2 (continued)

Category Term P-value Genes
GO:0007049~ cell cycle 0.0405 E2F3, KAT2B, MSH2, PAPD7, CENPF, APPL1, GAK, SASS6, MAPKG®,
GSK3B, PRDM5, PSMD3, ZNF318, HBP1, SIAH1, APBB2, KPNA2,
MYC, SPAST
GO:0009057~ macromolecule 0.0427 ADAMI10, SYVNI, USP1, RNH1, UBE2V2, RNF216, MYLIP, UBE2Q2,
catabolic process ZFP36L2, FBXW7, GMCLI1, PSMD3, ZMPSTE24, SIAH1, PCYOXI1,
USP33, MYC, FBXO11, USP31
KEGG hsa05210:Colorectal cancer 0.0377 MSH2, GSK3B, APPL1, MYC, FZD7
pathway
hsa04210:Apoptosis 0.0421 TNFRSF10A, PRKAR2A, EXOG, IKBKB, MAP3K14
hsa00562:Inositol phosphate 0.0477 MINPP1, TPI1, PIKFYVE, PIP5K1A
metabolism
hsa05169:Epstein-Barr virus 0.00175 POLR3F, XPO1, HDAC4, GTF2E2, HDAC2, GSK3B, PSMD3,
infection MAP3K14, IKBKB, MYC
hsa05166:HTLV-I infection 0.0122 WNT5A, XPO1, E2F3, KAT2B, MAP3K3, GSK3B, MAP3K14, IKBKB,
MYC, FZD7
hsa05205:Proteoglycans in 0.0267 WNTS5A, EIF4B, SDC1, TIAM1, ERBB3, MYC, FZD7, ITPR1

cancer

Clinical associations of IncRNAs, miRNAs and mRNAs in the ceRNA
network

In the 138 miRNA-mRNA matched samples of TCGA data, 114 had OS and 82 had RFS
information. Univariate Cox regression analysis in these 138 samples showed that 32
RNAs were significantly associated with OS, including 1 DEL (RUSC1-AS1), 2 DEMs
(hsa-miR-16 and hsa-miR-10) and 29 DEGs (i.e., PAWR, SCG5, SPRY4, MICAL2, SNX21,
TRAPPCI10 and SLC39A14); while 25 RNAs were associated with RFS, including one DEL
(LINCO00324), three DEMs (hsa-miR-16, hsa-miR-10 and hsa-miR-7) and 21 DEGs (i.e.,
PRDMS5, SCG5, SPRY4, MICAL2 and ZFP1) (Table 3). The OS and RFS related ceRNA
networks were extracted independently as shown in Figs. 5A and 5B.

Subsequently, multivariate Cox regression showed TRAPPC10 and SLC39A14 were
independent factors for OS; RRM2 was an independent factor for RES (Table 4). Although
SOD2, SLC44A1 and THEM4 were also screened to be significant, their hazard ratios
(HR) were not consistent with the expected according to their expression levels. Combined
with the univariate results, we suggested TRAPPC10 and SLC39A14 related ceRNA axes
(TMEMS51-AS1-miR-106-TRAPPC10; RUSC1-AS1-miR-16-SLC39A14) may be especially
important. The Kaplan—Meier curve of these IncRNAs, miRNAs and mRNAs were drawn.
As expected, the low expression of miR-16 (Fig. 5D) was associated with poor prognosis
and the high expression of RUSC1-AS1 (Fig. 5C), SLC39A14 (Fig. 5E) and TRAPPC10
(Fig. 6A) was associated with shorter OS.

Furthermore, OS- and RFS-related DELs, DEMs and DEGs were also analyzed to
investigate their associations with other clinical characteristics of LSCC to further confirm
their importance. The results showed that RUSC1-ASI1 was significantly associated with
Pathologic N; OS- and RFS-related SPRY4 was associated with Pathologic M; OS-related
MICAL2 was associated with Pathologic N and Pathologic stage; RFS-related ZFP1 and
SLC39A14 were associated with Pathologic N; OS-related SNX21 and RFS-related SCG5
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Table 3 Prognosis related IncRNAs, miRNAs and mRNAs in ceRNA network.

