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ABSTRACT
Species delimitation is challenging in sibling species/cryptic lineages because of the
absence of clear diagnostic traits. However, integration of different approaches such
as phylogeography and ecological niche comparison offers one potential approach
to tease apart recently diverged lineages. In this study, we estimate the ecological
niche divergence among lineages in Chromis viridis in a broad-scale phylogeographic
framework to test whether the combination of these two approaches can effectively
distinguish recently diverged lineages. Results from Cytb and Rag2 analyses
identified two cryptic lineages (C. viridis A and C. viridis B) that diverged ∼3Myr ago.
Estimates of ecological niche divergence with 11 environmental parameters across
the broad geographic range of these lineages showed overlapping ecological
niches and niche conservatism. However, regardless of the incongruence between
genetic and ecological niche divergence, the substantial genetic divergence between
the two clades of C. viridis in both mtDNA and nuclear loci strong suggest that
they are cryptic taxa.

Subjects Biodiversity, Biogeography, Conservation Biology, Evolutionary Studies, Marine Biology
Keywords Speciation, Hybridization, Incomplete lineage sorting, Nuclear gene, mtDNA

INTRODUCTION
Comparative phylogeography examines patterns of congruence in phylogenetic breaks
across species distribution. It is built on the assumption that the processes driving lineage
divergence, speciation, and the evolution of biodiversity mainly involves geographical,
historical, and environmental factors that favor isolation and limit gene flow between
populations (Avise, 2000; Rocha, Craig & Bowen, 2007).

In the marine realm, phylogeographic studies frequently identify cryptic species,
morphologically indistinguishable groups that have differences in neutral genetic
markers that are equal or greater than those observed between species with diagnostic

How to cite this article Liu SYV, Tuanmu M-N, Rachmawati R, Mahardika GN, Barber PH. 2019. Integrating phylogeographic and
ecological niche approaches to delimitating cryptic lineages in the blue–green damselfish (Chromis viridis). PeerJ 7:e7384
DOI 10.7717/peerj.7384

Submitted 29 May 2019
Accepted 30 June 2019
Published 30 July 2019

Corresponding author
Shang Yin Vanson Liu,
syvliu@mail.nsysu.edu.tw

Academic editor
Robert Toonen

Additional Information and
Declarations can be found on
page 14

DOI 10.7717/peerj.7384

Copyright
2019 Liu et al.

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.7384
mailto:syvliu@�mail.�nsysu.�edu.�tw
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7384
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/


morphological traits (Knowlton, 1993). In some cases (Drew & Barber, 2009;Drew, Allen &
Erdmann, 2010; Hubert et al., 2012; Liu et al., 2012) such cryptic lineages are subsequently
described as new species (Allen & Drew, 2012; Liu et al., 2012; Allen, Erdmann &
Kurniasih, 2015), indicating that such cryptic lineages represent overlooked biodiversity.

Systematists use different characteristics to differentiate species, and the variation
in these characteristics can arise at different times and rates during the process of lineage
diversification (De Queiroz, 2007). However, species delimitation is particularly difficult
in adaptive or recent radiations, when nascent species boundaries and their defining
characteristics can be unclear (Puebla et al., 2007; Wagner et al., 2013; Victor, 2015).
In such cases, integration of different approaches can increase the ability to detect recently
separated lineages (Leaché et al., 2009) and can provide stronger evidence for lineage
separation when the results are concordant (Liu et al., 2012; Allen & Erdmann, 2012;
Larkin et al., 2016).

While integrating morphological diversification and genetic divergence is relatively
common in addressing recent lineage diversification (Allen & Drew, 2012; Allen & Erdmann,
2012), ecological diversification (i.e., niche divergence) is seldom used to differentiate
cryptic lineages/species in the marine realm. Niche diversification is a foundation
of speciation (Pyron & Burbrink, 2009). Therefore, if niche divergence leads to lineage
differentiation in the process of populations adapting to new environments (Wiens,
2004; Wiens & Graham, 2005), then a niche partitioning should be expected between
lineages, particularly among recently diverged overlapping cryptic lineages identified
in many phylogeographic studies.

To date, only a handful of studies have found niche divergence between cryptic
marine taxa. For example, studies on deep-sea octocorals showed that niche
partitioning between lineages is associated with the depth (Quattrini et al., 2013;
Quattrini, Gómez & Cordes, 2017) and the marine cyanobacteria (genus Prochlorococcus)
exhibits niche partitioning in associated with geography and environmental conditions.
The absence of niche differentiation in the study of cryptic marine taxa is partially
due to the lack of a centralized high-resolution spatial data representing both benthic
and pelagic marine environments (Sbrocco & Barber, 2013), resources that are now
available.

Chromis viridis is widely distributed Indo-Pacific coral reef fish. Both juveniles and
adults associate with Acropora corals where they school and feed on zooplankton in the
water column above coral heads (Frédérich et al., 2009). Using phylogenetic analyses
based on mtDNA variation, Froukh & Kochzius (2008) found three cryptic lineages
in C. viridis across four Indo-Pacific localities, and Messmer et al. (2012) documented
the presence of additional cryptic lineages in the Great Barrier Reef. However, it is
unclear how geographical and ecological processes contribute to this nascent
diversification.

To better understand the processes driving lineage diversification in C. viridis,
we conducted a broad scale phylogeographic study of C. viridis across its distribution
range. We then estimated ecological niche divergence between lineages in C. viridis in this
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phylogeographic framework to test whether the combination of these two approaches can
effectively distinguish recently diverged lineages.

MATERIALS AND METHODS
Sample collection and DNA extraction
We collected 252 C. viridis between 2007 and 2017 from 15 locations across its
Indo-Pacific distribution (Table 1; Fig. 1). We collected specimens by hand net and clove
oil, either by scuba diving or snorkeling and preserved tissue samples (fin clips, a piece of
muscle, or both) in 95% alcohol and stored at 4 �C. Large fish were released following
fin clipping, but individuals too small for fin clipping were euthanized with clove oil and
preserved whole in 95% ethanol. The sampling depth of all specimens used in present study
was less than 10 m. This experiment doesn’t involve animal experiment and the field
sampling process complied with the regulation drafted by the Animal Care and Use
Committee of National Sun Yat-sen University. Additionally, the permission to perform
research activities in Indonesia was issued by the Indonesian Government and the Ministry
of Research and Technology under research permit No. 272/SIP/FRP/SM/VII/2013.

We extracted genomic DNA from tissue fragments using Geneaid Tissue Genomic
DNA mini Kit (Geneaid Biotech, New Taipei City, Taiwan) following manufacturers’
protocol and eluted extracted DNA in TE buffer and stored at -20 �C until amplification
by polymerase chain reaction (PCR).

Table 1 Sampling locations and diversity indices based on Cytb sequences (911 bp) in 15 populations of Chromis viridis from the Indo-Pacific.

Cytb Rag2

Abbreviations Location N nh h ± SD p ± SD N nh h ± SD p ± SD

RED Eliat, Israel 10 8 0.956 ± 0.059 0.004 ± 0.002 6 6 1.000 ± 0.096 0.003 ± 0.002

MD Toliara, Madagascar 9 6 0.889 ± 0.091 0.007 ± 0.004 9 9 1.000 ± 0.052 0.005 ± 0.003

AMED Amed, Bali, Indonesia 19 14 0.953 ± 0.036 0.007 ± 0.004 18 17 0.994 ± 0.021 0.004 ± 0.002

LEM Nusa Lembongan, Bali,
Indonesia

2 2 1.000 ± 0.500 0.003 ± 0.004 2 2 1.000 ± 0.500 0.006 ± 0.006

KOMO Komodo, Indonesia 18 11 0.882 ± 0.064 0.014 ± 0.007 18 18 1.000 ± 0.019 0.005 ± 0.003

XS Xisha, China 6 6 1.000 ± 0.096 0.006 ± 0.004 8 8 1.000 ± 0.063 0.004 ± 0.003

DS Dongsha, Taiwan 15 11 0.933 ± 0.054 0.005 ± 0.003 15 15 1.000 ± 0.024 0.005 ± 0.003

NU NPP III Inlet, Taiwan 31 24 0.972 ± 0.020 0.005 ± 0.003 23 23 1.000 ± 0.013 0.004 ± 0.002

SK SesokoIsland, Japan 11 9 0.946 ± 0.066 0.005 ± 0.003 11 11 1.000 ± 0.034 0.005 ± 0.003

SP Saipan, USA 2 1 0.000 ± 0.000 0.000 ± 0.000 2 2 1.000 ± 0.500 0.000 ± 0.000

MI Marshall Island,
R.O. Marshall Islands

20 15 0.942 ± 0.043 0.005 ± 0.003 13 13 1.000 ± 0.030 0.004 ± 0.003

NC New Caledonia, French 17 16 0.993 ± 0.023 0.006 ± 0.003 15 15 1.000 ± 0.024 0.004 ± 0.002

LZ Lizard Island, Australia 35 26 0.968 ± 0.020 0.039 ± 0.019 35 35 0.998 ± 0.007 0.009 ± 0.005

FJ Fiji 5 5 1.000 ± 0.127 0.054 ± 0.033 4 4 1.000 ± 0.177 0.015 ± 0.011

FP Moorea Island, French
Polynesia

48 21 0.785 ± 0.061 0.003 ± 0.002 39 35 0.993 ± 0.0080 0.004 ± 0.003

Note:
Abbreviations are as follows: N, sample size; nh, number of haplotype; h, haplotype diversity, and p, nucleotide diversity.
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Amplification of genetic markers
We amplified a portion of the mitochondrial cytochrome b (Cytb) gene using universal
primers GluDG-L and H16460 (Palumbi, 1996). PCRs reactions were 30 mL in volume,
containing 10–40 ng template DNA, three mL 10X buffer, 0.2 mM dNTPs, 1.5 mMMgCl2,
10 mM each primer, and 0.2 units of Taq polymerase (MDbio, Taipei). The thermocycling
profile consisted of initial denaturation at 94 �C for 2 min, followed by 41 cycles of
denaturation at 94 �C for 30 s, annealing at 57 �C for 30 s, and extension at 72 �C for 40 s,
concluding with a final extension at 72 �C for 2 min.

Because mitochondrial and nuclear genes can have very different histories, we also
amplified the nuclear recombination-activating (Rag2) gene for a subset of samples that
represented distinct clades recovered in the mtDNA, using primers RAG2F and
RAG2R (Westneat & Alfaro, 2005). PCR reactions were as above, except that we used
a five mM MgCl concentration and the following thermocycling parameters: 39 cycles of
denaturation at 94 �C for 30 s, annealing at 56 �C for 30 s, and extension at 72 �C for 40 s,
and a final extension at 72 �C for 2 min.

The nucleotide sequences of the PCR products of both loci were determined
using ABI 3730XL automated sequencer (Carlsbad, CA, USA) by Genomics
(https://www.genomics.com.tw). Nucleotide sequences were assembled and edited using
the SEQUENCHER version 4.2 software (Gene Code, Ann Arbor, MI, USA). Sequences
were uploaded to GenBank under the accession number MH743228–MH743691.

Phylogenetic analyses
Prior to any analyses, we aligned DNA sequences from each gene region in Clustal W
(Thompson, Higgins & Gibson, 1994) and exported these sequences to MEGA 6 (Tamura
et al., 2013) to visually inspect all alignments for accuracy. To quantify genetic diversity
measures, we calculated standard genetic diversity indexes including haplotype diversity
(h) and nucleotide diversity (p) in Arlequin 3.5 (Excoffier & Lischer, 2010). We then
inferred phylogenetic trees from each individual locus using maximum likelihood (ML)

Figure 1 Map of sampling locations. Abbreviations of the locations are given in Table 1, and the
number in the parenthesis is the sample size. Full-size DOI: 10.7717/peerj.7384/fig-1
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and Bayesian inference performed on the CIPRES Science Gateway (Miller, Pfeiffer &
Schwartz, 2010), and in BEAST 2.4.5 (Bouckaert et al., 2014). We conducted the ML
analyses in RAxML version 8.1.24 (Stamatakis, 2014) using the GTR+G substitution
model which selected by MEGA 6 (Tamura et al., 2013) as best-fit substitution model.
For Bayesian inference, we used MrBayes version 3.2.2 (Ronquist et al., 2012),
implementing two parallel runs of four simultaneous Markov chains for 10 million
generations, sampling every 1,000 generations and using the default parameters. