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ABSTRACT
Background. Global warming can cause variation in plant functional traits due to
phenotypic plasticity or rapid microevolutionary change. Seed mass represents a
fundamental axis of trait variation in plants, from an individual to a community scale.
Here, we hypothesize that long-term warming can shift the mean seed mass of species.
Methods. We tested our hypothesis in plots that had been warmed over 18 years in
alpine meadow communities with a history of light grazing (LG) and heavy grazing
(HG) on the Qinghai-Tibet plateau. In this study, seeds were collected during the
growing season of 2015.
Results. We found that warming increased the mean seed mass of 4 (n= 19) species
in the LG meadow and 6 (n= 20) species in the HG meadow, while decreasing the
mean seed mass of 6 species in the LG and HG meadows, respectively. For 7 species,
grazing history modified the effect of warming on seed mass. Therefore, we concluded
that long-term warming can shift the mean seed mass at the species level. However, the
direction of this variation is species-specific. Our study suggests that mean seed mass of
alpine plant species appears to decrease in warmer (less stressful) habitats based on life-
history theory, but it also suggests there may be an underlying trade-off in which mean
seed mass may increase due to greater thermal energy inputs into seed development.
Furthermore, the physical and biotic environment modulating this trade-off result in
complex patterns of variation in mean seed mass of alpine plant species facing global
warming.

Subjects Ecology
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INTRODUCTION
Global warming induces variation in plant functional traits (Nicotra et al., 2010; Anderegg,
2015; Bjorkman et al., 2018). For example, experimental warming resulted in taller plants
and larger leaves in Arctic tundra (Hudson, Henry & Cornwell, 2011; Bjorkman et al., 2018).
Such temperature-driven changes in plant traits may reflect either phenotypic variation or
rapid microevolutionary change (Thompson, 2013;Merilä & Hendry, 2014).
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Seed mass influences temporal and spatial seed dispersal, seedling survival, and the
number of seeds that can be produced for a given amount of energy (Fenner & Thompson,
2005; Moles et al., 2005; Moles et al., 2007). Therefore, it represents a fundamental axis of
trait variation in plants, from an individual to a community scale (Westoby et al., 2002;
Muller-Landau, 2003; Wright et al., 2007). Theoretically, warming may induce variation
in the seed mass of species, although seed mass is generally considered to exhibit relative
intraspecific constancy (Harper, Lovell & Moore, 1970; Marshall, Levin & Fowler, 1986;
Michaels et al., 1988; Fenner, 1992; Albert et al., 2012).

If air temperature increases, warming may provide greater energy for seed development
(Ozkan, Akcaoz & Fert, 2004), and prolonged growing seasons due to warming may
lengthen the period of seed development (Sherry et al., 2007), especially in alpine
environments where growing seasons are short and air temperatures are low (Körner,
2003; Klein, Harte & Zhao, 2004). Previous studies found that shot-term (1–3 year)
experimental warming have a positive effect on mean seed mass (i.e., weight per seed)
of Dryas octopetala (Wookey et al., 1995), Ranunculus acris (Totland, 1999), Eriophorum
vaginatum (Molau & Shaver, 1997), Saxifraga stellaris (Sandvik, 2001), Ranunculus glacialis
(Totland & Alatalo, 2002), Parnassia palustris (Sandvik & Eide, 2009), Anemone nemorosa
(De Frenne et al., 2011), Cardamine hirsuta (Cao et al., 2016), Koenigia islandica (Cui et al.,
2017). A recent meta-analysis also found a strong thermal memory for seed mass using
thirty species including Arabidopsis, wild and domesticated species from thirty references
(Fernández-Pascual, Efisio & Pritchard, 2019). Therefore, we predict that seeds of species
are predicted to become larger in warming environments in this study (termed hypothesis
I).