Overall survival

Recurrence free survival

RNA exp(coef) P RNA exp(coef) p
miRNA hsa-miR-16 0.506 0.00048 miRNA hsa-miR-10 0.678 0.0135
hsa-miR-10 0.653 0.016 hsa-miR-16 0.523 0.00355
IncRNA RUSCI1-AS1 1.09 0.01 hsa-miR-7 1.75 0.011
mRNA ADAM10 2.01 0.0435 IncRNA LINC00324 1.38 0.0205
AHCYL2 0.739 0.0315 mRNA AFF4 2.43 0.036
CNPY3 0.602 0.048 CELSR2 0.576 0.041
DLC1 1.56 0.025 ERBB3 0.392 0.041
E2F3 0.661 0.0355 LRRC8E 0.577 0.029
FUS 0.531 0.0345 MAP4K4 2.12 0.0475
HPN 0.878 0.036 MICAL2 1.76 0.0115
ITPR1 2.19 0.036 NXPH4 0.702 0.0265
LRRC40 2.56 0.042 PCYOX1 0.484 0.0445
MICAL2 1.49 0.0325 PRDM5 1.64 0.0135
NXPH4 0.722 0.032 PTBP1 8.8 0.047
PAWR 1.57 0.037 PTPN1 3.26 0.038
PRPSAP2 0.563 0.045 PYGO2 0.252 0.036
PTPN12 2.19 0.0485 RRM2 2.32 0.043
PUS1 0.668 0.0385 SCG5 1.84 0.00065
PYGO2 0.334 0.0485 SDC1 0.459 0.042
RABI10 1.59 0.0295 SLC39A14 1.85 0.042
SAR1B 1.62 0.039 SLC44A1 0.445 0.011
SCG5 1.4 0.0295 SPRY4 2.28 0.007
SLC39A14 1.78 0.027 ST3GAL2 2.34 0.033
SNX21 0.502 0.048 THEM4 0.278 0.006
SOD2 0.736 0.038 ZFP1 3.35 0.032
SPRY4 1.98 0.023
ST3GAL2 1.87 0.0345
TAP2 0.68 0.0425
TCFL5 0.613 0.033
TRAPPC10 0.324 0.037
TSC22D2 1.36 0.0295
TSEN15 1.58 0.0415

were associated with gender (Table 5). These findings implied SPRY4, MICAL2, ZFP1,
SNX21 and SCGS5 related ceRNAs (LINC00324/RUSC1-AS1-miR-16-SPRY4/MICAL2,
RUSC1-AS1-miR-7-ZFP1, TMEM51-AS1-miR-106-SNX21, RUSC1-AS1-miR-10-SCG5)
were also crucial for LSCC. The Kaplan—Meier curve of SNX21 is shown in Fig. 6B and the

other DEGs are displayed in Figs. S1 and S2.
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Figure 5 Prognosis related competing endogenous RNAs (ceRNAs) interaction axes. (A) IncRNA-
miRNA-mRNA network for overall survival; (B) IncRNA-miRNA-mRNA network for recurrence free sur-
vival. Square nodes represent IncRNAs; triangle nodes represent miRNAs; round nodes represent mR-
NAs. Edges represent the possible associations between IncRNAs, miRNAs and mRNAs. Red, upregulated;
green, downregulated.; Kaplan—Meier analysis of the IncRNA (C), miRNA (D) and mRNA (E) of crucial
ceRNA axis in which all IncRNA, miRNA and mRNA were prognosis-related and mRNA was an indepen-
dent prognostic factor.

Full-size Gl DOI: 10.7717/peerj.7456/fig-5

DISCUSSION

Although epigenetics modification has been shown to trigger silencing or overexpression
of IncRNAs in cancer (Dong et al., 2017; Guo et al., 2018b; Zhou et al., 2018), the aberrant
methylation-mediated expression changes of IncRNAs remain unclear in LSCC. We, for the
first time, found that the downregulation of IncRNA TMEM51-AS1 may be mediated by
hyper-methylation. Few studies investigated the roles of TMEMS51-AS1 in cancer except one
study indicated downregulated TMEM51-AS1 was significantly correlated with poor OS
in chromophobe renal cell carcinoma (He et al., 2016). In the present study, we predicted
that TMEM51-AS1 might function as a ceRNA to regulate SNX21 and TRAPPC10 through
sponging miR-106b. Evidence demonstrated that miR-106b was up-regulated in LSCC (Lu
et al., 2014; Xing et al., 2014), which was also confirmed in our microarray study. miR-106b
was reported to promote the proliferation and invasion of LSCC cells by targeting RUNX3
(Ying et al., 2013), while induce cell cycle GO/G1 arrest by inhibiting tumor suppressor RB
(Cai, Wang ¢» Bao, 2011). Although no study revealed the roles of SNX21 in cancer, its
family genes, such as SNX1 (Zhan et al., 2018), SNX5 (Jitsukawa et al., 2017) and SNX9
(Bendris et al., 2016) were suggested to be tumor suppressor related. Therefore, SNX21 may
be theoretically downregulated in LSCC by miR-106b. Consistent with this hypothesis,
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Table 4 Independent prognostic factors for LSCC by multivariate Cox regression.

(O] RFS
ID P-value HR 95% CI ID P-value  HR 95% CI
Lower limit ~ Upper limit Lower limit ~ Upper limit
TRAPPC10 0.0106 0.0941 0.01535 0.5768 SLC44A1 0.0055 0.1719 0.0496 0.5958
Alcohol 0.0252 0.0391 0.00229 0.668 THEM4 0.0101 0.2215 0.07023 0.6988
SLC39A14 0.0289 9.37 1.26 69.8 RRM2 0.0151 34.8562 1.99009 610.503
SOD2 0.0456 2.748 1.01992 7.4038 Age 0.0875 0.06502 0.00283 1.494
SCG5 0.0515 8.6 0.986 75.1 T 0.1882 0.09721 0.00302 3.129
Grade 0.0536 0.0053 0.000025 1.09 Stage 0.1883 14.2194 0.27247 742.056
MICAL2 0.0872 0.141 0.0149 1.33 ZFP1 0.2108 3.5709 0.48649 26.2105
RUSCI1-AS1 0.0894 1.1434 0.97957 1.3347 LINC00324 0.2134 1.5429 0.77921 3.0549
Gender 0.1057 0.002 1.08E—06 3.72 PCYOX1 0.2206 0.16586 0.009362 2.939
CNPY3 0.1069 43.1 0.444 4170 CELSR2 0.2233 0.12475 0.004376 3.556
PUS1 0.1534 0.0927 0.00354 2.43 NXPH4 0.2429 0.58688 0.239935 1.435
HPN 0.1538 0.398 0.112 1.41 Gender 0.2507 0.11327 0.002754 4.658
hsa-mir-16-2 0.1626 0.5574 0.24539 1.266 PTPN1 0.2567 17.1232 0.126445 2318.83
Age 0.1641 0.0323 0.000256 4.07 AFF4 0.3093 17.52882 0.070156 4379.665
PTPNI12 0.204 42.7 0.13 14000 PYGO2 0.3218 0.06118 0.000243 15.379
ADAM10 0.245 0.136 0.00472 3.93 SLC39A14 0.3303 1.5919 0.62436 4.0587
LRRC40 0.2467 0.0333 0.000106 10.5 SPRY4 0.3574 1.6716 0.55973 4.9922
Stage 0.2589 185 0.0215 158000 Grade 0.4953 0.24206 0.004104 14.277
RAB10 0.2779 0.0066 7.71E-07 57.1 MAP4K4 0.4973 0.21996 0.002775 17.436
T 0.2814 0.0214 0.000020 23.3 hsa-mir-16-2 0.50105 0.7001 0.24778 1.978
TSC22D2 0.3088 1.7322 0.60129 4.99 ERBB3 0.6193 2.56113 0.06268 104.645
FUS 0.3262 0.0128 2.11E-06 77.1 PTBP1 0.629 8.46884 0.00146 49149.03
DLC1 0.3279 0.168 0.00472 5.99 tobacco 0.6901 0.59073 0.04442 7.856
PRPSAP2 0.328 0.0598 0.000212 16.9 SCG5 0.7040 1.2036 0.46263 3.1314
TSEN15 0.3295 2.1853 0.45397 10.5197 PRDM5 0.7108 1.45392 0.20106 10.514
ST3GAL2 0.3643 1.4916 0.62882 3.5381 N 0.7903 0.69963 0.05030 9.731
PYGO2 0.4608 6.86 0.0412 1140 LRRC8E 0.7914 0.70897 0.05545 9.065
E2F3 0.4736 2.69 0.18 40.2 MICAL2 0.8244 1.2676 0.15616 10.289
N 0.5037 0.203 0.00188 21.8 SDC1 0.8476 1.1355 0.31079 4.1489
SPRY4 0.5551 1.3026 0.54132 3.1346 hsa-mir-7-2 0.8556 1.1305 0.30175 4.2351
TAP2 0.574 0.7112 0.21679 2.3332 hsa-mir-10a 0.9186 0.9692 0.53189 1.7661
NXPH4 0.6486 0.784 0.276 2.23 ST3GAL2 0.9385 0.9482 0.24524 3.666
TCFL5 0.6954 0.7436 0.16866 3.278 Alcohol 0.9937 1.01803 0.01187 87.316
Tobacco 0.717 1.67 0.105 26.5
SNX21 0.8253 0.8703 0.25359 2.9871
hsa-mir-10a 0.8392 0.9451 0.54739 1.6316
PAWR 0.842 1.7 0.00918 315
SAR1B 0.9106 1.25 0.0244 64.3
ITPR1 0.9121 1.19 0.0539 26.3
AHCYL2 0.9767 1.06 0.0236 47.5
Notes.

P-value < 0.05 shown in bold.
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Figure 6 Kaplan—Meier curve of IncRNA TMEM51-AS1 ceRNA related mRNAs. (A) TRAPPCI10, which
was an independent prognostic factor; (B) SNX21, which was overall survival related in univariate Cox re-

gression analysis.

Full-size Gl DOI: 10.7717/peerj.7456/fig-6

Table5 Clinical characteristics related to IncRNAs, miRNAs and mRNAs in prognostic ceRNA network.

Clinical characteristics Significant related
IncRNA miRNA mRNA
Age( >60/<60 y) - ADAMI10, FUS, MICAL2, LRRC8E
Gender(Male/Female) - DLC1, HPN, PTPN12, SNX21, ST3GAL2,
LRRCS8E, NXPH4, PTPN1, SCG5,
Alcohol use(Yes/No) - CNPY3, PYGO2, SLC39A14, TAP2
Pathologic_M(MO0/-) - ADAM10, CNPY3, E2F3, SPRY4,
LRRCS8E, MAP4K4, PTBP1, RRM2
Pathologic_N(NO/N1/N2/N3/-) RUSCI1-AS1 DLC1, FUS, MICAL2, SOD2,

Pathologic_T(T1/T2/T3/T4/-) -
Pathologic_stage(I/II/III/IV/-) -

Grade(G1/G2/G3/G4) -

Tobacco use(Reform/Current/Never) -

PCYOX1, RRM2, SLC39A14, ZFP1
LRRC40, PRPSAP2, SOD2, TSEN15, CELSR2, PTPN1

MICAL2, PRPSAP2, SPRY4,
CELSR2, MAP4K4, PCYOX1, PTPN1

AHCYL2, DLCI1 , PCYOXI1, PTPN1, RRM2
HPN, RAB10, SAR1B, SOD2, TAP2

Notes.

Underlined genes were recurrence free survival related; the other genes were overall survival related. Bolded genes was both recurrence free and overall survival related.

our study showed that SNX21 was less expressed in LSCC tissues and patients with high
expression of SNX21 had a higher OS rate. There was only one study to suggest the roles
of TRAPPC10 until now and showed TRAPPC10 was an oncogenic driver to predict the
poor prognosis for breast cancer patients (Pongor et al., 2015), which seemed to be contrast
with our results, implying TRAPPC10 may be a new tumor suppressor gene for LSCC. The
tumor inhibition effects of TRAPPC10 may be related to its potential to activate GTPase
RABL11 (Milev et al., 2018) and the Rab coupling protein, the targeted deletion of which led
to accelerated tumor onset (Boulay et al., 2016).
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Furthermore, we identified several other ceRNA axes, although they were not
methylation-related, including LINC00324/RUSC1-AS1-miR-16-SPRY4/MICAL2/
SLC39A14, RUSC1-AS1-miR-10-SCG5 and RUSC1-AS1-miR-7-ZFP1. All these IncRNAs,
miRNAs and mRNAs were significantly associated with OS and/or RFS, indicating these
ceRNA axes may also be underlying therapeutic targets.

Although related report was rare, RUSC1-AS1 (Jian et al., 2015) and LINC00324
(Militello et al., 2017) had been indicated to be highly expressed in cancer cells, which were
similarly confirmed in LSCC samples. Accumulating evidence also has proved the roles of
miR-16, miR-7 and miR-10 in various types of cancer. miR-16 could be downregulated
in tissue samples and cell lines of lung cancer (Ke et al., 2013) and osteosarcoma (Jiao,
Wang ¢ Wang, 2018). Ectopic expression of miR-16 inhibited cell proliferation, colony
formation in vivo and, migration and invasion in vitro by regulating its target genes RAB23
and Smad3 (Jiao, Wang & Wang, 2018; Zhang et al., 2018). miR-10a was down-regulated
in laryngeal epithelial premalignant lesions with increasing grade of dysplasia (Hu et
al., 2015). Overexpression of miR-10a inhibited cell metastasis by regulating epithelial-
to-mesenchymal transition (EMT) (Liu ef al., 2017b). miR-7-5p was lower expressed
in brain-metastatic lesions of breast cancer (Hiroshi et al., 2013) and the use of miR-7-5p
mimics suppressed cell proliferation and induced apoptosis (Shi et al., 2015) via modulating
the expression of Kruppel like factor 4. In agreement with these studies, we also found
that these three miRNAs were less expressed (especially miR-10 and miR-7) in LSCC
and negatively associated with OS and/or RFS. Although the downstream target genes
of these miRNAs have been reported as above, their functions in LSCC remain poorly
understood. We predicted that SPRY4/MICAL2/SLC39A14, SCG5 and ZFP1 may be the
potential targets of miR-16, miR-10 and miR-7, respectively in LSCC, which had not
been validated previously. Nevertheless, the studies on the molecular mechanisms of these
DEGs may indirectly explain their potential interactions. The expression of SPRY4 was
upregulated in testicular germ cell tumors (Tian et al., 2018). MICAL2 was a recently
identified proto-oncogene, which increased cell proliferation to accelerate tumor growth,
and promoted the expression of EMT-related proteins to increase cell metastasis (Mariotti
et al., 2016; Wang et al., 2018). Immunohistochemical analysis showed the expression level
of SLC39A14 was significantly higher in hepatocellular carcinoma tissues than that in
adjacent tissues and negatively correlated with survival time (Gartmann et al., 2018). Also,
the upregulation of SLC39A14 in tumor cells may be attributed to the loss of its interactive
gene p53, a tumor suppressor (Zhao et al., 2017). Although there were no studies to discuss
the roles of SCGS5 in cancer, its family members secretogranin II and III have been seen
to be overexpressed in prostate cancer (Courel et al., 2014) and small cell lung carcinoma
(Togayachi et al., 2017), suggesting SCG5 may also be oncogenic for LSCC. Zinc finger
proteins had also been observed to promote cell growth and metastasis in nasopharyngeal
carcinoma (Li et al., 2015). In line with these findings, SPRY4, MICAL2, SLC39A14, SCG5
and ZFP1 were all upregulated in LSCC and associated with poor prognosis.

There were some limitations in this study. First, although all the known microarray
or sequencing data from the public database had been included, the sample size was still
not large which may influence the results. Therefore, additional clinical trials with larger

Hui et al. (2019), PeerdJ, DOI 10.7717/peerj.7456 16/23


https://peerj.com
http://dx.doi.org/10.7717/peerj.7456

Peer

samples may be essential to confirm their expression and prognosis. Second, we only
preliminarily predicted that these ceRNA axes may be associated with LSCC development
and prognosis. The regulatory relationships between IncRNAs and miRNAs as well as
between miRNAs and mRNAs needed further experimental confirmation in vitro and in
vivo (i.e., dual luciferase reporter assay or loss-of-function). Third, whether the expression of
TMEMS51-AS1 was regulated by methylation should be validated by using the methylation
inhibitor 5-azacytidine. Fourth, although we have normalized the data from different
platforms, this may still cause some underlying bias.

CONCLUSION

Our present study identifies several important mechanisms for the development and
progression of LSCC: (1) methylation-mediated upregulation of IncRNA TMEM51-AS1
may function as a ceRNA for miR-106b to regulate SNX21 and TRAPPC10; (2) survival-
related RUSC1-AS1/LINC00324 may function as a ceRNA to sponge miR-16, miR-10
or miR-7 and then regulate SPRY4/ MICAL2/SLC39A14, SCG5/PRDMS5 and ZFP1,
respectively. Altogether, these IncRNA, miRNAs or mRNAs may be potential prognostic
biomarkers and therapeutic targets of LSCC.
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