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ABSTRACT
Background. Rho GTPase-activating protein 10 (ARHGAP10), which catalyzes the
conversion of active RhoGTPase to the inactive form, is downregulated in some cancers.
However, little is known about ARHGAP10 in breast cancer.
Methods. The transcriptional expression level of ARHGAP10 in breast cancer was
analyzed with the data downloaded from The Cancer Genome Atlas (TCGA) and On-
comine, then verified by reverse-transcription quantitative polymerase chain reaction
(RT-qPCR) in 30 pairs of breast cancer tissues and the corresponding adjacent normal
tissues. ARHGAP10 protein expressionwas examined by immunohistochemistry (IHC)
in 190 breast cancer and 30 corresponding adjacent normal breast tissue samples. The
associations between ARHGAP10 expression and clinicopathological characteristics of
patients were analyzed, and Kaplan–Meier Plotter was used to assess the relationship
between ARHGAP10 and relapse-free survival (RFS). Different expression levels of
ARHGAP10 in response to chemotherapy agents were determined by GEO2R online
tool. The potential biological functions of ARHGAP10 were analyzed by Gene Set
Enrichment Analysis (GSEA) using data downloaded from TCGA.
Results. ARHGAP10 mRNA and protein expression was lower in breast cancer tissues
than in adjacent normal tissues. Low expression of ARHGAP10 was associated with
advanced clinical TNM (cTNM) stage (pb= 0.001) and high Ki-67 index (p= 0.015).
Low expression of ARHGAP10 indicated worse RFS (p= 0.0015) and a poor response
to chemotherapy (p= 0.006). GSEA results showed that ARHGAP10 was involved in
signaling pathways including protein export, nucleotide excision repair, base excision
repair, focal adhesion, JAK-STAT pathway and the actin cytoskeleton.

Subjects Bioinformatics, Oncology
Keywords ARHGAP10, Breast cancer, TCGA, Oncomine, Immunohistochemistry, GEO2R,
GSEA

INTRODUCTION
Breast cancer is the most prevalent malignant disease with highest incidence in females
worldwide, accounting for 25% of all cancer cases and 15% of all cancer-related deaths
among women according to the updated global cancer statistics (Chen et al., 2016).
Treatment decisions for breast cancer largely depend on clinicopathological parameters

How to cite this article Li Y, Zeng B, Li Y, Zhang C, Ren G. 2019. Downregulated expression of ARHGAP10 correlates with advanced
stage and high Ki-67 index in breast cancer. PeerJ 7:e7431 http://doi.org/10.7717/peerj.7431

mailto:rengs726@126.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7431
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.7431


(tumor size, hormone receptor status, HER2 status, Ki-67 index, pathological grade,
lymph node metastasis and distant metastasis). However, the management of breast cancer
remains unsatisfactory, and the responses to treatment and patient outcomes vary among
individuals partly because of the heterogeneity of tumors (Song et al., 2016). Therefore, the
identification of new biomarkers and elucidating the molecular mechanisms underlying
breast cancer are critical to determine the effectiveness of breast cancer treatments.

ARHGAP10, also known as GRAF2 or PS-GAP, is located at chromosome 4q31.23
(Katoh & Katoh, 2004). ARHGAP10, a member of the Rho GTPase-activating protein
(GAP) family, which includes at least 49 members (Fagerberg et al., 2014), reverses the
active GTP-bound form of GTPases into an inactive GDP-bound form (Lancaster et al.,
1994). Rho GAP family members have been investigated for their involvement in several
cancers including lung cancer (Wang et al., 2014), hepatocellular carcinoma (Gen et al.,
2009), prostate cancer (Lazarini et al., 2013), colorectal cancer (Johnstone et al., 2004),
Ewing carcinoma (Satterfield et al., 2017) and glioblastoma (Bigarella et al., 2009) among
others. The activity of GTPases such as Cdc42 and RhoA is modulated by ARHGAP10
(Shibata et al., 2001). ARHGAP10 contains four domains, namely BAR, PH, Rho GAP,
and SH3 (Katoh & Katoh, 2004), which mediate its interactions with proteins such as
FAK (Ren et al., 2001), PAK2 (Koeppel et al., 2004) and PKN β (Shibata et al., 2001). These
interactions mediate the cell growth, cell shape, motility, exintegrin-initiated signaling
events, cell survival, cell death, cell growth and cell apoptosis. Consequently, aberrant
expression of ARHGAP10 may relate to disorders in diseases.