Alternatively, life-history theory proposes a trade-off between seed number and size
(i.e., Smith-Fretwell model), i.e., allocation of a given quantity of resource into fewer, larger
seeds versus into many, smaller ones (Smith & Fretwell, 1974; Fenner & Thompson, 2005).
Larger-seeded species are considered to be superior competitors and stress-tolerators
during establishment (Muller-Landau, 2003; Fenner & Thompson, 2005). Life-history
theory predicts that the minimal maternal investment requirement (i.e., seed mass) may
be higher/lower, when the environment becomes harsher/superior (Leishman et al., 2000;
Zhang, 2004; Fenner & Thompson, 2005; Silvertown & Charlesworth, 2009). For example,
low soil fertility significantly increased mean seed mass of Vigna unguiculata from 133 mg
to 165 mg (Kahn & Stoffella, 1985). Equally, the mean seed mass (0.55 mg) of Ranunculus
reptans in areas of high density tended to be higher than its mean seed mass (0.51 mg)
in areas of low density (Van Kleunen, Fischer & Schmid, 2001). Consequently, we predict
that the minimal maternal investment requirement becomes lower when the environment
warms (i.e., in a less stressful environment) in alpine environments of the Qinghai-Tibet
Plateau, where plants growth and seeds production are strongly limited by low temperatures
and facilitation is the dominant interaction within alpine communities (Körner, 2003; Chu
et al., 2008; Wang et al., 2008). In other words, we predict that mean seed mass of species
decreases in warming environments in this study (termed hypothesis II).

If both mechanisms behind hypothesis I and II exist, their combined effects on seed
mass may result in mixed results (i.e., increase, no change or decrease in mean seed mass).
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Hovenden et al. (2008) found that mean seed mass was not significantly affected by 4-year
warming in any of 15 species in temperate grasslands of southeastern Tasmania, Australia.
However, there is no empirical study to support hypothesis II.

Grazing, as the main land use and disturbances in alpine communities, has profound
influences on physical environment and biotic interactions. Thus, grazing may modify the
effect of warming on seed mass. Here, we tested our hypotheses in 18-year warming plots
in alpine communities with a light grazing history and heavy grazing history.

MATERIALS & METHODS
Study region
The study was performed at the Haibei Research Station (37◦37′N, 101◦12′E; elevation:
3,200 m) in the northeastern Qinghai-Tibet plateau. Mean annual temperature is−1.7 ◦C,
ranging from −15.2 ◦C in January to 9.9 ◦C in July (Klein, Harte & Zhao, 2004). Mean
annual, largely summer, precipitation is 561 mm (Klein, Harte & Zhao, 2004). The growing
season generally ranges from May to September (Klein, Harte & Zhao, 2004). Soil type
is Mollic-Cryic Cambisols (Klein, Harte & Zhao, 2004). The grassland types are mainly
alpine meadow. The Qinghai-Tibet plateau also has a history of seasonal grazing dating
back thousands of years (Zheng, Zhang & Wu, 2000). In recent decades, heavy grazing has
caused large-scale rangeland degradation (Ma et al., 2014). We identified two sites (about
1.5 km apart) with ‘‘low’’ and ‘‘high’’ grazing intensity histories respectively before starting
the experiment, namely the low grazing intensity history meadow site (LG meadow) and
the high grazing intensity history meadow site (HGmeadow).We assigned these qualitative
history labels after interviewing local herders and senior researchers about land use patterns
and research history at these sites beginning in 1982 (Klein, Harte & Zhao, 2004). The ‘‘high
grazing history site’’ had both more animals (i.e., sheep) per unite area and animals grazing
for a longer duration of time (Klein, Harte & Zhao, 2004). Therefore, both the grazing
intensity and grazing duration differed among the grazing history sites. The low and high
grazing history sites were similar in other features —such as slope, aspect and soil type.
Further environmental details about the study region can be found in Klein, Harte & Zhao
(2004) and Zhang et al. (2017).

