1Manuscript Title 2 3A comprehensive molecular phylogeny of Geometridae (Lepidoptera) with a focus on enigmatic 4small subfamilies 5 6Leidys Murillo-Ramos^{1,2}, Gunnar Brehm³, Pasi Sihvonen⁴, Axel Hausmann⁵, Sille Holm⁶, Hamid 7Ghanavi², Erki Õunap^{6,7}, Andro Truuverk^{6,8}, Hermann Staude⁹, Egbert Friedrich¹⁰, Toomas 8Tammaru⁶, Niklas Wahlberg². 9 10¹Grupo Biología Evolutiva, department of Biology, Universidad de Sucre, Puerta Roja, Sincelejo, 11Sucre, Colombia. 12²Systematic Biology group, Department of Biology, Lund University, Lund, Sweden. 13³Institut für Zoologie und Evolutionsbiologie, Phyletisches Museum, Jena, Germany. 14⁴Finnish Museum of Natural History, Helsinki, Finland. 15⁵ Staatliche Naturwissenschaftliche Sammlungen Bayerns, München, Germany 16⁶ Department of Zoology, Institute of Ecology and Earth Sciences, University of Tartu, 17 Vanemuise 46, 51014 Tartu, Estonia. 18⁷Institute of Agricultural and Environmental Sciences, Estonian University of Life Sciences, **19**Kreutzwaldi 5, 51014 Tartu, Estonia. 20⁸Natural History Museum, University of Tartu, Vanemuise 46, 51014 Tartu, Estonia 21⁹LepsocAfrica, Magaliesburg, South Africa 22¹⁰ Berghoffsweg 5, 07743 Jena, Germany. 23 **24**Corresponding Author: 25¹Leidys Murillo-Ramos **26**Email address: leidys.murillo@unisucre.edu.co 27

28

29

30

31

32Abstract

33Our study aims to investigate the relationships of the major lineages within the moth family 34Geometridae, with a focus on the poorly studied Oenochrominae-Desmobathrinae complex, and 35to translate some of the results into a coherent subfamily and tribal level classification for the **36** family. We analyzed a molecular dataset of 1206 Geometridae terminal taxa from all 37biogeographical regions comprising up to 11 molecular markers that included one mitochondrial **38**(COI) and 10 protein-coding nuclear gene regions (Wingless, ArgK, MDH, RpS5, GAPDH, IDH, 39Ca-ATPase, Nex9, EF-1alpha, CAD). The molecular data set was analyzed using maximum **40**likelihood as implemented in IQ-TREE and RAxML. We found high support for the traditional 41subfamilies Larentiinae, Geometrinae and Ennominae in their traditional scopes. Sterrhinae is 42monophyletic only if *Ergavia*, *Ametris* and *Macrotes*, which are currently placed in 43Oenochrominae, are formally transferred to Sterrhinae. Desmobathrinae and Oenochrominae are 44found to be polyphyletic. The concepts of Oenochrominae and Desmobathrinae required major 45 revision and, after appropriate rearrangements, these groups also form monophyletic subfamily-**46**level entities. Oenochrominae *s.str.* as originally conceived by Guenée is phylogenetically distant **47** from *Epidesmia*. The latter is hereby described as the subfamily Epidesmiinae Murillo-Ramos, 48Sihvonen & Brehm, **subfam. nov.** Epidesmiinae are a lineage of "slender bodied 49Oenochrominae" that include the genera *Ecphyas* Turner, *Systatica* Turner, *Adeixis* Warren, 50Dichromodes Guenée, Phrixocomes Turner, Abraxaphantes Warren, Epidesmia Duncan [& 51Westwood] and *Phrataria* Walker. Archiearinae are monophyletic whenif *Dirce* and *Acalyphes* **52** are formally transferred to Ennominae. We also found that many tribes were para- or polyphyletic 53and therefore propose tens of taxonomic changes at the tribe and subfamily levels. **54**Archaeobalbini Viidalepp (Geometrinae) is raised from synonymy of Pseudoterpnini Warren to 55the tribetribal rank. Chlorodontoperini Murillo-Ramos, Sihvonen & Brehm, trib. nov. and 56Drepanogynini Murillo-Ramos, Sihvonen & Brehm, **trib. nov.** are described as new tribes in **57**Geometrinae and Ennominae, respectively.

58

59Keywords: Phylogeny, new subfamily, moths, Epidesmiinae, taxonomy.

60

61

62

63Introduction

64Geometridae are the second most species-rich family of Lepidoptera, with approximately 24,000 65described species (Nieukerken et al., 2011, updated and in all regions except Antarctica. The 66monophyly of Geometridae is well supported based on distinctive morphological characters 67(Cook & Scoble, 1992; Scoble, 1992; Minet & Scoble, 1999). In particular, adult members of the 68family possess paired tympanal organs at the base of the abdomen, while in the larvae; the ventral 69prolegs are reduced to two pairs in almost all species, which causes the larvae to move in a 70looping manner (Minet & Scoble, 1999).

71 The phylogenetic relationships of the major subdivisions of Geometridae have been 72studied based on molecular data, which have contributed to the understanding of the evolutionary 73relationships within the family (Abraham et al., 2001; Yamamoto & Sota, 2007; Sihvonen et al., 742011). At the present, eight subfamilies are recognized in Geometridae (Sihvonen et al., 2011). 75Several recent studies have attempted to confirm the monophyly or clarify the taxonomy of most 76of these groups, for instance: Sterrhinae (Holloway, 1997; Hausmann, 2004; Sihvonen & Kaila, 772004; Õunap et al., 2008), Larentiinae (Holloway, 1997; Mironov, 2003; Viidalepp, 2006, 2011; 78Hausmann & Viidalepp, 2012; Õunap et al., 2016), Desmobathrinae (Holloway, 1996; 79Hausmann, 2001), Archiearinae (Hausmann, 2001; Young, 2006), Oenochrominae (Holloway, 801996; Scoble & Edwards, 1990; Cook & Scoble, 1992; Hausmann, 2001; Young, 2006), 81Geometrinae (Cook, 1993; Pitkin, 1996; Hausmann, 2001; Ban et al., 2018), Orthostixinae **82**(Holloway, 1997) and Ennominae (Holloway, 1994; Pitkin, 2002; Beljaev, 2006; Young, 2006; 83Wahlberg et al., 2010; Õunap et al., 2011; Skou & Sihvonen, 2015; Sihvonen et al., 2015). An 84important shortcoming is that our understanding of geometrid systematics is biased towards the 85long-studied European fauna, whereas the highest diversity of this family is in the tropics, which **86**is still largely unexplored (Brehm et al., 2016). Many species remain undescribed and there are 87 many uncertainties in tribe and genus level classifications.

One of the most completecomprehensive phylogenetic studies on Geometridae to date 89was published by Sihvonen et al. (2011). They analyzed a data set of 164 taxa and eight genetic 90markers, and the most species-rich subfamilies were recovered as monophyletic. However, the 91systematic positions of Oenochrominae and Desmobathrinae remained uncertain due to low taxon 92sampling, and the groups were suggested to be polyphyletic. Moreover, many geometrid genera 93remained unassigned to tribe

95relationships of Geometridae on the basis of a sample with global coverage translated dataset 96comprises 1206 terminal taxa of Geometridae with samples from all major biomes, using up to 11 97molecular markers. Our paper includes an overview of the relationships of the major lineages 98within the family, with particular focus on defining the limits and finding the phylogenetic **99**affinities of the subfamilies, with a focus on Oenochrominae and Desmobathrinae. Further 100 papers in the series will focus on particular subfamilies and regions, and they will propose further **101** formal taxonomic changes beyond those suggested in the present article: tribe and genus level 102relationships in Sterrhinae (Sihvonen et al., in prep), New World taxa (Brehm et al., in prep), 103Larentiinae (Õunap et al., in prep) and the Ennominae Boarmiini (Murillo-Ramos et al., in 104prep). 105 A close relationship of Oenochrominae and Desmobathrinae has been proposed both in 106morphological (Meyrick, 1889; Cook & Scoble, 1992; Holloway, 1996) and in molecular studies 107(Sihvonen et al., 2011; Ban et al., 2018). In the firstearly classifications, species of 108Desmobathrinae and Oenochrominae were included in the former family Monoctenidae 109(1889) diagnosed them on the basis of the position of the Rs veins in the hindwing veins and vein 110Sc+R1 oin the forewing, which approximate to the upper gin of the cell from near its base to 111its middle-cell or beyond (Scoble & Edwards, 1990). However, the classification proposed by 112Meyrick was not fully supported by subsequent taxonomic work (Scoble & Edwards, 1990; Cook 113& Scoble, 1992; Holloway, 1996). Unfortunately, Oenochrominae became a "trash bin 114geometrids that could not be placed in other subfamilies, including even viludae, a family of 115moth-like butterflies (Scoble, 1992). Unsurprisingly, many taxa traditionally classified in 116Oenochrominae have recently been shown to be misplaced (Holloway, 1997; Staude, 2001; 117Sihvonen & Staude, 2011; Staude & Sihvonen, 2014). In Scoble & Edwards (1990), the family 118concept of Oenochrominae was restricted to the robust-bodied Australian genera, with one **119**representative from the Oriental region. These authors were not able to find synapomorphies to 120define Monoctenidae *sensu* Meyrick, and referred back to the original grouping proposed by **121**Guenée (1858). Scoble & Edwards (1990) defined a narrower group for Oenochrominae based on 122the male genitalia: The sclerotisation of the diaphragm dorsal to the anellus fuses with the 123transtilla to form a rigid plate. Cook & Scoble (1992) suggested that the circular form of the

This study is the first in a series of papers, which investigate the phylogenetic

94

124lacinia and its orientation parallel to the tympanum was apomorphic for these robust-125bodied Oenochrominae.

In an extensive morphological study, Holloway (1996) revived subfamily 127Desmobathrinae to include species with appendages and slender bodies previously assigned to 128Oenochrominae. According to Holloway (1996), Desmobathrinae comprises two tribes: 129Eumeleini and Desmobathrini. However, no synapomorphies were found to link Eumeleini and 130Desmobathrini. Holloway (1996) highlighted that the modification of the tegumen of the male 131genitalia iswas variable in both groups but that the reduction of cremastral spines in the pupa 132from eight to four in *Ozola* Walker, 1861 and *Eumelea* Duncan [& Westwood], 1841 provided 133evidence of a closer relationship between Eumeleini and Desmobathrini. The proposed 134classification is included in the "World list of family group names in Geometridae" (Forum 135Herbulot, 2007). Currently, 328 species (76 genera) are included in Oenochrominae, and 248 136species (19 genera) are assigned to Desmobathrinae (Beccaloni et al., 2003; Sihvonen et al., 1372011, 2015).

Most recent molecular phylogenies have shown Oenochrominae and Desmobathrinae taxal139to be intermingled (Sihvonen et al., 2011; Ban et al., 2018), but taxon sampling was limited to
140eight and four species, respectively. The poor taxon sampling and the obviously unresolved
141relationships around the Oenochrominaee and Desmobathrinaee complex called for a sound
142phylogenetic study that clarifies the relationships of these poorly known taxa within
143Geometridae. We hypothesize that both Oenochrominae and Desmobathrinae are para- or
144polyphyletic assemblages, and our paper aims to establish a new concept in which all subfamilies
145of the Geometridae represent monophyletic entities. Our new study comprises 29 terminal taxa of
146Oenochrominae and 11 representatives of Desmobathrinae. Most species are distributed in the
147Australian and Oriental Region, but some also occur in other parts of the world.