ARHGAP10 acts as tumor suppressor in ovarian cancer (Luo et al., 2016), lung cancer
(Teng et al., 2017) and gastric cancer (Li et al., 2017). ARHGAP10 expression is modulated
by micro-RNA and is involved in signaling cascades such as Wnt pathway, metastasis, cell
cycle, replication, base excision repair, mitochondria-dependent apoptosis and autophagic
cell death. ARHGAP10 also affects the expression of p53 (Li et al., 2017),β-catenin,MMP-9,
MMP-2 (Teng et al., 2017), PCNA, PLK, MCM2, MCM3 and PARP (Luo et al., 2016). An
association between single nucleotide polymorphism in the intron of ARHGAP10 and
the prognosis of breast cancer was reported, although it did not reach strict statistical
significance and the relation could not be replicated in the validation cohort (Azzato et al.,
2010). Therefore, ARHGAP10 in breast cancer remains to be investigated in detail.

The present study was intended to investigate the expression pattern and potential
biological function of ARHGAP10 in breast cancer. We confirmed that ARHGAP10 was
significantly downregulated in breast cancer, and low expression of ARHGAP10 was related
to a high Ki-67 index, advanced cTNM stage and low RFS rate. GEO data were analyzed
to assess the possible role of ARHGAP10 in the response to chemotherapy. Additionally,
we conducted GSEA to identify the possible biological functions and potential signaling
pathways related to ARHGAP10 in breast cancer.
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MATERIALS & METHODS
RNA extraction and reverse-transcription quantitative polymerase
chain reaction
Paired tumor tissues and adjacent normal tissues used in RT-qPCR were obtained from
patients who were diagnosed by Department of Pathology and underwent breast cancer
surgery at Department of Endocrine and Breast Surgery, the First Affiliated Hospital
of Chongqing Medical University. This study was approved by the Institutional Ethics
Committees of the First Affiliated Hospital of Chongqing Medical University (#2017-
012). Specimens were collected and stored at −80 ◦C until utilized. Total RNA was
isolated using TRIzol reagent (Invitrogen, Carlsbad, CA, USA). The concentration of total
RNA was measured with NanoDrop 2000 spectrophotometer (Thermo Fisher Scientific,
Waltham, MA, USA). Reverse transcription was performed using Go-Taq polymerase
(Promega, Madison, WI, USA). A SYBR Green PCR Master Mix kit (Invitrogen) for
RT-qPCR was used with Applied Biosystems 7500 (Applied Biosystems, Foster City,
CA, USA). GAPDH was used as internal control. Relative expression was determined
by 2(−1t ). Forward primer of ARHGAP10 was TGTGGAACCTATGCTGTCAT and
reverse primer of ARHGAP10 was GACTTGCTCGTTTGTGGTC. Forward primer
of GAPDH was GGAGTCAACGGATTTGGT and reverse primer of GAPDH was
GTGATGGGATTTCCATTGAT.