Experimental design and data collection
In 1997, the two field sites measuring 30 m ×30 m were located on a flat slope (<1◦) and
were fenced off from grazers. Warming was simulated using fiberglass open top chambers
(OTCs) in two field sites from 1997 (see schematic representation of the experiment design
in Fig. S1). The OTCs, which were 1.5 and 0.75 m in diameter at the base, and the top,
respectively, and 0.40 m high (see Fig. 1), are used by the International Tundra Experiment
(Molau & Mølgaard, 1996) and are commonly employed to study the effects of climate
warming on plant traits, biotic interactions, community structure and functions (Arft
et al., 1999; Walker et al., 2006; Liu et al., 2011; Elmendorf et al., 2012; Sistla et al., 2013;
Ylänne, Stark & Tolvanen, 2015; Liu et al., 2016; Rousk, Michelsen & Rousk, 2016). Each
site had eight plots of both warm and control treatments. The OTCs remained on the
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Figure 1 A photograph of a fiberglass open top chamber (OTC) in the field.
Full-size DOI: 10.7717/peerj.7416/fig-1

plots year-round. During the growing season, the OTCs increased the average daily air
temperature by 1.0–2.0 ◦C (Klein, Harte & Zhao, 2005).
During the growing season of 2015, seeds were collected from five ramets for the studied

species in warmed and control treatments, respectively. Seeds were air-dried to a constant
mass at room temperature (approximately 15 ◦C) before being weighed (Manning, Houston
& Evans, 2009; Pivatto et al., 2014; Qi et al., 2014; Zhang et al., 2014a; Zhang et al., 2014b).
Seed mass was defined as the weight of the embryo, endosperm and seed coat or fruit coat
(e.g., Asteraceae seeds of which we cannot separate fruit coat from seed coat). Accessories
(e.g., wings, comas, pappus, elaiosomes, fruit flesh) were not included in measures of seed
mass (Cornelissen et al., 2003). Total seed mass was weighed and seed number was counted
for each of five individuals of each species, and then mean seed mass was computed for
each individual of each species. Our seed mass dataset includes 19 species in both warmed
and control plots in the LG site and 20 species in both warmed and control plots in the
HG site (see Tables S1–S3 for their seed mass, seed number and associated characteristics,
separately).

See details of the experimental design and microclimate effects of the OTCs in Klein,
Harte & Zhao (2004) and Klein, Harte & Zhao (2005) and Zhang et al. (2017).

Soil samples were collected at the end of August 2015. Three two cm-diameter samples
from each of the six plots for control treatment at two site were divided into three layers
of 0–10 cm and 10–20 cm, and soil from the same depth from a plot was pooled. All
soil samples (2 depths × 6 plots × 2 sites) were analyzed for total nitrogen, available
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Table 1 Results of the linear mixed-effect model which was used to assess the effect of warming on
seed mass across all species in both LG and HG sites.

Df F-value P

treatment 1 1.14 0.2865
species 25 2409.33 <0.0001
treatment× species 25 7.17 <0.0001

nitrogen, total phosphorus, available phosphorus and organic carbon content. These soil
characteristics were analyzed using the methods described by Zhang et al. (2019).

Statistical analyses
Prior to analyses, mean seed mass (mg) was ln-transformed to optimize normality of
frequency distributions.

A linear mixed-effect model was fitted using the R-package nlme (Pinheiro et al., 2018)
with warming treatment and species and their interaction as the fixed effects and plot
(nested within site) and site as the random effects to assess the effect of warming on seed
mass across all species in both sites. We used Wilcoxon rank sum tests to assess the effect
of warming on mean seed mass for each of all species in each site, separately. To examine
the main and interactive effects of warming treatment and site on mean seed mass for the
species that were found in both LG and HG sites, we conducted a single two-way analysis
of variance (ANOVA). Significant interactions meant that the effect of warming on mean
seed mass differed between sites. T-tests were used to test if there are significant differences
of soil properties of 0–10 cm and 10–20 cm in LG and HG meadow sites. All analyses were
conducted in R (http://www.R-project.org).

RESULTS
We did not find a significant effect of warming on mean seed mass across all species in
both sites (Table 1), however, the significant treatment × species interaction indicates
that the effect is species-specific. We found that warming significantly increased the mean
seed mass of Euphrasia pectinata, Gentiana aristata, Lomatogonium carinthiacum, and Stipa
aliena (4 of 19 species), while decreasing the mean seed mass of Deschampsia caespitosa,
Draba eriopoda, Elymus nutans, Pedicularis kansuensis, Potentilla nivea, and Taraxacum
mongolicum (6 of 19 species) in the LG site (Fig. 2A).

Warming significantly increased the mean seed mass of E. pectinata, Gentianopsis
barbata,Morina chinensis, P. kansuensis, Ptilagrostis dichotoma, and Saussurea nigrescens (6
of 20 species), while decreasing the mean seed mass of Aster flaccidus, E. nutans, Festuca
rubra, Koeleria cristata,Notopterygium forbesii, and S. aliena (6 of 20 species) in the HG site
(Fig. 2B).

There were significant site × warming interactions for E. nutans, F. rubra, K. cristata,
M. chinensis, P. kansuensis, P. dichotoma, and S. aliena, respectively (Table 2).
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Figure 2 Effects of warming onmean seed mass in the LG (A) and HG (B) meadow sites. The error bars
indicate± SE; n = 5. The asterisks (*) and points (.) indicate the significant differences (P < 0.05) and
marginally significant differences (P < 0.1) between control and warming treatments, respectively. The
significance was tested using the Wilcoxon rank sum test.

Full-size DOI: 10.7717/peerj.7416/fig-2

Table 2 Results of two-way ANOVA including site and warming treatment for each of the species that
were found in both LG and HG sites.

Species Warm Site Warm× Site

F1,16 F1,16 F1,16
Deschampsia caespitosa 14.20** 97.46*** 0.27
Elymus nutans 101.42*** 12.67** 9.37**

Euphrasia pectinata 29.86*** 5.83* 4.02
Festuca rubra 150.20*** 218.50*** 207.40***

Gentiana aristata 32.32*** 19.34*** 2.14
Gentiana straminea 3.36 48.09*** 2.37
Gentianopsis barbata 25.57*** 3.54 3.93
Koeleria cristata 57.65*** 9.04** 32.59***

Lomatogonium carinthiacum 7.04* 80.23*** 1.12
Morina chinensis 9.53** 92.25*** 13.86**

Pedicularis kansuensis 16.72*** 404.78*** 62.91***

Ptilagrostis dichotoma 23.07*** 21.18*** 9.25**

Stipa aliena 0.30 85.47*** 35.15***

Notes.
*P < 0.05.
**P < 0.01.
***P < 0.001.

Zhang et al. (2019), PeerJ, DOI 10.7717/peerj.7416 6/15

https://peerj.com
https://doi.org/10.7717/peerj.7416/fig-2
http://dx.doi.org/10.7717/peerj.7416


DISCUSSION
In this study, we found that long-term warming can shift the mean seed mass at a species
level. However, the direction of this variation is species-specific. We found that warming
increased the mean seed mass of 4 of 19 species in the LGmeadow and 6 of 20 species in the
HGmeadow, which support hypothesis I. Moreover, we also found that warming decreased
the mean seed mass of 6 of 19 species and 6 of 20 species in the LG and HG meadows,
respectively, which support hypothesis II. Thus, the potential for greater energy input and
life-history theory in combination determined variation in the mean seed mass of species
facing warming in an alpine environment, where plants growth and seeds production are
strongly limited by low temperatures (Körner, 2003; Wang et al., 2008). In other words,
the two above mechanisms behind hypothesis I and II may act together and their relative
contribution determines changes of mean seed mass under warming. Specifically, under
the background of global warming, our study suggests that mean seed mass of alpine plant
species appears to decrease in warmer (less stressful) habitats based on life-history theory,
but it also suggests there may be an underlying trade-off in which mean seed mass may
increase due to the potential for greater energy input. Even though species may inhabit the
same community, they do not necessarily face the same physical and biotic environment
(Wang et al., 2008). These differences in physical and biotic environments changing relative
contribution of the two above mechanisms may result in complex patterns of variation in
mean seed mass of alpine plant species facing global warming.

We also reported the interesting result that, for some species, the effect of warming
on mean seed mass differed between sites. Particularly, the direction of mean seed mass
variation of two species is opposite in LG and HG meadow communities. Mean seed mass
of Pedicularis kansuensis decreased due to warming in the LG meadow, but increased in the
HGmeadow. Mean seed mass of Stipa aliena increased due to warming in the LG meadow,
but decreased in the HG meadow. These patterns may be due to different environmental
factors (e.g., soil chemical properties) and biotic interactions in these sites. We found that
rapidly available nitrogen and rapidly available phosphorus at shallow soil depths (0–10
cm) were both higher in the LG meadow than the HG meadow, while rapidly available
phosphorus at 10–20 cm was lower in the LG meadow than the HG meadow (Table S4).
Our previous study found significant changes in species composition between LG and HG
meadows (Zhang et al., 2017). For example, compared with the LG meadow, forbs (e.g.,
Ajania tenuifolia, Aster flaccidus and Saussurea nigrescens) were more abundant in the HG
meadow. For those species having a decreased seed mass with warming in the HGmeadow,
it is possible that high grazing history may have released such species from some form of
competition or selective pressure, such that it became favorable for them to produce smaller
seeds in greater numbers (hypothesis II). In contrast, for species which had increased seed
mass with warming under the HGmeadow, it is possible that high grazing history increased
stress for those individuals, making it favorable to invest extra energy from warming into
larger, more stress-tolerant seeds (hypothesis I). In sum, differences in the physical and
biotic environment in two sites may regulate the trade-off between the seedling’s chance
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of survival and mean seed mass, and furthermore induce different variation in mean seed
mass of alpine plant species facing environmental warming.

Previous studies have demonstrated correlated evolution among seed/fruit size and
other plant trait (e.g., plant height) at a species level (Herrera, 2002; Wright et al., 2007).
Other functional traits (e.g., height) may influence the response of mean seed mass to
warming. For example, plant height is a major determinant of a species’ ability to compete
for light (Moles et al., 2009). Previous study has shown that warming tends to increase plant
height, probably resulting in more intense competition for light under warming (Hudson,
Henry & Cornwell, 2011). As a result, seed of low plants may become larger at warmer
condition to compensate for weak light competitiveness. In addition, closely related species
tend to share similar traits (e.g., seed size) or niche preferences (Losos, 2008). Moreover,
closely related species may have similar responses of seed size to experimental warming.
Therefore, we conclude that future studies should consider the effects of functional traits
and phylogeny on variation in mean seed mass with the background of global warming.

One caveat of our study is that the sites are not replicated within grazing history
treatments. This is the first simulated warming experiment on the Qinghai-Tibet Plateau.
In 1990s, funding and harsh environmental conditions limited the scale of the experiment
on the Tibetan Plateau. Despite this weakness, this experiment is very valuable for studying
the impact of global change on the Qinghai-Tibet Plateau, and many important results
(e.g., Klein, Harte & Zhao, 2004; Klein, Harte & Zhao, 2005; Wang et al., 2014a; Zhang et
al., 2017) were reported based on this experiment. Our research is also of great significance
for studying the influence of long-term experimental warming on plant functional traits.

CONCLUSIONS
We found species-specific changes inmean seedmass but nooverallmean seedmass changes
in response to long-term experimental warming. The physical and biotic environment may
modify the responses of mean seed mass to long-term experimental warming. Previous
studies found that intra-specific correlations between seedmass and elevation vary between
species (Wang et al., 2014b; Olejniczak et al., 2018). Olejniczak et al. (2018) suggested that
we should not expect a single universal pattern in the effects of external factors on
plant characteristics. Our findings also conveys this important general ecological message.
Furthermore, our study suggests that under the global climate change,multiplemechanisms
on variation in plant traits (e.g., seed mass) within different species may coexist, and that
should be consideredwhen interpreting community structure and function from functional
traits. In this study, we gave some general explanations for variation in mean seed mass
under long-term experimental warming based on life-history theory and other hypotheses.
However, life history, functional traits, phylogeny, interactions with other species and soil
requirements may influence the response of mean seed mass to warming. In the future,
there is a need to consider the combined effects of these factors on variation in mean seed
mass with the background of global warming.
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