149Materials & Methods

150The electronic version of this article in Portable Document Format (PDF) will represent a 151published work according to the International Commission on Zoological Nomenclature (ICZN), 152and hence the new names contained in the electronic version are effectively published under that 153Code from the electronic edition alone. This published work and the nomenclatural acts it 154contains have been registered in ZooBank online registration system for the ICZN. The

156through any standard web browser by appending the LSID to the prefix http://zoobank.org/. The **157**LSID for this publication is: Epidesmiinae subfam.nov. **158**LSIDurn:lsid:zoobank.org:act:34D1E8F7-99F1-4914-8E12-0110459C2040, Chlorodontoperini 159trib.nov.LSIDurn:lsid:zoobank.org;act:0833860E-A092-43D6-B2A1-FB57D9F7988D, and 160Drepanogynini trib.nov., LSIDurn:lsid:zoobank.org:act:AA384988-009F-4175-B98C-**161**6209C8868B93. The online version of this work is archived and available from the following **162**digital repositories: PeerJ, PubMed Central and CLOCKSS. 163 **164**Material acquisition, taxon sampling and species identification 165In addition to 461 terminal taxa with published sequences (see Supplemental data S1), we **166**included sequences from 745 new terminal taxa in our study. They were gathered from several 167 museum collections and collectors, including most of the authors (Supplemental data S1). **168**Representative taxa of all subfamilies recognized in Geometridae were included, except for the 169small subfamily Orthostixinae for which most molecular markers could not successfully 170amplified. A total of 93 tribes are represented in this study following recent phylogenetic 171hypotheses and classifications (Sihvonen et al., 2011; Wahlberg et al., 2010; Sihvonen et al., 1722015; Õunap et al., 2016; Ban et al., 2018). In addition, 14 non-Gegeometridae species belonging 173to other families of Geometroidea were included as outgroups based on the hypothesis proposed **174**by Regier et al. (2009; 2013). Where possible, two or more samples were included per tribe and 175genus, especially for species-rich groups that are widely distributed and in cases where genera 176were suspected to be poly- or paraphyletic. We preferred type species or species phylogenetically 177 close to type species in order to ease subsequent taxonomic work avor nomenclatorial 178stability and to establish the phylogenetic position of genera unassigned to tribes. 179 Sampled individuals were identified by the authors using their complementary expertise 180 and appropriate literature, and by comparing type material from different collections and 181 museums. Moreover, we compiled an illustrated catalogue of all Archiearinae, Desmobathrinae 182and Oenochrominae taxa included in this study, to display the external diversity to 183allow<u>facilitate</u> subsequent verification of our identifications. This catalogue contains images of 184all analysed specimens as well as photographs of the respective type material (Supplemental data

185S2). Many further specimens will be illustrated in other papers (Brehm et al. in prep., Sihvonen et

155ZooBank LSIDs (Life Science Identifiers) can be resolved and the associated information viewed

186al. in prep., Õunap et al. in prep.) Some of the studied individuals specimens could not vet be 187 assigned to species, and their identifications are preliminary because of a lack of modern 188identification tools, particularly for (potentially undescribed) tropical species. Taxonomic data, 189 voucher ID, number of genes, current systematic placement, and references to relevant literature 190where the tribal association is used, are shown in Supplemental data S1. 191 **192***Molecular techniques* 193 **194**DNA was extracted from 1–3 legs preserved either in ethanol or dry. In a few cases, other sources **195**of tissue, such as parts of larvae, were used. The remaining parts of specimens were preserved as 196 vouchers and will be eventually be deposited in public museum collections nomic DNA was 197extracted and purified using a NucleoSpin® Tissue Kit (MACHERY-NAGEL), 198accordingfollowing to the manufacturer's protocol. DNA amplification and sequencing were 199carried out following protocols proposed by Wahlberg & Wheat (2008) and Wahlberg et al. **200**(2016). PCR products were visualized on agarose gels. PCR products were cleaned enzymatically 201 and sent to Macrogen Europe (Amsterdam) for Sanger sequencing. One mitochondrial (COI) and 20210 protein-coding nuclear gene regions (Wingless, ArgK, MDH, RpS5, GAPDH, IDH, Ca-203ATPase, Nex9, EF-1alpha, CAD) were sequenced. The final dataset had a concatenated length of 2047665 bp with gaps. check for potential misidentifications, DNA barcode sequences were 205compared to those in BOLD (Barcode of Life Data Systems, 206(http://www.barcodinglife.org/views/login.php) where references of more than 21,000 geometrid 207species are available, some 10,000 of them being reliably identified to Linnean species names 208(Ratnasingham & Hebert, 2007). GenBank accession numbers for sequences used in this study 209are provided in Supplemental data \$15 210 **211***Alignment and cleaning sequences* 212 213Multiple sequence alignments were done carried out in MAFFT as implemented in Geneious 214v.11.0.2 (Biomatters, http://www.geneious.com/) for each gene based on a reference sequence of 215Geometridae downloaded from the database VoSeq (Peña & Malm, 2012). We used MAFFT 216algorithm as implemented in Geneious v.11.0.2 (Biomatters, http://www.geneious.com/). The

```
217alignments perof each gene wereas carefully checked by eye relative to the reference sequence
218taking into consideration relevantaccount the respective genetic codes and reading frames,
219 relative to the reference sequence. Heterozygous positions were coded with IUPAC
220codes. Sequences with bad quality and ambiguities removed from the alignments. Finally,
221aligned sequences were uploaded to VoSeq (Peña & Malm, 2012) and then assembled in a
222dataset comprising 1206 taxa. To check for possible errors in alignments and, potentially
223contaminated or identical sequences and misidentifications, we constructed maximum likelihood
224trees for each gene. With these trials, we also looked for identical sequences or
225 misidentifications. These trial preliminary analyses were conducted using RAxML-HPC2
226V.8.2.10 (Stamatakis, 2014) on the web-server CIPRES Science Gateway (Miller et al., 2010).
227 After cleaning final data set included at least three genes per taxon except for Oenochroma
228vinaria (Guenée, 1858), Acalyphes philorites Turner, 1925, Dirce lunaris (Meyrick, 1890), D.
229aesiodora Turner, 1922, Furcatrox australis (Rosenstock, 1885), Chlorodontopera mandarinata
230(Leech, 1889), Chlorozancla falcatus (Hampson, 1895), Pamphlebia rubrolimbraria (Guenée,
2311858) and Thetidia albocostaria (Bremer, 1864). For these taxa, included in studies by Young
232(2006) and Ban et al. (2018), only two markers were available.
233
234Tree search strategies and model selection
235We ran maximum likelihood analyses with a data set partitioned by gene and codon position
236using IQ-TREE V1.6.6 (Nguyen et al., 2015) and data partitioned by codon in RAxML
237(Stamatakis et al 2014). IQ-TREE is a stochastic algorithm suitable for analyzing big datasets
238(Nguyen et al., 2015). Different Best-fitting substitution models were determined
239 implementing selected by Model Finder, which is a model-selection method that incorporates a
240model of <u>freeflexible</u> rate heterogeneity across sites (Kalyaanamoorthy et al., 2017). ModelFinder
241implements a greedy strategy as implemented in PartitionFinder that starts with the full
242partitioned model and consequentially merges two partitions (TESTNEWMERGE option) until
243the model fit does not increase (Lanfear et al., 2012). After the best model ishas been found, IQ-
244TREE starts the tree reconstruction under the best model scheme. The phylogenetic analyses
245were carried out with the -spp option that allowed each partition to have its own evolutionary
246rate. The RAXML analysis was implemented out on CIPRES using the GTR+GAMMA
247 option with a data set partitioned by gene and codon position.
```

Support for nodes werewas evaluated with 1000 ultrafast bootstrap (UFBoot2) 249approximations (Hoang et al., 2017) in IQ-TREE, and rapid bootstrap (RBS) in RAxML 250(Stamatakis, 2008). Additionally, we implemented SH-like approximate likelihood ratio test 251(Guindon et al., 2010), which is considered to be a useful complement to bootstrap analysis. To 252reduce the risk of overestimating branch supports with UFBoot2 test, we implemented *-bnni* 253option, which optimizes each bootstrap tree using a hill-climbing nearest neighbor interchange 254(NNI) search. Trees were visualized and edited in FigTree v1.4.3 software (Rambaut, 2012). The 255final trees were rooted with species of the families Sematuridae, Epicopeiidae, Pseudobistonidae 256and Uraniidae following previous hypotheses proposed in Regier et al. (2009; 2013), Rajaei et al. 257(2015) and Heikkilä et al. (2015).

259Results

Searching strategies and model selection

263The results from ModelFinder suggested that each gene and codon position kept their own 264evolutionary model, i.e. no partitions were combined inlarly, Akaike information criterion 265(AIC) and Bayesian information criterion (BIC) values showed best partition schemes for the 266data partitioned by codon position, with 33 partitions in total (evolutionary models are listed in 267Supplemental data S3). Topologies recovered by IQ-TREE and RAxML analyses resulted in 268trees with nearly identical patterns of relationships. Also, node support methods tended to agree 269on the support of nodes with strong phylogenetic signal. However, in most of the cases UFBoot2 270from IQ-TREE showed higher support values compared to RBS in RAxML (RAxML tree with 271support values is showed in Supplemental data S4). UFBoot2 and SH-like performed similarly, 272with UFBoot2 showing slightly higher values, and both tend to show high support for the same 273nodes (Fig. 1). As noted by the authors of IQ-TREE, values of UF >= 95 and SH >= 80 indicate 274well-supported clades (Trifinopoulos & Minh, 2018).

General patterns in the phylogeny of Geometridae

```
278
            Analyses of the dataset of 1206 terminal taxa, comprising up to 11 markers and an
279alignment length of 7665 bp recovered topologies with many well supported clades. About 20
280terminal taxa were recovered as very similar genetically and they are likely to represent closely
281related species, subspecies or specimens of a single species. The examination of their taxonomic
282status is not the focus of this study, so the number of unique species in the analysis is slightly less
283than 1200. Our findings confirm the monophyly of Geometridae (values of UFBoot2, SH-like =
284100) (Fig. 1). The general patterns in our phylogenetic hypotheses suggest that Sterrhinae are the
285sister group to the rest of Geometridae. This subfamily is recovered as monophyletic when three
286genera traditionally included in Oenochrominae are considered as belonging to Sterrhinae. Tribes
287in Sterrhinae, such as Cosymbiini and Timandriini were not recovered as monophyletic (Fig- 2).
288A detailed analysis, including formal changes to the classification of Sterrhinae, will be provided
289by Sihvonen et al. (in prep).
290
            The monophyly of Larentiinae was established in previous studies (Sihvonen et al., 2011;
291Õunap et al., 2016) and our results are in full agreement with their hypotheses. However, our
292results do not support the sister relationship between Sterrhinae and Larentiinae found in the
293 previous studies. In concordance with recent findings (Sihvonen et al., 2011; Õunap et al. 2016
294Strutzenberger et al., 2017), we recover Dyspteridini as the sister group to the remaining
295Larentiinae (Fig. 3). Phylogenetic relationships within Larentiinae were treated in detail by
296Õunap et al. (2016). Further details of the analyses and changes to the classification of
297Larentiinae will be discussed by Brehm et al. (in prep) and Õunap et al. (in prep).
298
            Archiearinae are represented by more taxa than in a previous study (Sihvonen et al.,
2992011), and itthe subfamily ster ofto Oenochrominae + Desmobathrinae complex +
300Geometrinae and Ennominae (Fig. 4). The monophyly of this subfamily is well supported (values
301of SH-like, UFBoot2 = 100). However, as in the previous study (Sihvonen et al. 2011), the
302Australian genera Dirce Prout, 1910 and Acalyphes Turner, 1926 are not part of Archiearinae but
303can clearly be assigned to Ennominae. <u>Unlike previously assumed (e.g., McQuillan & Edwards</u>
3041994), the subfamily Archiearinae doesn't occur in Australia, despite superficial similarities and
305<u>the shared high-altitude distribution of Dirce, Acalyphes and Archiearinae.</u>
306
            Desmobathrinae were shown asto be paraphyletic by Sihvonen et al. (2011). In our
307 analysis, the monophyly of this subfamily is not recovered either, as we find three taxa
308traditionally placed in Oenochrominae, (i.e. Zanclopteryx Herrich-Schäffer, [1855], Nearcha
```

```
309Guest, 1887 and Racasta Walker, 1861) nested within Desmobathrinae (Fig. 4). We formally
310transfer these taxa to Desmobathrinae. In the revised sense, Desmobathrinae areform a well-
311supported group with two main lineages. One of them comprises the genera Ozola Walker, 1861,
312Derambila Walker, [1863] and Zanclopteryx. This lineage is sister to a well-supported clade
313comprising Conolophia Warren, 1894, Noreia Walker, 1861, Leptoctenopsis, Racasta,
314Ophiogramma Hübner, [1831], Pycnoneura Warren, 1894 and Dolichoneura Warren, 1894. The
315genus Eumelea Duncan [& Westwood], 1841 has an unclear phylogenetic position in our
316analyses. The IQ-TREE result suggested genus to be sister to the subfamily Geometrinae,
317whereas RAxML recovered Eumelea in Ennominae as the sister of Plutodes Guenée, [1858].
318
           Oenochrominae in the broad sense are not a monophyletic group. However,
319Oenochrominae sensu stricto (Scoble & Edwards, 1990) form a well-supported lineage
320comprising two clades. One of them contains a polyphyletic Oenochroma with O. infantilis
321 Prout, 1910 being sister to Dinophalus Prout, 1910, Hypographa Guenée, [1858], Lissomma
322Warren, 1905, Sarcinodes Guenée, [1858] and two further species of Oenochroma, including the
323type species O. vinaria Guenée, [1858]. The other clade comprises the genera Monoctenia
324Guenée, [1858], Onycodes Guenée, [1858], Parepisparis Bethune-Baker, 1906, Antictenia Prout,
3251910, Arthodia Guenée, [1858], Gastrophora Guenée, [1858] and Homospora Turner, 1904 (Fig.
3264). Most of the remaining genera traditionally placed in Oenochrominae, including e.g.
327Epidesmia Duncan [& Westwood], 1841, form a well-supported monophyletic clade that is sister
328to Oenochrominae s. str. + Eumelea ludovicata + Geometrinae + Ennominae assemblage.
329Ergavia Walker, 1866, Ametris Guenée, [1858] and Macrotes Westwood, 1841 form a
330monophyletic group within Sterrhinae (see also Sihvonen et al., 2011).
331
           The monophyly of Geometrinae is well supported (Fig. 5) and it was recovered as the
332sister-taxon of Eumelea. The Eumelea + Geometrinae clade is sister to Oenochrominae s. str.
333Although a recent phylogenetic study proposed several taxonomic changes (Ban et al., 2018), the
334tribal composition in this subfamily is still problematic. Many tribes were recovered as
335paraphyletic, because their constituent genera were intermingled in the phylogenetic tree.
336Hemitheini sensu Ban et al. (2018) were recovered as a well-supported clade, which is sister to
337the rest of Geometrinae. In turn, the African genus Lophostola Prout, 1912 was resolved as sister
338to all other Hemitheini. The monophyly of Pseudoterpnini could not be recovered, instead this
339tribe splits up into three well-defined groups. Crypsiphona ocultaria Meyrick, 1888 is recovered
```

```
340as an isolated lineage, Xenozancla Warren, 1893 is sister to a clade comprising Dysphaniini and
341Pseudoterpnini s.str. In addition, several genera currently placed in Pseudoterpnini s.l. were
342recovered as an independent lineage clearly separate from Pseudoterpnini s.str. (SH-like = 86.3,
343UFBoot2 = 96). Ornithospilini and Agathiini clustered together but they were not sister to all
344Geometrinae as shown by Ban et al. (2018). Although there are no phylogenetic studies which
345 investigate the relationship between Ornithospila Warren, 1894 and Agathia Guenée, [1858], our
346results suggested that these genera are sister clades. Aracimini, Neohipparchini,
347Timandromorphini, Geometrini and Comibaenini were recovered as monophyletic groups.
348Synchlorini were nested within Nemoriini in a well-supported clade (support branch SH-like =
34999.8, UFBoot2 = 100, RBS = 93
350
           Ennominae are strongly supported as monophyletic in IQ-TREE analyses (UFBoot2, and
351SH-like = 100) whereas in RAxML the monophyly is weakly supported (RBS = 63). Detailed
352results concerning the classification, especially for the Neotropical taxa, will be presented by
353Brehm et al. (in prep.), but the main results are summarized here (Fig. 6). Very few tribes are
354monophyletic according to the results of the present study. One group of Neotropical taxa
355currently assigned to Gonodontini, Gnophini, Odontoperini, and Bryoptera Guenée, [1858] +
356Ectropis Hübner, [1825], Nacophorini, and Ennomini (sensu Beljaev, 2008) grouped together in a
357 large well-supported clade (SH-like = 96.6, UFBoot2 = 97). Ennomini were sister ofto the
358 whole is entire group. The New Zealand genus Declana Walker, 1858 appeared as an isolated
359lineage sister to Campaeini, which in turn is sister to Alsophilini + Wilemaniini + Colotoini.
360These groups are in turn the sister to Grabiola Taylor, 1904 +Acalyphes Turner, 1926 and a large
361complex including Lithinini, intermixed with some genera placed currently in Nacophorini and
362Diptychini. Theriini were recovered close to the genera Erastria Hübner, [1813] + Metarranthis
363Warren, 1894 and Palyadini + Plutodes Guenée, [1858]. The IQ-TREE analyses show Palyadini
364as a well-defined lineage, sister to Plutodes. However, in RAxML analyses Eumelea and
365Plutodes grouped together and Palyadini clustered with a group of Caberini species. The genera
366Neobapta Warren, 1904 and Oenoptila Warren, 1895 formed an independent lineage.
367Hypochrosini formed a lineage with Apeirini, Epionini, Sericosema Warren, 1895 and Ithysia
368Hübner, [1825]. This lineage is in turn the sister of the African Drepanogynis Guenée, [1858]
369which grouped together with the genera Sphingomima Warren, 1899, Thenopa Walker, 1855 and
370Hebdomophruda Warren, 1897. Caberini came outwas placed as the sister of an unnamed clade
```

371composed of *Trotogonia* Warren, 1905, *Acrotomodes* Warren, 1895, *Acrotomia* Herrich-Schäffer, 372[1855] and *Pyrinia* Hübner, 1818. Finally, our analyses recovered a very large well-supported 373clade comprising the tribes Macariini, Cassymini, Abraxini, Eutoeini and Boarmiini (SH-like and 374UFBoot2= 100). This large clade has previously been referred to informally as the "boarmiines" 375by Forbes (1948) and Wahlberg et al. (2010). The tribe Cassymini is clearly paraphyletic: genera 376such as *Cirrhosoma* Warren, 1905, *Berberodes* Guenée, 1858, *Hemiphricta* Warren, 1906 and 377*Ballantiophora* Butler, 1881 currently included in Cassymini, clustered in their own clade 378together with *Dorsifulcrum* Herbulot, 1979 and *Odontognophos* Wehrli, 1951, as sister to the 379Abraxini and Eutoeini complex. We were unable to include Orthostixinae in the analyses, so we 380could not clarify the taxonomic position of this subfamily with regard to the possible synonymy 381with Ennominae (Sihvonen et al., 2011).

382

383Discussion

384

385*Optimal partitioning scheme and support values*

386The greedy algorithm implemented in ModelFinder to select the best-fitting partitioning scheme 387treated the partitions independently and failed to merge any data subsets. The results recovered 388highest values (AIC and BIC) for data partitioned by codon position. These results are not 389different from previous studies that tested the performance of different data partitioning schemes 390and found that in some cases partitioning by gene can result in suboptimal partitioning schemes 391and may limit the accuracy of phylogenetic analyses (Lanfear et al., 2012). However, we 392highlight that although the AIC and BIC values were lower in data partitioned by gene, the tree 393topology recovered was nevertheless almost the same as when data were partitioned by codon, 394suggesting that the phylogenetic signal in the data is robust to partitioning schemes. The analyses 395found some disagreements in the methods implemented to evaluate between the different. 396measures of node support. Ultrafast bootstrap gave the highest support values, followed by SH-397like and finally standard bootstrap as implemented in RAXML gave the lowest. Although support 398indices obtained by these methods are not directly comparable. Ferences in node support of 399some clades can be attributed to the small number of markers, insufficient or saturated divergence 400levels (Guindon et al., 2010).

401

402*Current understanding of Geometridae phylogeny and taxonomic implications* 403

404Geometridae Leach, 1815

405The phylogenetic hypothesis presented in this study is by far the most comprehensive to date in 406terms of the number of markers, sampled taxa, and geographical coverage. In total our sample 407 includes 814 genera, thus representing 41% of the currently recognised Geometridae genera **408**(Scoble & Hausmann, 2007). Previous phylogenetic hypotheses were based mainly on the 409European fauna and many clades were not unambiguously supported due to low taxon sampling. **410**The general patterns of the phylogenetic relationships between the subfamilies recovered in this 411article largely agrees with previous hypotheses based on morphological characters and different 412sets of molecular markers (Holloway, 1997; Abraham, 2001; Yamamoto & Sota, 2007; Sihvonen **413**et al., 2011). However, the results of our larger dataset differ in many details and sheds light on 414the phylogenetic relationships of especially the poorly resolved small subfamilies. 415 Sterrhinae are recovered as the sister subfamily to the remaining Geometridae. This result **416**is not in concordance with Sihvonen et al. (2011), Yamamoto & Sota (2007) and Regier et al. 417(2009), who found a sister group relationship between Sterrhinae and Larentiinae which in turn **418**were sister to the rest of Geometridae. Sihvonen et al. (2011) showed these relationships with low **419**support, while Yamamoto & Sota (2007) and Regier et al. (2009) included only a few samples in 420their analyses, which could have had an influence on the results. Our analyses include 421representatives from almost all known tribes currently included in Sterrhinae and Larentiinae. 422The higher number of markers, improved methods of analysis, the broader taxon sampling as 423well as the stability of our results suggests that Sterrhinae are indeed the sister group to the 424remaining Geometridae rrhinae (after transfer of *Ergavia*, *Ametris* and *Macrotes*, see details 425below), Larentiinae, Archiearinae, Geometrinae and Ennominae were highly supported as 426monophyletic. Oenochrominae and Desmobathrinae formed polyphyletic and paraphyletic 427assemblages respectively. The monophylies of Oenochrominae and Desmobathrinae have always 428been questioned. Morphological studies addressing Oenochrominae or Desmobathrinae have 429been very limited and the majority of genera have never been examined in depth. In addition, it 430has been very difficult to establish the boundaries of these subfamilies only on the basis of 431morphological examination (Scoble & Edwards, 1990). Silvonen et al. (2011) showed that 432neither Oenochrominae nor Desmobathrinae were monophyletic, but these results were

433considered preliminary due to the limited number of sampled taxa, and no formal transfers were 434proposed. To date, the phylogenetic positions of these subfamilies are not clear. The systematic 435status of Orthostixinae remains unclear because it was not included in our study. Sihvonen et al. 436(2011) included the genus *Naxa* Walker, 1856, formally placed in Orthostixinae, and found it to 437be nested within Ennominae. However, only three genes were successfully sequenced from this 438taxon, and its position in the phylogenetic tree turned out to be a highly unstable taxon in our 439analyses. It was thus excluded from our dataset. Without a doubt, *Orthostixis* Hübner, [1823], the 440type genus of the subfamily, needs to be included in future analyses.

441

442Sterrhinae Meyrick, 1892

443We included 74 Sterrhinae taxa in our analyses, with all tribes recognized in Forum Herbulot 444(2007) being represented. The recovered patterns generally agree with previous phylogenetic 445hypotheses of the subfamily (Sihvonen, 2004, Sihvonen et al., 2011). The genera *Ergavia*, 446*Ametris* and *Macrotes*, which currently are placed in Oenochrominae were found to form a well-447defined lineage within Sterrhinae with strong support (SH-Like = 99 UFBoot2 = 100). These 448genera are distributed in the New World, whereas the range of true Oenochrominae is restricted 449to the Australian and Oriental region. Sihvonen et al. (2011) already found that *Ergavia* and 450*Afrophyla* Warren, 1895 belong to Sterrhinae and suggested more extensive analyses to clarify 451the position of these genera, which we did. *Afrophyla* was already transferred to Sterrhinae 452(Sihvonen & Staude, 2011) and *Ergavia*, *Ametris* and *Macrotes* (plus *Almodes* Guenée, [1858]) 453will be transferred by Sihvonen et al. (in prep.).

Cosymbiini, Timandrini, Rhodometrini and Lythriini are closely related as shown 455previously (Sihvonen & Kaila, 2004; Õunap et al., 2008; Sihvonen et al., 2011). Cosymbiini 456appear as sister to the Timandrini + Rhodometrini + Lythriini clade. Lythriini are closely related 457to Rhodometrini as shown by Õunap et al. (2008) with both molecular and morphological data. 458However, Timandrini was not the closest to Rhodometrini + Lythriini clade due to the 459phylogenetic position of *Traminda* Saalmüller, 1891 (Timandrini) and *Pseudosterrha* Warren, 4601888 (Cosymbiini). These taxa grouped together forming a different lineage which is sister to 461Rhodometrini + Lythriini clade (Fig. 2).

Rhodostrophiini and Cyllopodini were recovered polyphyletic with species of Cyllopodini 463clustering within Rhodostrophiini. Similar results were recovered before (Sihvonen & Kaila,

4642004; Sihvonen et al., 2011), suggesting that further work needs to be done to clarify the status 465 and systematic position of these tribes. On the other hand, Sterrhini and Scopulini were recovered 466 as sister taxa as proposed by Sihvonen & Kaila (2004); Hausmann (2004); Õunap et al. (2008) 467 and Sihvonen et al. (2011). Our new phylogenetic hypothesis constitutes a large step towards 468 understanding the evolutionary relationships of the major lineages of Sterrhinae. Further 469 taxonomic changes and more detailed interpretation of the clades will be dealt with by Sihvonen 470 et al. (in prep.).

471

472Larentiinae Duponchel, 1845

473Larentiinae are a monophyletic entity (Fig. 3). In concordance with the results of Sihvonen et al. 474(2011), Viidalepp (2011). Õunap et al. (2016) and Strutzenberger et al. (2017), Dyspteridini are 475placed as sister to all other larentiines. Such a systematic position is furthermore supported by the 476green coloration of the wings and the reduced size of the hindwings markably, *Brabirodes* 477Warren, 1904 forms an independent lineage. Chesiadini are monophyletic and sister to all 478larentiines except Dyspteridini, *Brabirodes* and Trichopterygini. These results do not support the 479suggestion by Viidalepp (2006) and Sihvonen et al. (2011) that Chesiadini are sister to 480Trichopterygini.