Immunohistochemistry
Formalin-fixed and paraffin-embedded tissue samples were obtained from the Department
of Endocrine and Breast Surgery and the Department of Pathology, First Affiliated
Hospital of Chongqing Medical University from 2012 to 2017. Specimens were sliced
into 4 µm thick section. None of the patients in this cohort received anti-tumor treatment
before surgery. This study was approved by the Institutional Ethics Committees of the
First Affiliated Hospital of Chongqing Medical University (#2017-012). The slides were
deparaffinized with fresh xylene for 30 min and rehydrated with graded ethanol for 25
min, then washed with PBS. Antigens were retrieved in a microwave oven at 100 ◦C for 20
min. Slides were blocked with 3% hydrogen peroxide for 12 min after cooling to ambient
temperature, followed by washing in PBS, blocking with normal goat serum for 15 min,
incubation with primary antibody against ARHGAP10 (55139-1-AP; Proteintech Group,
Wuhan, China) at dilution of 1:250 overnight at 4 ◦C, and rinsing with PBS. Slides were
incubated with biotinylated goat anti-rabbit IgG at 37 ◦C for 15 min, rinsed with PBS,
incubated with horseradish-peroxidase labled streptomycin, and then stained with DAB
and hematoxylin respectively. Slides were finally immersed in differentiation liquid. All
slides were dehydrated with graded ethanol and xylene series, then fixed with neutral
resin and imaged under a microscope. The IHC results were scored according to the
proportion of positively stained cells and staining intensity. The final score was determined
by the product of staining intensity (0: negative; 1: weak; 2: moderate; 3: strong) and the
percentage of positive cells (0: <5%; 1: 5%–25%; 2: 26%–50%; 3: 51%–75%; 4: >75%). A
final score <8 was considered as low expression, and≥8 was considered as high expression.
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Cell lines
The human normal breast epithelial cell line MCF10A and the human breast cancer cell
lines MCF7, BT-549, MDA-MB-468 and MDA-MB-231 were obtained from American
Type Culture Collection. MCF10A were cultured as previously described (Debnath,
Muthuswamy & Brugge, 2003), and other breast cancer cell lines were cultured in RPMI-
1640 medium (Gibco-BRL, Karlsruhe, Germany), supplemented with 10% fetal bovine
serum (Gibco-BRL) in a 5% CO2 humidified atmosphere at 37 ◦C.

Antibodies and western blotting
Total cell lysates were lysed in lysis buffer (Beyotime) containing PMSF and an inhibitor
cocktail on ice. Protein concentration was measured using the BCA protein assay kit
(Pierce, Rockford, IL, USA). Aliquots containing 30 µg protein separated by 10% sodium
dodecyl sulfate–polyacrylamide gel electrophoresis, then transferred to polyvinylidene
difluoride membranes and blocked with 5% non-fat milk for 1 h at room temperature.
Membranes were incubated with the corresponding primary antibody (ARHGAP10 at
the dilution of 1:2000 and GAPDH at the dilution of 1:5000) at 4 ◦C overnight, washed
with 0.1% Tween20 in TBS, and then incubated with secondary antibody. Primary rabbit
anti-ARHGAP10 and anti-GAPDH were purchased from Proteintech Group (55139-1-AP;
Wuhan, China) and BIOSS (bs-10900R, China), respectively. The secondary antibody
HRP-conjugated goat anti-rabbit IgG was purchased from Abbkine (A21020, China).

Bioinformatics resource and data
The significance of ARHGAP10 for RFS in breast cancer was plotted via Kaplan–Meier
Plotter (http://www.kmplot.com) (Gyorffy et al., 2010). A total of 3955 breast cancer
patients were divided into high and low expression groups according to the median
expression of ARHGAP10.

Oncomine (http://www.oncomine.org), an online database of the transcript level
of certain genes (Rhodes et al., 2004), was used to examine the differences in gene
expression between breast cancer tissues and normal mammary tissues. The following
search parameters were used: ARHGAP10, Cancer vs. Normal Analysis, Breast Cancer,
Clinical Specimen, ordered by under-expression, p-value 0.01 and fold change 2.

GEPIA (http://gepia.cancer-pku.cn/), an online website for RNA sequencing expression
data of various tumor and normal samples from TCGA and the GTEx projects (Tang et al.,
2017), was used for the analysis.

CpG islands were determined by online tool EMBOSSCpgplot. CpG islands were defined
as sequence ranges where the Obs/Exp value was greater than 0.6 and the GC content was
greater than 50% within a length more than 200bp (Gardiner-Garden & Frommer, 1987).