In our phylogenetic hypothesis, Asthenini are sister to the Perizomini + Melanthiini + 482Eupitheciini clade. These results do not fully agree with Õunap et al. (2016) who found Asthenini 483to be sister to all Larentiinae except Dyspteridini, Chesiadini, Trichopterygini and Eudulini. 484However, our results do support Melanthiini + Eupitheciini complex as a sister lineage sister to 485Perizomini. Sihvonen et al. (2011) recovered Phileremini and Rheumapterini as well-supported 486sister taxa. Our results suggest *Triphosa dubitata* Linnaeus 1758 as sister of Phileremini while 487Rheumapterini is the sister to this clade. Cidariini were recovered as polyphyletic, as the genera 488*Coenotephria* Prout, 1914 and *Lampropteryx* Stephens, 1831 cluster in a different clade apart 489from the lineage comprising the type genus of the tribe, *Cidaria* Treitschke, 1825. Also, 490*Ceratodalia* Packard, 1876, currently placed in Hydriomenini and *Trichodezia* Warren, 1895 491were mixed in Cidariini. This result is not in concordance with Õunap et al. (2016), who found 492this tribe monophyletic. Scotopterygini were sister to a lineage comprising *Ptychorrhoe* 493*blosyrata* Guenée [1858], *Disclioprocta* sp, Euphyiini, an unnamed clade, Xanthorhoini and 494Cataclysmini. Euphyiini are monophyletic, but Xanthorhoini were recovered as mixed with

495Cataclysmini. The same findings were shown by Õunap et al. (2016), but no taxonomic 496rearrangements were proposed. Larentiini are monophyletic and sister of Hererusiini, 497Hydriomenini, Erateinini, Stamnodini and some unnamed clades. Heterusiini are recovered as a 498polyphyletic group, while Erateinini are close to Stamnodini as proposed by Sihvonen et al. 499(2011). Although with some differences, our results support the major phylogenetic patterns of 500Õunap et al. (2016).

Despite substantial progress, the tribal classification and phylogenetic relationships of 502Larentiinae are far from being sufficiently resolved (Õunap et al. 2016). Forbes (1948) proposed 503eight tribes based on morphological information, Viidalepp (2011) raised the number to 23 and 504Õunap et al. (2016) recovered 25 tribes studying 58 genera. Our study includes 23 tribes and 125 505genera (with a focus on Neotropical taxa). However, the phylogenetic position of many taxa 506remains unclear, and many tropical genera have not yet been formally assigned to any tribe. 507Formal descriptions of these groups will be treated in detail by Brehm et al. (in prep) and Õunap 508et al (in prep).

509

510Archiearinae Fletcher, 1953

511The hypothesis presented in this study recovered Archiearinae as a monophyletic entity if some 512taxonomic rearrangements are done. This subfamily was previously considered as sister to 513Geometrinae + Ennominae (Abraham et al., 2001), whereas Yamamoto & Sota (2007) proposed 514them as the sister-taxon to Orthostixinae + Desmobathrinae. Our findings agree with Sihvonen et 515al. (2011) who recovered Archiearinae as the sister-taxon to the rest of Geometridae excluding 516Sterrhinae and Larentiinae, although only one species was included in their study. *Archiearis* 517Hübner, [1823] is sister to *Boudinotiana* Esper, 1787 and these taxa in turn are sister to 518*Leucobrephos* Grote, 1874 (Fig. 4). The southern hemisphere Archiearinae require more 519attention. Young (2006) suggested that two Australian Archiearinae genera, *Dirce* and *Acalyphes*, 520actually belong to Ennominae. Our analyses clearly support this view and we therefore propose to 521formally transfer *Dirce* and *Acalyphes* to Ennominae (all formal taxonomic changes are provided 522in Table 1). Unfortunately, the South American Archiearinae genera *Archiearides* Fletcher, 1953 523and *Lachnocephala* Fletcher, 1953, and Mexican *Caenosynteles* Dyar, 1912 (Pitkin & Jenkins 5242004), could not be included in our analyses. The position in Archiearinae requires further study.

525These presumably diurnal taxa may only be superficially similar to northern hemisphere 526Archiearinae as was the case with Australian *Dirce* and *Acalyphes*.

527

528Desmobathrinae Meyrick, 1886

529Taxa placed in Desmobathrinae were formerly recognized as Oenochrominae genera with slender 530appendages. Holloway (1996) revived this subfamily from synonymy with Oenochrominae and 531divided it into the tribes Eumeleini and Desmobathrini. Desmobathrinae species have a 532pantropical distribution and they apparently (still) lack recognized morphological apomorphies 533(Holloway, 1996). Our phylogenetic analysis has questioned the monophyly of Desmobathrinae 534*sensu* Holloway because some species currently placed in Oenochrominae were embedded within 535the group (see also Sihvonen et al., 2011), and also the phylogenetic position of the tribe 536Eumeleini is unstable (see below). Desmobathrinae can be regarded as a monophyletic group in 537our study, after the transfer of *Zanclopteryx*, *Nearcha* and *Racasta* from Oenochrominae to 538Desmobathrinae, and the removal of Eumeleini (Table 1). Desmobathrinae as circumscribed here 539are an independent lineage that is sister to all Geometridae except Sterrhinae, Larentiinae and 540Archiearinae.

541 The monobasic Eumeleini (comprising only the genus *Eumelea*) has had a dynamic 542taxonomic history: *Eumelea* was transferred from Oenochrominae s.l. to Desmobathrinae based **543**on the pupal cremaster (Holloway, 1996), whereas Beljaev (2008) pointed out that *Eumelea* 544could be a member of Geometrinae based on the skeleto-muscular structure of the male genitalia. 545Molecular studies (Sihvonen et al., 2011, Ban et al., 2018) suggested that *Eumelea* was part of 546Oenochrominae s.str., but these findings were not well-supported and no formal taxonomic 547changes were proposed. Our analyses with IQTREE and RAxML recovered Eumeleini in two 548very different positions, er as sister to Geometrinae (SH-like = 92, UFBoot2 = 98) rather than **549**belonging to Desmobathrinae (figs 4, 5), or as sister of *Plutodes* in Ennominae (RBS = 60) **550**(Supplemental data S4). The examination of morphological details suggests that the position as 551sister to Geometrinae is more plausible: hindwing vein M2 is present and tubular; anal margin of 552the hindwing is elongated; and large coremata originate from saccus (Holloway 1994, our **553**observations). The morphology of *Eumelea* is partly unusual, and for that reason we illustrate 554selected structures (Supplemental data S5), which include for instance the following: antennae 555and legs of both sexes are very long; forewing vein Sc (homology unclear) reaches wing margin;

556in male genitalia coremata are extremely large and branched; uncus is cross-shaped (cruciform); 557tegumen is narrow and it extends ventrally beyond the point of articulation with vinculum; saccus 558arms are extremely long, looped; and vesica is with lateral rows of cornuti. However, the green 559geoverdin pigment concentration of *Eumelea* is low in comparison to Geometrinae (Cook et al., 5601994). We tentatively conclude that *Eumelea* is probably indeed associated with Geometrinae. 561However, since eleven genetic markers were not sufficient to clarify the phylogenetic affinities of 562*Eumelea*, we provisionally place the genus as *incertae sedis* (Table 1).

563

564Oenochrominae Guenée, [1858]

565Oenochrominae has obviously been the group comprising taxa that could not easily be assigned 566to other subfamilies. Out of the 76 genera currently assigned to Oenochrominae, our study 567includes 25 genera (28 species). Three of these genera will be formally transferred to Sterrhinae 568(Sihvonen et al. in prep.), two are here transferred to Desmobathrinae (see above, Table 1), and 569eight are transferred to Epidesmiinae (see below). In agreement with Sihvonen et al. (2011), 570Oenochrominae *s. str.* grouped together in a well-supported lineage. Genera of this clade can be 571characterized as having robust bodies, and their male genitalia have a well-developed uncus and 572gnathos, broad valvae and a well-developed anellus (Scoble & Edwards, 1990). Common host 573plants are members of Proteaceae and Myrtaceae (Holloway, 1996). Our results strongly suggest 574that the genus *Oenochroma* is polyphyletic: *O. infantilis* is sister to a clade including *Dinophalus*, 575*Hypographa*, *Lissomma*, *Sarcinodes* and (at least) two species of *Oenochroma*. To date, 20 576species have been assigned to *Oenochroma* by Scoble (1999), and one additional species was 577described by Hausmann et al. (2009), who suggested that *O. vinaria* is a species complex. We 578agree with Hausmann et al. (2009), who pointed out the need of major revision and taxonomic 579definition of *Oenochroma*.

In our phylogenetic hypothesis, *Sarcinodes* is sister to *O. orthodesma* and *O. vinaria*, the 581type species of *Oenochroma*. Although *Sarcinodes* and *Oenochroma* resemble each other in 582external morphology, a sister-group relationship between these genera has not been hypothesized 583before. The inclusion of *Sarcinodes* in Oenochrominae is mainly based on shared tympanal 584characters (Scoble & Edwards, 1990). However, the circular form of the lacinia, which is an 585apomorphy of Oenochrominae *s.str.* is missing or not apparent in *Sarcinodes* (Holloway, 1996). 586In addition, *Sarcinodes* is found in the Oriental rather than in the Australian region, where all

587*Oenochroma* species are distributed. A second clade of Oenochrominae *s.str.* comprises of the 588genera Monoctenia, Onycodes, Parepisparis, Antictenia, Arhodia, Gastrophora and Homospora, 589which clustered together as the sisters of *Oenochroma* and its relatives. These genera are widely 590recognized in sharing similar structure of male genitalia (Scoble & Edwards, 1990), yet their 591phylogenetic relationships have never been tested. Young (2006) suggested the monophyly of **592**Oenochrominae *s.str.*, however, with a poorly resolved topology and low branch support. In her **593**study, *Parepisparis*, *Phallaria* and *Monoctenia* shared a bifid head, while in *Parepisparis* and **594***Onychodes*, the aedeagus was lacking caecum and cornuti. Our analysis supports these 595morphological similarities. Monoctenia, Onycodes and Parepisparis clustered together **596**However, a close relationship of the genera *Antictenia*, *Arhodia*, *Gastrophora* and *Homospora* 597has not been suggested before. Our analysis thus strongly supports the earliest definition of **598**Oenochrominae proposed by Guenée (1858), and reinforced by Cook & Scoble (1992). 599Oenochrominae should be restricted to *Oenochroma* and related genera such as *Dinophalus*, 600Hypographa, Lissomma, Sarcinodes, Monoctenia, Onycodes, Parepisparis, Antictenia, Arhodia, **601** *Gastrophora*, *Homospora*, *Phallaria* and *Palaeodoxa*. We consider that genera included to in 602Oenochrominae by (Scoble & Edwards, (1990), but recovered in a separate lineage apartseparate **603** from *Oenochroma* and its close relatives in our study, belong to a hitherto unknown subfamily, 604which is described below.

605

606Epidesmiinae Murillo-Ramos, Brehm & Sihvonen new subfamily

607

608Type genus: *Epidesmia* Duncan [&Westwood], 1841.

609Material examined: Taxa included in the molecular phylogeny: *Ecphyas* Turner, 1929, *Systatica*

610 Turner, 1904, Adeixis Warren, 1987, Dichromodes Guenée, 1858, Phrixocomes Turner, 1930,

611*Abraxaphantes* Warren, 1894, *Epidesmia* Duncan [& Westwood], 1841, and *Phrataria* Walker,

612[1863].

613Most of the slender_-bodied Oenochrominae, excluded from Oenochrominae s. str. by Holloway

614(1996), were recovered as an independent lineage (Fig. 4) that consists of two clades: *Ecphyas* +

615 *Systatica* and *Epidesmia* + five other genera. Branch support values in the from IQ-TREE strongly

616support the monophyly of this clade (UFBoot2; and SH-like = 100), while in RAxML itthe clade

617is moderately supported (RBS = 89). These genera have earlier been assigned to Oenochrominae

- **618***s.l.* (Scoble & Edwards, 1990). However, we recovered the group as a well-supported lineage
- **619**independent from Oenochrominae *s. str.* and transfer them to Epidesmiinae, subfam. n. (Table 1).
- **620**Phylogenetic position: Epidesmiinae is sister to Oenochrominae *s. str.* + *Eumelea* + Geometrinae
- 621+ Ennominae.
- **622**Short description of Epidesmiinae: Antennae in males unipectinate (exception: *Adeixis*), towards
- 623apex shorter towards the apex. Pectination moderate or long. Thorax and abdomen slender
- **624**(unlike in Oenochrominae). Forewings with sinuous postmedial line and areole present.
- 625Forewings planiform (with wings lying flat on the substrate) in resting position, held like a
- **626**triangle, and cover the hindwings.
- **627**Diagnosis of Epidesmiinae: The genera included in this subfamily form a strongly supported
- **628**clade with DNA sequence data from the following gene regions (exemplar *Epidesmia chilonaria*
- 629Herrich-Schäffer, [1855]) ArgK (GB Accession number), Ca-ATPase (GB Accession number),
- 630CAD (GB Accession number), COI (GB Accession number), EF1a (GB Accession number),
- 631GAPDH (GB Accession number), MDH (GB Accession number) and Nex9 (GB Accession
- 632number). (note to the editor: GB accession numbers will be provided on acceptance). A
- 633thorough morphological diagnosis requires further research.
- **634**Distribution: Most genera are distributed in the Australian region, with range of some extending
- **635**to the Orient as well, and *Apraxaphantes* is the only genus that occurs exclusively in the Oriental
- 636region
- 637

638Geometrinae Stephens, 1829

- **639**The monophyly of Geometrinae is strongly supported, but the number of tribes included in this
- **640**subfamily is still unclear. Sihvonen et al. (2011) analyzed 27 species assigned to 11 tribes,
- 641 followed by Ban et al. (2018) with 116 species in 12 tribes. Ban et al. (2018) synonymized nine
- 642tribes, and validated the monophyly of 12 tribes, with two new tribes Ornithospilini and Agathiini
- 643being the first two clades branching off the main lineage of Geometrinae. Our study (168 species)
- **644**validates the monophyly of 13 tribes, eleven of which were defined in previous studies:
- 645Hemitheini, Dysphaniini, Pseudoterpnini s.str., Ornithospilini, Agathiini, Aracimini,
- **646**Neohipparchini, Timandromorphini, Geometrini, Comibaeini, Nemoriini. One synonymization is
- 647proposed: Synchlorini Ferguson, 1969 **syn. nov.** is synonymized with Nemoriini e further

648tribe is proposed as new: Chlorodontoperini **trib. nov.**, and one tribe (Archaeobalbini Viidalepp, **649**1981, **stat. rev.**) is raised from synonymy of Pseudoterpnini to tribe status.

In our phylogenetic hypothesis, a large clade including the former tribes Lophochoristini, 651Heliotheini, Microloxiini, Thalerini, Rhomboristini, Hemistolini, Comostolini, Jodini and 652Thalassodini is recovered as sister to the rest of Geometrinae. These results are in full agreement 653with Ban et al. (2018), who synonymized all of these tribes with Hemitheini. Although the 654monophyly of Hemitheini is strongly supported, our findings recovered only a few monophyletic 655subtribes. For example, genera placed in Hemitheina were intermixed with those belonging to 656Microloxiina, Thalassodina and Jodina. Moreover, many genera which were unassigned to tribe, 657were recovered as belonging to Hemitheini. Our findings recovered *Lophostola* Prout, 1912 as 658sister to all Hemitheini. These results are quite different from those found by Ban et al. (2018) 659who suggested Rhomboristina as being sister to the rest of Hemitheini. In contrast, our results 660recovered Rhomboristina mingled with Hemistolina. These different results are probably 661influenced by the presence of African and Madagascan *Lophostola* in our analysis. We feel that 662the concept of subtribe is not practical at this point in time and thus do not advocate its use in 663Geometridae classification.

664 The Australian genus *Crypsiphona* Meyrick, 1888 is sister to all tribes included in 665Geometrinae except Hemitheini. *Crypsiphona* has been assigned to Pseudoterpnini (e. g. Pitkin et 666al. 2007, Õunap & Viidalepp 2009), but is recovered as a separate lineage in our tree. Given the **667**isolated position of *Crypsiphona*, the designation of a new tribe could be considered, but due to 668low support of branches in our analyses, further information (including morphology) is needed to 669confirm the phylogenetic position of this genus. *Xenozancla* Warren, 1893 is placed as sister to 670the clade comprising Dysphaniini and Pseudoterpnini s. str.. Sihvonen et al. (2011) did not 671include *Xenozancla* in their analyses and suggested the sister relationships of Dysphaniini and **672**Pseudoterpnini but with low support. According to Ban et al. (2018), *Xenozancla* is more closely 673related to Pseudoterpnini *s.str.* rather than to Dysphaniini. However, due to low support of clades, **674**Ban et al. (2018) did not propose a taxonomic assignment to *Xenozancla*, which is currently not **675**assigned to a tribe. Although our IQ-TREE results show that *Xenozancla* is sister of clade 676comprising Dysphaniini and Pseudoterpnini s. str., the RAxML analysis did not recover the same 677phylogenetic relationships. Instead, Dysphaniini + Pseudoterpnini s.str. are found to be sister to **678**each other, but *Xenozancla* is placed close to *Rhomborista monosticta* (Wehrli, 1924). As in Ban

679et al. (2018), due to low support of nodes, we cannot reach to any conclusion about the **680**phylogenetic affinities of these tribes based on our results due to low support of nodes. 681 The monophyly of Pseudoterpnini sensu Pitkin et al. (2007) could not be recovered. Same 682results were shown by Ban et al. (2018) who recovered Pseudoterpnini s.l. including all the 683genera previously studied by Pitkin et al. (2007) and, forming a separate clade from **684***Pseudoterpna* Hübner, [1823]+ *Pingasa* Moore, 1887. Our results showed the African **685***Mictoschema* Prout, 1922 falling within Pseudoterpnini s.str., and it is sister to *Pseudoterpna* and **686***Pingasa*. A second group of Pseudoterpnini *s.l.* was recovered as an independent lineage clearly **687**separate from Pseudoterpnini *s.str.* (SH-like = 86.3, UFBoot2 = 96). Ban et al. (2018) did not 688introduce a new tribe due to the morphological similarities and difficulty in finding apomorphies **689**of Pseudoterpnini *s.str*. In addition, their results were weakly supported. Considering that two **690**independent studies have demonstrated the paraphyly of Pseudoterpnini sensu Pitkin et al (2007), **691**we see no reason for retaining the wide concept of this tribe. Instead we propose the revival of the **692**tribe status of Archaeobalbini and the description of a new tribe Chlorodontoperini, which 693removes paraphyly from the clades in question.

694

695Archaeobalbini Viidalepp, 1981, status revised

696(original spelling: Archeobalbini, justified emendation in Hausmann (1996))

697Type genus: *Archaeobalbis* Prout, 1912 (synonymized with *Herochroma* Swinhoe, 1893 in **698**Holloway (1996))

699Material examined: *Herochroma curvata* Han & Xue, 2003, *H. baba* Swinhoe 1893,

700Metallolophia inanularia Han & Xue, 2004, M. cuneataria Han & Xue, 2004, Actenochroma

701 muscicoloraria (Walker, 1862), Absala dorcada Swinhoe, 1893, Metaterpna batangensis Hang

702& Stüning, 2016, M. thyatiraria (Oberthür, 1913), Limbatochlamys rosthorni Rothschild, 1894,

703Pachyodes pictaria Moore, 1888, Dindica para Swinhoe, 1893, Dindicodes crocina (Butler,

7041880), Lophophelma erionoma (Swinhoe, 1893), L. varicoloraria (Moore, 1868), L. iterans

705(Prout, 1926) and *Pachyodes amplificata* (Walker, 1862).

706

707This lineage splits into four groups: *Herochroma* Swinhoe, 1893 + *Absala* Swinhoe, 1893 + 708*Actenochroma* Warren, 1893 is the sister lineage of the rest of Archaeobalbini that were 709recovered as a polytomic bunch of three clades conforming the genera

710*Limbatochlamys* Rothschild, 1894, *Psilotagma* Warren, 1894, *Metallolophia* Warren, 1895, 711*Metaterpna* Yazaki, 1992, *Dindica* Warren, 1893, *Dindicodes* Prout, 1912, *Lophophelma* Prout, 7121912 and *Pachyodes* Guenée, 1858. This tribe can be diagnosed by the combination of DNA data 713from six genetic markers, see for instance *Pachyodes amplificata* (CAD, COI, EF1a, GAPDH, 714MDH RpS5) shown in supplementary material. Branch support values in IQ-TREE strongly 715confirm the monophyly of this clade (SH-like = 86.3, UFBoot2 = 96). GenBank accession 716numbers are shown in supplementary material. A morphological diagnosis requires further 717research. 718
719Chlorodontoperini Murillo-Ramos, Sihvonen & Brehm, **new tribe** 720Type genus: *Chlorodontopera* Warren, 1893 721Material examined: Taxa in the molecular phylogeny: *C. discospilata* (Moore, 1867) and *C.* 722*mandarinata* (Leech, 1889).

724Some studies (Inoue, 1961; Holloway, 1996) suggested the morphological similarities of 725*Chlorodontopera* Warren, 1893 with members of Aracimini. Moreover Holloway (1996) 726considered this genus as part of Aracimini. Our results suggest a sister relationship of 727*Chlorodontopera* with Aracimini rather than the inclusion in the tribe as well as the sister 728relationship with a large lineage comprising the rest of Geometrinae. Considering that our 729analysis strongly supports *Chlorodontopera* as an independent lineage (branch support SH-like = 73099 UFBoot2 = 100, RBS = 99), we introduce the monobasic tribe Chlorodontoperini. This tribe 731can be diagnosed by the combination of DNA data from six genetic markers (exemplar 732*Chlorodontopera discospilata*) CAD (MG015448), COI (MG014735), EF1a (MG015329), 733GAPDH (MG014862), MDH (MG014980) and RpS5 (MG015562). Ban et al. (2018) did not 734introduce a new tribe because the relationship between *Chlorodontopera* and *Euxena* Warren, 7351896 was not clear in their study. This relationship was also been proposed by Holloway (1996) 736based on similar wing patterns. Further analyses are needed to clarify the affinities between 737*Chlorodontopera* and *Euxena*.

723

The tribe Chlorodontoperini is diagnosed by distinct discal spots with pale margins on the 739wings, which are larger on the hindwing; a dull reddish-brown patch is present between the discal 740spot and the costa on the hindwing, and veins M3 and CuA1 are not stalked on the hindwing

741(Ban et al., 2018). In the male genitalia, the socii are stout and setose and the lateral arms of the 742gnathos are developed, not joined. Sternite 3 of the male has setal patches. Formal taxonomic 743changes are listed in Table 1.

744

745Aracimini, Neohipparchini, Timandromorphini, Geometrini and Comibaenini were recovered as 746monophyletic groups. These results are in full agreement with Ban et al. (2018). However, the 747phylogenetic position of *Eucyclodes* Warren, 1894 is not clearuncertain. This genus is placed as 748sister of Comibaenini (support branch SH-like = 32.4, UFBoot2 = 100, RBS = 67). The 749monophyly of Nemoriini and Synchlorini is not supported. Instead, Synchlorini are nested within 750Nemoriini (support branch SH-like = 99.8, UFBoot2 = 100, RBS = 93). Our findings are in 751concordance with Sihvonen et al. (2011) and Ban et al. (2018), but our analyses included a larger 752number of markers and a much higher number of taxa. Thus, we formally synonymize 753Synchlorini syn. nov. with Nemoriini (Table 1).

755Ennominae Duponchel, 1845

756Ennominae are the most species-rich subfamily of geometrids. The loss of vein M2 on the 757hindwing is probably the best apomorphy (Holloway, 1993), although this character does not 758occur in a few ennomine taxa (Staude, 2001; Skou & Sihvonen, 2015). Ennominae are a 759morphologically highly diverse subfamily, and attempts to find further synapomorphies shared by 760all major tribal groups have failed.

The number of tribes as well as phylogenetic relationships among tribes are still debatable 762(see Skou & Sihvonen, 2015 for an overview). Moreover, the taxonomic knowledge of this 763subfamily in tropical regions is still poor. Holloway (1993) recognized 21 tribes, Beljaev (2006) 76424 tribes, and Forum Herbulot (2007) 27 tribes. To date, five molecular studies have corroborated 765the monophyly of Ennominae (Young, 2006; Yamamoto & Sota, 2007; Wahlberg et al., 2010; 766Õunap et al., 2011, Sihvonen et al. 2011) with no conflicting evidence ever presented, with 767Young (2006) being the only exception who found a paraphyletic Ennominae. Moreover, three 768large-scale taxonomic revisions (without a phylogenetic hypothesis) were published by Pitkin 769(2002) for the Neotropical region, Skou & Sihvonen (2015) for the Western Palaearctic region, 770and Holloway (1994) for Borneo. More detailed descriptions of taxonomic changes in Ennominae

771will be given by Brehm et al. (in prep) and Murillo-Ramos et al. (in prep), here we discuss
772general patterns and give details for taxonomic acts not covered in the other two papers.
773 Our findings recover Ennominae as a monophyletic entity, but results were not highly
774supported in RAxML (RBS = 67) results compared to IQ-TREE (UFBoot2 and SH-Like = 100).
775The lineage comprising Geometrinae and Oenochrominae is recovered as the sister clade of
776Ennominae. In previous studies, Wahlberg et al. (2010) sampled 49 species of Ennominae, Õunap
777et al. (2011) sampled 33 species, and Sihvonen et al. (2011) 70 species including up to eight
778markers per species. All these studies supported the division of Ennominae into "boarmiine" and
779"ennomine" moths (Holloway, 1994). This grouping was proposed by Forbes (1948) and
781Cassymini and Eutopini based on the bifid punal gramaeter and the passession of a force in the

781Cassymini and Eutoeini based on the bifid pupal cremaster and the possession of a fovea in the 782male forewing. The remaining tribes were defined as "ennomines" based on the loss of a setal 783comb on male sternum A3 and the presence of a strong furca in male genitalia. Both Wahlberg et 784al. (2010) and Sihvonen et al. (2011) found these two informal groupings to be reciprocally 785monophyletic.

786 In our analyses, 653 species with up to 11 markers were sampled, with an emphasis on 787Neotropical taxa which so far had been poorly represented in the molecular phylogenetic 788analyses. Our results recovered the division into two major subclades, a core set of ennomines in 789a well-supported clade, and a poorly supported larger clade that includes the "boarmiines" among 790four other lineages usually thought of as "ennomines". The traditional "ennomines" are thus not **791** found to be monophyletic in our analyses, questioning the utility of such an informal name. Our 792phylogenetic hypothesis supports the validation of numerous tribes earlier proposed, in addition 793to several unnamed clades. We validate 23 tribes (Forum Herbulot, 2007; Skou & Sihvonen, 7942015): Gonodontini, Gnophini, Odontoperini, Nacophorini, Ennomini, Campaeini, Alsophilini, 795 Wilemaniini, Prosopolophini, Diptychini, Theriini, Plutodini, Palyadini, Hypochrosini, Apeirini, 796Epionini, Caberini, Macariini, Cassymini, Abraxini, Eutoeini and Boarmiini. We hereby propose 797one new tribe: Drepanogynini **trib. nov.** (Table 1). Except for the new tribe, most of the groups 798recovered in this study are in concordance with previous morphological classifications 799(Holloway, 1993; Beljaev, 2006, 2016; Forum Herbulot, 2007; Skou & Sihvonen, 2015). Five known tribes and two further unnamed lineages form the core Ennominae:

Five known tribes and two further unnamed lineages form the core Ennominae: 801 Gonodontini, Gnophini, Odontoperini, Nacophorini and Ennomini. Several Neotropical

802 clades that conflict with the current tribal classification of Ennominae will be described as new 803tribes by Brehm et al (in prep). Gonodontini and Gnophini are recovered as sister taxa. 804Gonodontini was defined by Forbes (1948) and studied by Holloway (1994), who showed 805synapomorphies shared by *Gonodontis* Hübner, [1823], *Xylinophylla* Warren, 1898 and **806***Xenimpia* Warren, 1895. Our results recovered the genus *Xylinophylla* as sister of *Xenimpia* and 807Psilocladia Warren, 1898. Psilocladia is an African genus currently unassigned to tribe (see 808Sihvonen et al., 2015 for details). Considering the strong support and that the facies and 809morphology are somewhat similar to other analysed taxa in Gonodontini, we formally include **810***Psilocladia* in Gonodontini (Table 1). Gnophini are a well-defined assemblage and we formally **811**transfer the African genera *Oedicentra* Warren, 1902 and *Hypotephrina* Janse, 1932, from **812**unassigned to Gnophini (Table 1). The total number of species, and number of included genera in 813Gnophini are still uncertain (Skou & Sihvonen, 2015). Based on morphological examination, 814Beljaev (2007, 2016) treated Angeronini as a synonym of Gnophini. The costal projection on 815male valva bearing a spine or group of spines was considered as a synapomorphy of the group. **816**Using molecular data, Yamamoto & Sota (2007) showed thea close phylogenetic relationship **817**between *Angerona* Duponchel, 1829 (Angeronini) and *Chariaspilates* Wehrli, 1953 (Gnophini). 818Similar results were shown by Sihvonen et al. (2011) who recovered Angerona and Charissa 819Curtis, 1826 as sister taxa, and our results also strongly support treating Angeronini as synonym 820of Gnophini.

- Holloway (1993) suggested close affinities among Nacophorini, Azelinini and 822Odontoperini on the basis of larval characters. In a morphology-based phylogenetic study, Skou 823& Sihvonen (2015) suggested multiple setae on the proleg on A6 of the larvae as a 824synapomorphy of the group. Our results also supported a close relationship of Nacophorini, 825Azelinini and Odontoperini. These clades will be treated in more detail by Brehm et al. (in prep.).
- Following the ideas of Pitkin (2002), Beljaev (2008) synonymized the tribes 827Ourapterygini and Nephodiini with Ennomini. He considered the divided vinculum in male 828genitalia and the attachment of muscles *m*₃ as apomorphies of the Ennomini, but did not provide 829a phylogenetic analysis. Sihvonen et al. (2011) supported Beljaev's assumptions and recovered 830*Ennomos* Treitschke, 1825 (Ennomini), *Ourapteryx* Leach, 1814 (Ourapterygini) and *Nephodia* 831Hübner, [1823] (Nephodiini) as belonging to the same clade. Our comprehensive analysis

832confirms those previous findings and we agree with Ennomini as valid tribal name for this large 833clade.

834

The genus *Declana* Walker, 1858 is recovered as an isolated clade sister to a complex 836lineage comprising Campaeini, Alsophilini, Wilemaniini and Prosopolophini. This genus is 837endemic to New Zealand, but to date has not been assigned to any tribe. According to our results, 838*Declana* could well be defined as its own tribe. However, the delimitation of this tribe is beyond 839the scope of our paper and more genera from Australia and New Zealand should first be 840examined.

Campaeini, Alsophilini, Wilemaniini and Prosopolophini grouped together in a well-842supported clade (SH-like and UFBoot2 = 100). Previous molecular analyses have shown an 843association of Colotoini [= Prosopolophini] and Wilemaniini (Yamamoto & Sota, 2007; 844Sihvonen et al., 2011), although no synapomorphies are known to support synonymization (Skou 845& Sihvonen, 2015). The Palaearctic genera *Compsoptera* Blanchard, 1845, *Apochima* Agassiz, 8461847, *Dasycorsa* Prout, 1915, *Chondrosoma* Anker, 1854 and *Dorsispina* Nupponen & 847Sihvonen, 2013, are potentially part of the same complex (Skou & Sihvonen, 2015, Sihvonen 848pers. obs.), but they were not included in the current study. Campaeini is a small group including 849four genera with Oriental, Palaearctic and Nearctic distribution, apparently closely related to 850Alsophilini and Prosopolophini, but currently accepted as a tribe (Forum Herbulot, 2007; 851Sihvonen & Skou, 2015). Our results support the close phylogenetic affinities among these tribes, 852but due to the limited number of sampled taxa, we do not propose any formal changes.

A close relationship between Nacophorini and Lithinini was suggested by Pitkin (2002), 854based on the similar pair of processes of the anellus in the male genitalia. Pitkin also noted a 855morphological similarity in the male genitalia (processes of the juxta) shared by Nacophorini and 856Diptychini. In a study of the Australasian fauna, Young (2008) suggested the synonymization of 857Nacophorini and Lithinini. This was further corroborated by Sihvonen et al. (2015) who found 858that Diptychini were nested within some Nacophorini and Lithinini. However, none of the studies 859proposed formal taxonomic changes because of limited taxon sampling. In contrast, samples in 860our analyses cover all biogeographic regions and the results suggest that the true Nacophorini is a 861clade which comprises almost exclusively New World species. This clade is clearly separate from

862Old World "nacophorines" (cf. Young, 2003) that are intermixed with Lithinini and Diptychini. 863We here formally transfer Old World nacophorines to Diptychini and synonymize Lithinini syn. 864nov. with Diptychini (Table 1). Further formal taxonomic changes in the Nacophorini complex 865are provided by Brehm et al. (in prep.).

Theria Hübner, [1825], the only representative of Theriini in this study, clustered together 867with Lomographa Hübner, [1825] (Baptini in Skou & Sihvonen, 2015), in a well-supported 868clade, agreeing with the molecular results of Sihvonen et al. (2011). The placement of 869Lomographa in Caberini (Rindge, 1979; Pitkin, 2002) is not supported by our study nor by that of 870by Sihvonen et al. (2011). The monophyly of Lomographa has not been tested before, but we 871show that the Neotropical and Palaearctic Lomographa species indeed group together. Our results 872show that Caberini are not closely related to the Theriini + Baptini clade, unlike in the earlier 873morphology-based hypotheses (Rindge, 1979; Pitkin 2002). Morphologically, Theriini and 874Baptini are dissimilar, therefore we recognize them as valid tribes (see description and 875illustrations in Skou & Sihvonen, 2015).

According to our results, 11 molecular markers were not enough to infer phylogenetic 877 affinities of Plutodini (represented by one species of *Plutodes*). Similar results were found by 878 Sihvonen et al. (2011), who in some analyses recovered *Plutodes* as sister of *Eumelea*. Our 879 analyses are in concordance congruent with those findings, IQ-TREE results suggested that 880 *Plutodes* is sister to Palyadini, but RAxML analyses recovered *Eumelea* as the most probable 881 sister of *Plutodes*. Given that our analyses were not in agreement about the sister-group affinities 882 of *Plutodes*, we do not make any assumptions to about its the phylogenetic position. Instead we 883 emphasize that further works needs to be done to clarify the phylogenetic positions of *Plutodes* 884 and related groups.

Hypochrosini is only recovered in a well-defined lineage only if the genera *Apeira* Gistl, 8861848 (Apeirini), *Epione* Duponchel, 1829 (Epionini), *Sericosema* (Caberini), *Ithysia* (Theriini), 887*Capasa* Walker, 1866 (unassigned) and, *Omizodes* Warren, 1894 (unassigned) would be 888transferred to Hypochrosini. Skou & Sihvonen (2015) already suggested a close association of 889Epionini, Apeirini and Hypochrosini. We think that the synonymizationsing of these tribes is 890desirable. However, due to the limited number of sampled taxa we do not propose any formal 891changes until more data will become available. We do suggest, however, formal taxonomic 892changes of the genera *Capasa* and *Omizodes* from unassigned to Hypochrosini (Table 1).

The southern African genus *Drepanogynis* is paraphyletic and has earlier been classified 894as belonging in Ennomini, and later in Nacophorini (Krüger 2002). In our phylogeny, it is 895intermixed with the genera *Sphingomima* Warren, 1899, and *Thenopa* Walker, 1855. 896*Hebdomophruda errans* Prout, 1917 also clustered together with these taxa-also, apart from other 897*Hebdomophruda* Warren, 1897 species, which suggests that this genus is polyphyletic. These 898genera form a clade sister to the lineage that comprises several Hypochrosini species. 899Considering that our analysis strongly supports this clade, we place *Thenopa*, *Sphingomina* and 900*Drepanogynis* in a tribe of their own.

901

902Drepanogynini Murillo-Ramos, Sihvonen & Brehm new tribe

903

904Type genus: *Drepanogynis* Guenée, [1858]

905

906The African genera *Thenopa*, *Sphingomima* and *Drepanogynis* appeared as a strongly supported 907lineage (RBS, SH-like and UFBoot2 = 100). Krüger (1997, p. 259) proposed "Boarmiini and **908**related tribes as the most likely sister group" for *Drepanogynis*, whereas more recently 909*Drepanogynis* was classified in the putative southern hemisphere Nacophorini (Krüger, 2014; **910**Sihvonen et al., 2015). In the current phylogeny, *Drepanogynis* is isolated from Nacophorini **911***sensu stricto* and from other southern African genera that have earlier been considered to be 912closely related to it (Krüger 2014 and references therein). The other southern African genera **913**appeared as belonging to Diptychini in our study. The systematic position of *Drepanogynis* 914*tripartita* (Warren, 1898) has earlier been analysed in a molecular study (Sihvonen et al., 2015). 915The taxon grouped together with the Palearctic species of the tribes Apeirini, Theriini, Epionini 916and putative Hypochrosini. Sihvonen et al. (2015) noted that Argyrophora trofonia (Cramer, 917[1779]) (representing *Drepanogynis* group III sensu Krüger, 1999) and *Drepanogynis* tripartita 918(representing *Drepanogynis* group IV *sensu* Krüger, 2002) did not group together, but no formal 919changes were proposed. Considering that the current analysis strongly supports the placement of 920*Drepanogynis* and related genera in an independent lineage, and the aforementioned taxa in the 921sister lineage (Apeirini, Theriini, Epionini and putative Hypochrosini) have been validated at 922tribe-level, we place *Drepanogynis* and related genera in a tribe of their own.

923 Material examined and taxa included: *Drepanogynis mixtaria* Guenée, [1858], D. 924tripartita, D. determinata (Walker, 1860), D. arcuifera Prout, 1934, D. arcuatilinea Krüger, 9252002, D. cnephaeogramma (Prout, 1938), D. villaria (Felder & Rogenhofer, 1875), 926" Sphingomima" discolucida Herbulot, 1995 (genus combination uncertain, see taxonomic notes 927below), Thenopa diversa Walker, 1855, "Hebdomophruda" errans Prout, 1917 (genus 928combination uncertain, see taxonomic notes below). 929 Taxonomic notes: We choose *Drepanogynis* Guenée, [1858] as the type genus for 930Drepanogynini, although it is not the oldest valid name (ICZN Article 64), because extensive 931literature has been published on *Drepanogynis* (Krüger 1997, 1998, 1999, 2014), but virtually 932nothing exists on *Thenopa*, except the original descriptions of its constituent species. Current 933results show the urgent need for more extensive phylogenetic studies within Drepanogynini. 934*Thenopa* and *Sphingomima* are embedded within *Drepanogynis*, makingrendering it paraphyletic, 935but our taxon coverage is too limited to propose formal changes in this species-rich group. 936Drepanogynini, as defined here, are distributed in sub-Saharan Africa. *Drepanogynis sensu* 937Krüger (1997, 1998, 1999, 2014) includes over 150 species and it ranges from southern Africa to 938Ethiopia (Krüger 2002, Vári et al. 2002), whereas the genera *Sphingomima* (10 species) and 939*Thenopa* (4 species) occur in Central and West Africa (Scoble 1999). *Sphingomima* and *Thenopa* 940are externally similar, so the recovered sister-group relationship in the current phylogeny analysis **941** is was anticipated. In the current analysis *Hebdomophruda errans* Prout, 1917 is isolated from 942other analysed *Hebdomophruda* species (the others are included in Diptychini), highlighting the 943need for additional research. Krüger (1997, 1998) classified the genus *Hebdomophruda* into 944seven species groups on the basis of morphological characters, and *H. errans* group is one of 945them (Krüger 1998). We do not describe a new genus for the taxon *errans*, nor do we combine it 946 with any genus in the Drepanogynini, highlighting its uncertain taxonomic position (incertae 947*sedis*) waiting forpending more research. In the current analysis *Sphingomima discolucida* 948Herbulot, 1995 is transferred from unassigned tribus combination to Drepanogynini, but 949because as the type species of *Sphingomima* (S. heterodoxa Warren, 1899) was not analysed, we 950do not transfer the entire genus *Sphingomima* into Drepanogynini. We highlight the uncertain 951taxonomic position of the taxon *discolucida*, acknowledging that it may eventually be combined 952back toincluded again in Sphingomima if the entire genus isshould get transferred into 953Drepanogynini.

954

955Diagnosis panogynini can be diagnosed by the combination of DNA data with up to 11 956genetic markers (exemplar *Drepanogynis mixtaria* Guenée, [1858]) ArgK (GB Accession 957number), Ca-ATPase (GB Accession number), CAD (GB Accession number), COI (GB 958Accession number), EF1a (GB Accession number), GAPDH (GB Accession number), IDH (GB 959Accession number), MDH (GB Accession number), Nex9 (GB Accession number), RpS5 (GB 960Accession number) and Wingless (GB Accession number). In the light of our phylogenetic 961results, the *Drepanogynis* group of genera, as classified earlier (Krüger 2014), is split between 962two unrelated tribes (Drepanogynini and Diptychini). More research is needed to understand how 963other *Drepanogynis* species and the *Drepanogynis* group of genera *sensu* Krüger (1997, 1998, 9641999, 2014) (at least 11 genera), should be classified.

965

Boarmiini are the sister group to a clade that comprises Macariini, Cassymini, Abraxini 967 and Eutoeini. We found that many species currently assigned to Boarmiini are scattered 968 throughout Ennominae. Boarmiini *s. str.* are strongly supported but <u>are</u> technically <u>is</u> not 969 monophyletic because of a large number of genera which need to be formally transferred from 970 other tribes to Boarmiini (see Brehm et al., in prep. for Neotropical taxa and Murillo-Ramos et 971 al., in prep. for other taxa). The results are principally in concordance with Jiang et al. (2017), 972 who supported the monophyly of Boarmiini but with a smaller number of taxa.

The divided valva in male genitalia was suggested as a synapomorphy of Macariini + 974Cassymini + Eutoeini by Holloway (1994). In addition, he proposed the inclusion of Abraxini in 975Cassymini. Our findings support Holloway's suggestions; Cassymini is recovered as polyphyletic 976and Abraxini and Eutoeini were found to be sister taxa. Synonymization of Eutoeini and 977Cassymini with Abraxini should be considered in future studies, but the support indicesvalues of 978the basal branches are too low in our hypothesis to draw final conclusions. Similar findings were 979provided by Jiang et al. (2017) who suggested more extensive sampling to study the evolutionary 980relationships of these tribes.

981

982Orthostixinae Meyrick, 1892

Orthostixinae were not included in our study. Sihvonen et al. (2011) showed this 984subfamily as deeply embedded within Ennominae, but unfortunately it was not represented by the

985type genus of the tribe. These results agree with Holloway (1996) who examined *Orthostixis*986Hübner, [1823] and suggested the inclusion in Ennominae despite the full development of
987hindwing vein M2, the presence of a forewing areole and the very broad base of the tympanal
988ansa. We sampled the species *Naxa textilis* (Preyer, 1884) and *Orthostixis cribraria* (Hübner,
9891796) but, only three and one marker were successfully sequenced from for these samples,
990respectively. We included these species in the preliminary analyses but results were so unstable
991that we excluded them from the final analysis. Further research including fresh material and more
992genetic markers are needed to investigate the position of Orthostixinae conclusively.

994Conclusions

995This study elucidated some of the evolutionary relationships of the major groups within **996**Geometridae. The monophyly of the subfamilies and the most widely accepted tribes was tested. 997We found high support for the subfamilies Larentiinae, Geometrinae and Ennominae in their 998traditional scopes. Sterrhinae also becomes monophyletic when *Ergavia*, *Ametris* and *Macrotes*, 999currently placed in Oenochrominae, are formally transferred to Sterrhinae. The concepts of **1000**Oenochrominae and Desmobathrinae required major revision and, after appropriate **1001**rearrangements, these groups <u>will</u> also form monophyletic subfamily-level entities. Archieaerinae 1002 are monophyletic with the transfer of *Dirce* and *Acalyphes* to Ennominae. We separated **1003**Epidesmiinae as a new subfamily. As a result, this study proposes a higher level classification of **1004**Geometridae comprising 8 monophyletic subfamilies. Moreover, we found that many tribes in the **1005**different subfamilies were para- or polyphyletic. We attempted to address the <u>needed</u> taxonomic **1006**changes, in order to favor taxonomic stability of the subfamilies and many tribes, even if in an 1007 interim way, to allow applied researchers to use an updated higher taxonomic structure that better **1008**reflects our current understanding of geometrid phylogeny. Further papers will be added to this **1009**work and will provide a large number of <u>furtheradditional</u> taxonomic changes in the Geometridae **1010**(see Introduction). Despite our efforts to include a very large number of new taxa to be analyzed 1011in our study, we acknowledge that many clades are still strongly under-represented. This is **1012**particularly true for taxa from tropical Africa and Asia, and more detailed phylogenetic studies 1013 are required including e.g. the tribes Eumeleini, Plutodini, Eutoeini, Cassymini and Abraxini. A 1014better taxon sampling in these regions will allow to draw better conclusions about phylogeny and **1015**subsequent classification to reflect it. For thisese taxona and many tribes – old and new – we

1016encourage morphological studies that attempt to find more apomorphies and that include a 1017broader range of taxa.

1018

1019Acknowledgements

1020NW acknowledges funding from the Academy of Finland (Grant No. 265511) and the Swedish 1021Research Council (Grant No. 2015-04441). LM-R acknowledges funding from Colciencias, 756-10222016 and Universidad de Sucre, Colombia. HG was funded from the European Union's Horizon 10232020 research and innovation program under the Marie Sklodowska-Curie grant agreement no. 1024642241 (BIG4). SH, EÕ, AT and TT were supported by institutional research funding IUT 1025(IUT20-33) of the Estonian Ministry of Education and Research. GB acknowledges funding for 1026fieldwork in Peru (DFG grant Br 2280/6-1). Harri Sihvonen (Finland) is thanked for preparing

1027extensive African materials for the study.

1028

1044

1045

1029References

- 1030 Abraham D, Ryrholm N, Wittzell H, Jeremy DH, Scoble MJ, Löfstedt C. 2001. Molecular 1031 phylogeny of the subfamilies in Geometridae (Geometroidea: Lepidoptera). *Molecular* 1032 *Phylogenetics and Evolution* 20: 65–77. 1033Ban X, Jiang N, Cheng R, Xue D, Han H. 2018. Tribal classification and phylogeny of Geometrinae (Lepidoptera: Geometridae) inferred from seven gene regions. Zoological 1034 1035 *Journal of the Linnean Society*, 184: 653–672 DOI: 10.1093/zoolinnean/zly013. **1036**Beccaloni G Scoble M, Kitching I, Simonsen T, Robinson G, Pitkin B, Hine A, Lyal C. 1037 2003. "Subfamily Oenochrominae" The Global Lepidoptera Names Index. Natural 1038 History Museum, London. Available at http://www.nhm.ac.uk/our-science/data/lepindex/ 1039 (accessed 3 August 2018). **1040**Beljaev EA. 2006. A morphological approach to the Ennominae phylogeny (Lepidoptera, 1041 Geometridae). Spixiana 29: 215-216. **1042**Beljaev EA. 2007. Tentative tribal system of Ennominae based on current family group names. Personal communication (not peer-reviewed), available at 1043
- 1046Beljaev EA. 2008. A new concept of the generic composition of the geometrid moth tribe
 1047 Ennomini (Lepidoptera, Geometridae) Based on Functional Morphology of the Male
 1048 Genitalia. *Entomological Review* 88: 50–60.

07.pdf (accessed 3 August 2018).

http://www.herbulot.de/pdf/Family group names in Geometridae_alternative_12_06_20

- **1049**Brehm G, Hebert PDN, Colwell RK Adams MO, Bodner F, Friedemann K, Möckel L, Fiedler K.
- 2016. Turning up the heat at a hotspot: DNA barcodes reveal 80% more species of
- geometrid moths along an Andean elevational gradient. *PlosOne* 11: e0150327 DOI:
- **1052** 10.1371/journal.pone.0150327
- **1053**Cook MA, Scoble MJ. 1992. Tympanal organs of geometrid moths: a review of their
- morphology, function, and systematic importance. *Systematic Entomology* 17: 219–232.
- **1055**Forbes WTM. 1948. Lepidoptera of New York and neighboring states. II. Memoirs of the Cornell
- 1056 University Agricultural Experiment Station 274: 1–263.
- 1057Forum Herbulot. 2007. World list of family-group names in Geometridae. Available at
- http://www.herbulot.de/famgroup.htm (accessed 3 August 2018).
- 1059Guindon S, Dufayard JF, Lefort V, Anisimova M, Hordijk W, Gascuel O. 2010. New
- algorithms and methods to estimate maximum-likelihood phylogenies: assessing the
- performance of PhyML 3.0. *Systematic Biology* 59: 307–321.
- **1062**Hausmann A. 2001. *Geometrid moths of Europe. Vol. 1: introduction to the series. Archiearinae,*
- 1063 *Oenochrominae, Geometrinae.* Apollo books, Stenstrup.
- **1064**Hausmann A. 2004 *Geometrid moths of Europe. Vol. 2: Sterrhinae*. Apollo books, Stenstrup.
- 1065 Hausmann A, Hebert PDN, Mitchell A, Rougerie R, Sommerer M, Edwards T, Young K. 2009.
- Revision of the Australian Oenochroma vinaria Guenée, 1858 species-complex
- 1067 (Lepidoptera: Geometridae, Oenochrominae): DNA barcoding reveals cryptic diversity
- and assesses status of type specimen without dissection. *Zootaxa* 2239: 1–21.
- **1069**Hausmann A, Viidalepp J. 2012. *Geometrid moths of Europe. Vol. 3: Larentiinae I.* Apollo
- books, Stenstrup.
- 1071Heikkilä M, Mutanen M, Wahlberg N, Sihvonen P, Kaila L. 2015. Elusive ditrysian phylogeny:
- an account of combining systematized morphology with molecular data (Lepidoptera).
- 1073 *BMC Evolutionary Biology* 15: 1–27 DOI: 10.1186/s12862-015-0520-0.
- 1074Hoang DT, Chernomor O, Haeseler A, Minh BQ, Vinh LS. 2018. UFBoot2: Improving the
- 1075 ultrafast bootstrap approximation. *Molecular Biology and Evolution* 35: 518-522 DOI:
- 1076 10.1093/molbev/msx281.
- **1077**Holloway J. 1994. The moths of Borneo, part 11: Family Geometridae, subfamily Ennominae.
- 1078 *Malayan Nature Journal* 47: 1–309.
- 1079Holloway J. 1996. The moths of Borneo, part 9: Geometridae (incl. Orthostixini),
- Oenochrominae, Desmobathrinae, Geometrinae, Ennominae. *Malayan Nature Journal* 49:
- **1081** 147–326.
- **1082**Holloway J. 1997. The moths of Borneo, part 10: family Geometridae, subfamilies Sterrhinae and
- Larentiinae. *Malayan Nature Journal* 51: 1–242.