Breast cancer data of 1,097 breast cancer cases and 113 normal cases from TCGA were
downloaded from https://cancergenome.nih.gov/.

GSEAwas performed using the c2.cp.kegg.v6.2symbols.gmt gene set withGSEA software.
A total of 1,097 breast cancer samples were divided into two groups according to themedian
expression ofARHGAP10, namely theARHGAP10-low group andARHGAP10-high group.
A nominal p-value <0.05 and false discovery rate (FDR) >0.25 were regarded as statistically
enriched for a certain gene set.
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Statistical analysis
Statistical analyses were performed with SPSS 23.0 (Chicago, IL, USA) and GraphPad
Prism 7 software (San Diego, CA, USA). Two tailed Student’s t -test was used to examine
the statistical relationship between two cohorts. The chi-square test, Bonferroni correction
and Fisher’s exact test were used to examine correlations between clinicopathological
parameters and the expression level of ARHGAP10. A p< 0.05 was considered statistically
significant except in Bonferroni correction. The p value using Bonferroni correction was
represented as pb.

RESULTS
ARHGAP10 is downregulated at the transcriptional level in breast
cancer tissues
The expression of ARHGAP10 was analyzed using data downloaded from TCGA and
Curtis Breast in Oncomine (Curtis et al., 2012). The results showed that ARHGAP10 was
downregulated according to TCGA (p< 0.001) (Fig. 1A) and Curtis Breast of Oncomine
(p< 0.001) (Fig. 1B).

RT-qPCR analysis of 30 paired breast cancer and corresponding adjacent normal tissues
was performed to confirm the expression pattern of ARHGAP10 in breast cancer. The
result showed that ARHGAP10 was decreased significantly at transcriptional level when
compared with paired normal adjacent tissues (p< 0.001) (Fig. 1C).

Intriguingly, ARHGAP10 was not only downregulated in breast cancer, but was also
reduced in other cancers including bladder urothelial carcinoma, cervical squamous
cell carcinoma and endocervical adenocarcinoma, colon adenocarcinoma, esophageal
carcinoma, kidney chromophobe, liver hepatocellular carcinoma, lung adenocarcinoma,
lung squamous cell carcinoma, prostate adenocarcinoma, rectum adenocarcinoma,
testicular germ cell tumor, uterine corpus endometrial carcinoma and uterine
carcinosarcoma according to GEPIA (Tang et al., 2017) (Fig. 1D).

ARHGAP10 protein expression is downregulated in breast cancer
tissues
The protein expression of ARHGAP10 was analyzed in 30 paired tumor tissues and
corresponding adjacent normal tissues by IHC. ARHGAP10 was located at both the
cytoplasm and nucleus (Figs. 2A–2H). The IHC staining results, as determined by the
product of the proportion of positive staining cells and staining intensity, showed that low
expression of ARHGAP10wasmore frequent in breast cancer tissues than in non-cancerous
tissues (p< 0.001) (Fig. 2I).

The expression of ARHGAP10 in breast cell lines was evaluated by RT-qPCR andwestern
blotting. The results demonstrated that ARHGAP10 was significantly lower in MDA-MB-
231, MDA-MB-468 and BT-549 when compared with MCF10A, and ARHGAP10 showed
relatively low-expression trend in MCF7, though it was of no statistical significance at
mRNA level (Figs. 2J and 2K). The expression trend of ARHGAP10 in breast cancer cell
lines was roughly consistent with that in the clinical tissue samples.
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Figure 1 Decreased expression of ARHGAP10 in breast cancer and other types of cancer tissues at
transcriptional level. (A) The expression of ARHGAP10 in breast cancer tissues (n = 1,097) and normal
breast tissues (n= 113) according to TCGA, p< 0.001. (B) The expression of ARHGAP10 in breast cancer
tissues (n = 144) and normal breast tissues (n = 46) with the use of data from Oncomine, p < 0.001. (C)
The expression of ARHGAP10 in 30 paired primary breast cancer tissues and corresponding normal adja-
cent tissues detected by RT-qPCR assay and examined by paired t -test, p< 0.001. (D) The downregulated
expression of ARHGAP10 in other types of cancer according to GEPIA. BLCA, bladder urothelial carci-
noma; CESC, cervical squamous cell carcinoma and endocervical adenocarcinoma; COAD, colon adeno-
carcinoma; ESCA, esophageal carcinoma; KICH, kidney chromophobe; LIHC, liver hepatocellular carci-
noma; LUAD, lung adenocarcinoma; LUSC, lung squamous cell carcinoma; PRAD, prostate adenocarci-
noma; READ, rectum adenocarcinoma; SKCM, skin cutaneous melanoma; TGCT, testicular germ cell tu-
mors; UCEC, uterine corpus endometrial carcinoma; UCS, uterine carcinosarcoma.

Full-size DOI: 10.7717/peerj.7431/fig-1

ARHGAP10 expression correlates with Ki-67 index and cTNM stage
To gain insight into the significance of ARHGAP10 in breast cancer, a total of 190 breast
cancer samples were analyzed. In these samples, 71% (135/190) of tumor tissues showed low
expression of ARHGAP10. Previous studies of ARHGAP10 in cancer did not examine the
relationship between the expression of ARHGAP10 at protein level and clinicopathological
parameters, which are important for patient prognosis and therapy options. We therefore
divided patients into different groups by age, tumor size, ER status, PR status, HER-2
status, Ki-67 index (Ki-67 ≤20% was considered as low Ki-67 index, Ki-67 >20% was
considered as high Ki-67 index), lymph node metastasis, pathological grade and cTNM
stage according to the medical records with stratified expression level of ARHGAP10.
ARHGAP10 expression was significantly correlated with Ki-67 index (p= 0.015) and
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Figure 2 Reduced protein expression of ARHGAP10 in breast cancer tissues and expression pattern
of ARHGAP10 in breast cell lines. (A–B, C–D and E–F are three pairs of representative IHC images
of high-ARHGAP10 expression in normal adjacent breast tissues and low-ARHGAP10 expression in
corresponding breast cancer tissues. Scale bars, 50 µm. (G–H) Representative IHC images of high-
ARHGAP10 expression breast cancer tissues. Scale bars, 50 µm. (I) Distributions of different expression
levels of ARHGAP10 in 30 paired tumor and normal adjacent tissues. The statistical significance was
examined by Chi-square test, p < 0.001. (J) Expression of ARHGAP10 in MCF10A and breast cancer
cell lines MDAMB-231, MDA-MB-468, BT-549 and MCF7 were evaluated by RT-qPCR and analyzed
by Student’s test, ** p < 0.01. (K) Expression of ARHGAP10 in MCF10A and breast cancer cell lines
MDAMB-231, MDA-MB-468, BT-549 and MCF7 examined by western blotting.

Full-size DOI: 10.7717/peerj.7431/fig-2
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Table 1 Correlation between the clinicopathological parameters and the expression of ARHGAP10 in
190 breast cancer cases.

Clinicopathological
characteristics

Number ARHGAP10 expression p value

(n= 190) Low High

Age
<40 29 23 6
≥40 161 112 49 0.287

Size
≤20 mm 57 38 19
>20 mm ≤50 mm 107 81 26
≥50 mm 0 0 0
unknown 26 16 10 0.217

ER Status
Negative 87 59 28
Positive 103 76 27 0.366

PR Status
Negative 98 66 32
Positive 92 69 23 0.245

HER2
Negative 108 80 28
Positive 55 35 20
Unknown 27 20 7 0.167

Ki-67
≤20% 81 50 31
>20% 109 85 24 0.015

Pathological grade
1 3 2 1
2 135 94 41
3 40 32 8
unknown 12 7 5 0.379

Lymph node metastasis
Negative 111 75 36
Positive 79 60 19 0.209

cTNM
I 63 35 28
II 122 96 26
III 5 4 1 0.005

clinical TNM stage (p= 0.005). Low expression of ARHGAP10 was significantly more
frequent in cases with relatively high Ki67 index and advanced clinical stage (pb= 0.001).
However, ARHGAP10 expression was not significantly correlated with age (p= 0.287),
tumor size (p= 0.217), ER status (p= 0.366), PR status (p= 0.245), HER2 (p= 0.167),
pathological grade (p= 0.379) and lymph node metastasis (p= 0.209). Clinicopathological
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Figure 3 Correlation between the expression level of ARHGAP10 and relapse free survival (RFS)
and the responses to the chemotherapeutic agents. (A) The prognostic value of ARHGAP10 about
RFS assessed by Kaplan Meier Plotter which contains 3955 cases divided by the median expression of
ARHGAP10. HR= 0.84 (0.75–0.94), p = 0.0015. (B) The expression of ARHGAP10 in different drug
response groups analyzed by GEO2R with GSE45898.

Full-size DOI: 10.7717/peerj.7431/fig-3

characteristics and expression level of ARHGAP10 of these breast cancer samples were
summarized in Table 1.

Low expression of ARHGAP10 is associated with poor RFS and
response to chemotherapy
The relationship between ARHGAP10 and RFS was analyzed using Kaplan–Meier Plotter
in 3,955 breast cancer cases (Gyorffy et al., 2010). The results showed that low expression of
ARHGAP10 was associated with a lower RFS rate after dividing patients according to the
median ARHGAP10 expression (p= 0.0015) (Fig. 3A). This suggested that ARHGAP10
could be a predictor of breast cancer prognosis.

GSE45898 is a gene expression profile of breast cancer patients with contrary responses
to epirubicin, cyclophosphamide and docetaxel chemotherapy (Gruosso et al., 2016). In this
dataset, breast cancer patients’ biopsies were analyzed before therapy, and the responses
to chemotherapy were classified as Good and Poor. Differentially expressed mRNAs
were analyzed using GEO2R, and ARHGAP10 was identified as a differently expressed
transcript with statistical significance. ARHGAP10 expression was significantly lower
in the Poor group and higher in the Good group (p= 0.006) as shown in Fig. 3B. We
therefore hypothesized that there was a relationship between the expression of ARHGAP10
and chemotherapy response, and the combination of epirubicin, cyclophosphamide and
docetaxel may be less effective in breast cancer patients with low expression of ARHGAP10.

ARHGAP10 is involved in cancer-related signaling pathways in breast
cancer.
To further examine the biological function and associated signal pathways that ARHGAP10
possibly involved in, GSEA was performed (Subramanian et al., 2005) using data
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downloaded from TCGA. A total of 1,097 breast cancer samples were divided into two
groups by the median expression of ARHGAP10, namely ARHGAP10-low group and
ARHGAP10-high group. The GSEA results indicated that protein export, nucleotide
excision repair and base excision repair gene sets were markedly enriched in the
ARHGAP10-low group (Figs. 4A–4C). Focal adhesion, JAK-STAT and actin cytoskeleton
gene sets were evidently enriched in the ARHGAP10-high group (Figs. 4D–4F) with a
nominal p-value <0.05 and FDR <0.25. The normalized enrichment scores of the signal
sets were summarized in Fig. 4G.

DISCUSSION
Little is elucidated about ARHGAP10 in breast cancer before. Here, we showed that
ARHGAP10 expression was downregulated at both the transcriptional and protein levels
in breast cancer. Intriguingly, low expression of ARHGAP10 was more frequent in patients
with cTNM stage II than in those with stage I. In addition, ARHGAP10 expression
was lower in invasive ductal breast carcinoma than in adjacent normal tissues, whereas
ARHGAP10 expression did not differ between ductal breast cancer in situ and normal
tissues, as determined using the Radvanyi Breast dataset in Oncomine (Radvanyi et al.,
2005). These results suggested that ARHGAP10 was more involved in tumor progression
than initiation. ARHGAP10 was not only downregulated in breast cancer but also in other
cancers including bladder cancer, esophageal cancer, liver cancer, prostate adenocarcinoma,
rectum adenocarcinoma, skin cutaneous melanoma, uterine carcinosarcoma according
to GEPIA. Luo, Teng and Li et al. have proved the reduced expression of ARHGAP10
is downregulated in ovarian cancer (Luo et al., 2016), lung cancer (Teng et al., 2017)
and gastric cancer (Li et al., 2017). However, we found ARHGAP10 was upregulated in
lymphoid neoplasm diffuse large B-cell lymphoma, acute myeloid leukemia and thymoma
with the use of GEPIA. These results support the involvement of ARHGAP10 in various
malignant tumors.

An increasing number of studies have identifiedmassive genes with abnormal expression
patterns in tumors when paralleled with normal tissues due tomanymechanisms. To clarify
the mechanisms underlying ARHGAP10 downregulation in breast cancer, we analyzed
the region 2000bp upstream of ARHGAP10, and showed the presence of CpG islands in
this region. Because methylations on CpG islands can lead to improper downregulation
expression of genes (Illingworth & Bird, 2009), we speculated that this could be a potential
underlying mechanism for the low expression of ARHGAP10. Regulation from miRNAs
modulate the expression of genes (Bartel, 2004). Li et al. (2017) showed that miR-3174
targets ARHGAP10 and downregulates it expression in gastric cancer. Lu et al. (2012)
predicted that ARHGAP10 may be a target of miR-214. However, miRNAs and other
non-coding RNAs that modulate the expression of ARHGAP10 in breast cancer are
unknown. Further investigations of the mechanisms underlying the downregulation of
ARHGAP10 in breast cancer and other cancers are needed. Identifying the mechanisms or
genes involved may shed new light on cancer initiation, progression, clinical diagnosis and
treatment.
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Figure 4 Gene Set Enrichment Analysis of ARHGAP10 in breast cancer. (A–C) Low expression
of ARHGAP10 group was enriched in KEGG-protein export, KEGG-nucleotide excision repair and
KEGG-base excision repair gene sets. (D–F) High expression of ARHGAP10 group was enriched in
KEGG-focal adhesion, KEGG-JAK-STAT and KEGG-regulation of actin cytoskeleton gene sets. (G)
The enriched signal pathways were summarized by the diagram. NES, normalized enrichment score. *
p< 0.05, ** p< 0.01, *** p< 0.001.

Full-size DOI: 10.7717/peerj.7431/fig-4

ARHGAP10, also known as GRAF2 or PS-GAP, converts the active GTP-bound state
of GTPase into the inactive GDP-bound state. Rho GTPases such as Cdc42 and RhoA can
interactwithARHGAP10 and can be inactivated byARHGAP10 in vivo and in vitro (Shibata
et al., 2001). Theses Rho GTPases could be the downstream targets of ARHGAP10 and
mediate its biological functions. Luo et al. (2016) demonstrated the interaction between
ARHGAP10 and Cdc42, and suggested that ARHGAP10 exerts its tumor suppressor
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function through Cdc42. Several studies have investigated these two Rho GTPases in
tumors. Inhibition of RhoA can suppress the migration and invasion of triple negative
breast cancer cells (Li et al., 2017b). Targeting Cdc42 by miRNAs or small molecules may
retard the metastasis process in cancers (Xiao et al., 2018). A 15-year follow-up study
of breast cancer showed that nuclear location of RhoA and Cdc42 correlates with less
nodal metastasis, and high nuclear Cdc42 is related to low-grade tumor characteristics,
whereas cytoplasmic localization of Cdc42 is associated with higher grade, higher Ki-67
index, and larger tumor size (Chrysanthou et al., 2017). In the present study, we found
that ARHGAP10 was located at both nucleus and cytoplasm. Elucidating the mechanisms
regulating the localizations and interactions between GTPases and GTPases-activating
proteins may explain the distinct location-induced features of GTPases. Abnormally high
expression of Cdc42 was detected in other types tumors such as cervical squamous cell
carcinoma (Ma et al., 2013) and melanoma (Maldonado & Dharmawardhane, 2018). It
is worth noting that the relationship between activity and expression of an enzyme is
important, as high expression but low activity may act less than low expression but high
activity, Pauline Croisé mentioned this issue about Rho GTPases in cancer (Croise et al.,
2017). We therefore propose that the function of ARHGAP10 depends partly on the activity
regulation of Rho GTPases such as RhoA and Cdc42.

We analyzed 190 breast cancer tissue samples and 30 adjacent normal tissues, and
the results showed that ARHGAP10 was downregulated in breast cancer tissues and low
expression was correlated with high Ki-67 index and advanced cTNM stage. The targets
of ARHGAP10, i.e., GTPases, play a role in cytoskeleton formation and proliferation
(Rittinger et al., 1997) and are involved in migration and invasion of breast cancer cells (Li
et al., 2017b). This suggested that ARHGAP10 played a role in metastasis and proliferation
in breast cancer. However, our data did not fully support this hypothesis, as ARHGAP10
was associated with proliferation but not metastasis. These results could be attributed to the
small sample size and the lack of cell or animal experiments; however, it is also possible that
ARHGAP10 had a different biological function. The exact biological role of ARHGAP10
needs to be examined in further studies.

The heterogeneity of breast cancer can lead to different patient outcomes (Song et al.,
2016), and personalized medicine against specific molecules associated with heterogeneity
improves the curative effect of anti-cancer treatments (Schnitt, 2010). Accordingly, we
investigated whether ARHGAP10 was involved in the response to treatment. High
throughput sequencing is used extensively in oncology to identify critical genes as
biomarkers for early detection, diagnosis and outcome prediction (Kulasingam &
Diamandis, 2008). We analyzed the public data GSE45898, which was established in a study
investigating the response to chemotherapy in breast cancer. The results suggested that
low expression of ARHGAP10 indicated a poor response to epirubicin, cyclophosphamide
and docetaxel. Li et al. (2017) also found that low expression of ARHGAP10 can lead to
cisplatin resistance in gastric cancer cell lines. These studies suggested that ARHGAP10
was involved in the regulation of drug resistance. Cdc42 can activate and increase Ras and
EGFR signaling, and Cdc42 is a putative therapeutic target in breast, colon, lung cancer and
pancreatic cancers (Aguilar, Zhou & Lu, 2017). In a recent study, Cdc42 was reported as a
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promising target for cancer treatment (Maldonado & Dharmawardhane, 2018). However,
whether the role of ARHGAP10 in the response to chemotherapy is associated with Cdc42
remains unknown. ARHGAP10 could be a potential biomarker for predicting response to
chemotherapy and may be involved in dysregulated drug responses.

GSEA analysis provided evidence that ARHGAP10 was involved in the protein export,
nucleotide excision repair, base excision repair, focal adhesion, JAK-STAT and actin
cytoskeleton signaling pathways. Base excision repair is enriched for ARHGAP10 in
ovarian cancer (Luo et al., 2016). Metastasis and the Wnt signaling pathway are regulated
by ARHGAP10 in lung cancer cells (Teng et al., 2017). Collectively, these findings suggested
that ARHGAP10 was involved in different aspects of cancer. It would therefore be of value
to investigate how ARHGAP10 is involved in these signaling pathways to play its biological
roles in breast cancer.

CONCLUSIONS
In summary, the expression of ARHGAP10 is downregulated in breast cancer, and relative
low expression of ARHGAP10 is correlated with malignant characteristics such as a
high Ki-67 index, advanced cTNM stage, poor response to chemotherapy and low RFS
rates. GSEA results indicate that ARHGAP10 is involved in certain cancer-related signaling
pathways. Additional studies are required to gain more insights into the role of ARHGAP10
in breast cancer.
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