- **1084**Inoue H. 1961. Lepidoptera: Geometridae. *Insecta Japonica* 4: 1–106.
- 1085International Commission on Zoological Nomenclature 2012: International Code of Zoological
- Nomenclature, fourth edition. Available online http://iczn.org/iczn/index.jsp
- 1087 Jiang N, Li XX, Hausmann A, Cheng R, Xue DY, Han HX. 2017. A molecular phylogeny of the
- Palaearctic and Oriental members of the tribe Boarmiini (Lepidoptera: Geometridae:
- 1089 Ennominae). *Invertebrate Systematics* 31: 427–441.
- 1090Kalyaanamoorthy S, Minh BQ, Wong TKF, Haeseler A von, Jermiin LS. 2017. ModelFinder:
- Fast Model Selection for Accurate Phylogenetic Estimates *Nature Methods* 14: 587–589
- 1092 DOI: 10.1038/nmeth.4285.
- **1093**Krüger M. 1997. Revision of Afrotropical Ennominae of the *Drepanogynis* group I: the genus
- Hebdomophruda Warren, Part 1. Annals of the Transvaal Museum 36: 257–291.
- 1095
- **1096**Krüger M. 1998. Revision of Afrotropical Ennominae of the *Drepanogynis* group II: the genus
- Hebdomophruda Warren, Part 2. Annals of the Transvaal Museum 36: 333–349.
- 1098
- **1099**Krüger M. 1999. Revision of Afrotropical Ennominae of the *Drepanogynis* group III: the genera
- 1100 Argyrophora Guenée, Pseudomaenas Prout and Microligia Warren. Annals of the
- 1101 *Transvaal Museum* 36: 427–496.
- 1102
- 1103Krüger M. 2002. Revision of Afrotropical Ennominae of the *Drepanogynis* group IV: the genus
- 1104 Drepanogynis Guenée (Lepidoptera: Geometridae). Transvaal Museum Monograph 13:
- 1105 1–220 incl. 442 figs.
- 1106
- 1107Krüger M. 2014: A revision of the *Mauna* Walker, 1865 and *Illa* Warren, 1914 group of genera
- 1108 (Lepidoptera: Geometridae: Ennominae: Nacophorini). *Annals of the Ditsong National*
- **1109** *Museum of Natural History* **4**: 77–173.
- **1110**Lanfear R, Calcott B, Ho SYW, Guindon S. 2012. Partitionfinder: Combined selection of
- partitioning schemes and substitution models for phylogenetic analyses. *Molecular*
- 1112 *Biology and Evolution* 29: 1695–1701 DOI:10.1093/molbev/mss020 pmid:22319168.
- **1113**Meyrick E. 1889. Revision of Australian Lepidoptera. *Proceedings of the Linnean Society of*
- 1114 *New South Wales* 41: 117–1216.
- **1115**Miller MA, Pfeiffer W, Schwartz T. 2010. Creating the CIPRES science gateway for inference of
- large phylogenetic trees. In Proceedings of the Gateway Computing Environments
- Workshop (GCE), New Orleans, LA pp 1 8. Available at http://www.phylo.org.
- 1118 (accessed June, 2018).
- **1119**Minet J, Scoble MJ.1999. The Drepanoid/Geometroid assemblage. In: Kristensen NP, ed.
- 1120Handbook of Zoology, part 35, Lepidoptera, Moths and Butterflies, Vol. 1, Evolution,
- 1121*Systematics*, *and Biogeography*: De Gruyter, Berlin, 301–320.

- 1122Mironov V. 2003. Larentiinae II (Perizomini and Eupitheciini). In: Hausmann A, ed. *The*
- 1123 *Geometrid Moths of Europe 4.* Apollo Books, Stenstrup, 1–463.
- 1124Nguyen LT, Schmidt HA, Haeseler A von, Minh BQ. 2015. IQ- TREE: A fast and effective
- stochastic algorithm for estimating maximum likelihood phylogenies. *Molecular Biology*
- *and Evolution* 32: 268–274 DOI: 10.1093/molbev/msu300.
- 1127 Nieukerken EJ van, Kaila L, Kitching IJ, Kristensen NP, Lees DC, Minet J, Mitter C, Mutanen
- 1128 M, Regier JC, Simonsen TJ, Wahlberg N, Yen S, Zahiri R, Adamski D, Baixeras J,
- Bartsch D, Bengtsson BÅ, Brown JW, Bucheli SR, Davis DR, Prins J de, Prins W de,
- Epstein ME, Gentili-Poole P, Gielis C, Hättenschwiler P, Hausmann A, Holloway JD,
- Kallies A, Karsholt O, Kawahara AY, Koster J, Kozlov M, Lafontaine JD, Lamas G,
- Landry J, Lee S, Nuss M, Park K, Penz C, Rota J, Schintlmeister A, Schmidt BC, Sohn J,
- Solis MA, Tarmann GM, Warren AD, Weller S, Yakovlev RV, Zolotuhin VV, Zwick A.
- 2011. Order Lepidoptera Linnaeus, 1758. In: Zhang, Z.-Q. (Ed.), Animal biodiversity: An
- outline of higher-level classification and survey of taxonomic richness. *Zootaxa* 3148:
- **1136** 212–221.
- 1137Õunap E, Viidalepp J, Saarma U. 2008. Systematic position of Lythriini revised: transferred from
- Larentiinae to Sterrhinae (Lepidoptera, Geometridae). *Zoologica Scripta 37*: 405–413.
- **1139**Õunap E, Viidalepp J. 2009. Description of *Crypsiphona tasmanica* sp. nov. (Lepidoptera:
- Geometridae: Geometrinae), with notes on limitations in using DNA barcodes for
- delimiting species. *Australian Journal of Entomology* 48: 113–124.
- 1142Õunap E, Javoiš J, Viidalepp J, Tammaru T. 2011. Phylogenetic relationships of selected
- European Ennominae (Lepidoptera: Geometridae). *European Journal of Entomology* 108:
- **1144** 267–273.
- 1145Õunap E, Viidalepp J, Truuverk A. 2016. Phylogeny of the subfamily Larentiinae (Lepidoptera:
- Geometridae): integrating molecular data and traditional classifications. *Systematic*
- 1147 Entomology 21: 824–843 DOI:10.1111/syen.12195.
- **1148**Peña C, Malm T. 2012. VoSeq: a voucher and DNA sequence web application. PLoS ONE 7:
- 1149 e39071.
- 1150Pitkin L. 1996. Neotropical emerald moths: a review of the genera (Lepidoptera: Geometridae,
- Geometrinae). *Zoological Journal of the Linnean Society* 118: 309–440.
- **1152**Pitkin L. 2002. Neotropical Ennomine moths: a review of the genera (Lepidoptera: Geometridae).
- 200logical Journal of the Linnean Society 135: 121–401.
- 1154Pitkin B, Jenkins P. 2004. Butterflies and moths of the world, generic names and their type-
- species. Available at http://www.nhm.ac.uk/our-science/data/butmoth/ (accessed 29
- 1156 August, 2018).
- 1157Pitkin L, Han H, James S. 2007. Moths of the tribe Pseudoterpnini (Geometridae: Geometrinae):
- a review of the genera. *Zoological Journal of the Linnean Society* 150:343–412.

- 1159Rajaei H, Greve C, Letsch H, Stüning D, Wahlberg N, Minet J, Misof B. 2015. Advances in
- Geometroidea phylogeny, with characterization of a new family based on *Pseudobiston*
- pinratanai (Lepidoptera, Glossata). Zoologica Scripta 44: 418–436.
- 1162 DOI:10.1111/zsc.12108.
- 1163Rambaut A. 2012. Figtree 1.4.0. Available at http://tree.bio.ed.ac.uk/software/figtree/ (accessed 1164 3 August 2018).
- **1165**Ratnasingham S, Hebert PD. 2007. BOLD: the barcode of life data systems. *Molecular Ecology* **1166** *Notes* 7: 355–364 DOI:10.1111/j.1471-8286.2007.01678.x.
- 1167Regier JC, Zwick A, Cummings MP, Kawahara AY, Cho S, Weller S, Roe A, Baixeras J, Brown
- JW, Parr C, Davis DR, Epstein M, Hallwachs W, Hausmann A, Janzen DH, Kitching IJ,
- Solis MA, Yen SH, Bazinet AL, Mitter C. 2009. Toward reconstructing the evolution of
- advanced moths and butterflies (Lepidoptera: Ditrysia): an initial molecular study. *BMC*
- 1171 Evolutionary Biology 9: 280 DOI:10.1186/1471-2148-9-280.
- 1172Regier JC, Mitter C, Zwick A, Bazinet AL, Cummings MP, Kawahara AY, Sohn JC, Zwickl
- DJ, Cho S, Davis DR, Baixeras J, Brown J., Parr C, Weller S, Lees DC, Mitter
- 1174 KT. 2013. A large-scale, higher-level, molecular phylogenetic study of the insect order
- 1175 Lepidoptera (moths and butterflies). *PLoS ONE* 8: e58568.
- **1176**Rindge FH. 1979. A revision of the North American moths of the
- genus Lomographa (Lepidoptera, Geometridae). *American Museum Novitates* 2673: 1–
- 1178 18.
- 1179Scoble MJ, Edwards ED.1990. Parepisparis Bethune-Baker and the composition of the
- Oenochrominae (Lepidoptera: Geometridae). *Entomologica Scandinavica* 20: 371–399.
- **1181**Scoble MJ. 1992. *Lepidoptera: Form Function and Diversity*. Oxford: Oxford University Press.
- **1182**Scoble, M.J. 1999. Geometrid Moths of theWorld: A catalogue (Lepidoptera, Geometridae). vols. **1183**1 & 2. Collingwood, CSIRO.
- 1184Sihvonen P, Kaila L. 2004. Phylogeny and tribal classification of Sterrhinae with emphasis on
- delimiting Scopulini (Lepidoptera: Geometridae). *Systematic Entomology* 29: 324–358.
- 1186Sihvonen P, Mutanen M, Kaila L, Brehm G, Hausmann A, Staude HS. 2011. Comprehensive
- molecular sampling yields a robust phylogeny for geometrid moths (Lepidoptera:
- 1188 Geometridae). *PLoS ONE* 6: e20356 DOI: doi:10.1371/journal.pone.0020356.
- **1189**Sihvonen P, Staude H. 2011. Geometrid moth *Afrophyla vethi* (Snellen, 1886) transferred from
- Oenochrominae to Sterrhinae (Lepidoptera: Geometridae). *Metamorphosis* 22: 102–113.
- 1191Sihvonen P, Staude HS, Mutanen M. 2015. Systematic position of the enigmatic African cycad
- moths: an integrative approach to a nearly century old problem (Lepidoptera:
- Geometridae, Diptychini). *Systematic Entomology* 40: 606–627.

- 1194Skou P, Sihvonen P. 2015. *The Geometrid Moths Of Europe. Vol. 5: Ennominae I.* Apollo books, 1195 Stenstrup.
- 1196Stamatakis A, Hoover P, Rougemont J. 2008. A rapid bootstrap algorithm for the RAxML Web servers, *Systematic Biology* 57: 758–771.
- 1198Stamatakis, A. (2014) RAxML Version 8: A tool for Phylogenetic Analysis and Post-Analysis of Large Phylogenies. *Bioinformatics* 30 (9):13121313 DOI: 10.1093/bioinformatics/btu033.
- **1200**Staude HS. 2001. A revision of the genus *Callioratis* Felder (Lepidoptera: Geometridae: **1201**Diptychinae). *Metamorphosis* 12: 125–156.
- 1202Staude H, Sihvonen P. 2014. Revision of the African geometrid genus *Zerenopsis* C. &. R.
- Felder-moths with peculiar life histories and mating behaviors (Geometridae: Ennominae:
- 1204 Diptychini). *Metamorphosis* 25: 11–55.
- 1205Strutzenberger P, Brehm G, Gottsberger B, Bodner F, Seifert, CL, Fiedler, K. 2017.
- Diversification rates, host plant shifts and an updated molecular phylogeny of Andean
- 1207 *Eois* moths (Lepidoptera: Geometridae). PlosOne 12: e018843
- 1209Trifinopoulos J, Minh, B. 2018. IQ-TREE Manual: Frequently Asked Questions. Available at http://www.iqtree.org/doc/Frequently-Asked-Questions (accessed 13 August 2018).
- 1211Vári L, Kroon DM, Krüger M. 2002. Classification and Checklist of the Species of Lepidoptera
- 1212 Recorded in Southern Africa. Australia: Simple Solutions, Chatswood.
- 1213
- 1214Viidalepp J. 2006. Cladistic analysis of the subfamily Larentiinae. In: Hausmann A, McQuillan
- 1215 P, eds. Proceedings of the Forum Herbulot 2006. Integration of molecular, ecological and
- morphological data: Recent progress towards the higher classification of the Geometridae
- **1217** (Hobart, 19–20 January 2006). *Spixiana* 29: 202–203.
- **1218**Viidalepp J. 2011. A morphological review of tribes in Larentiinae (Lepidoptera: Geometridae).
- 1219 *Zootaxa* 3136: 1–44.
- 1220Yamamoto S, Sota T. 2007. Phylogeny of the Geometridae and the evolution of winter moths
- inferred from a simultaneous analysis of mitochondrial and nuclear genes. *Molecular*
- *Phylogenetics and Evolution* 44: 711–723.
- **1223**Young CJ. 2003. The Place of the Australian Nacophorini in the Geometridae. *Spixiana* 26: 199-1224200.
- **1225**Young CJ. 2006. Molecular relationships of the Australian Ennominae (Lepidoptera:
- Geometridae) and implications for the phylogeny of the Geometridae from molecular and
- morphological data. *Zootaxa* 1264: 1–147.
- 1228 Young CJ. 2008. Characterization of the Australian Nacophorini using adult morphology, and
- phylogeny of the Geometridae based on morphological characters. *Zootaxa* 1736: 1–141.

1230Wahlb 1231 1232	erg N, Wheat CW. 2008. Genomic outposts serve the phylogenomic pioneers: designing novel nuclear markers for genomic DNA extractions of Lepidoptera. <i>Systematic Biology</i> 57: 231–242.
1233Wahlb 1234 1235	erg N, Snäll N, Viidalepp J, Ruohomäki K, Tammaru T. 2010. The evolution of female flightlessness among Ennominae of the Holarctic forest zone (Lepidoptera, Geometridae). <i>Molecular Phylogenetics and Evolution</i> 55: 929–938.
1236Wahlb 1237 1238	erg N., Peña, C., Ahola, M., Wheat C.W., Rota J. 2016. PCR primers for 30 novel gene regions in the nuclear genomes of Lepidoptera. <i>ZooKeys</i> 596: 129–141. https://doi.org/10.3897/zookeys.596.8399
1239	
1240	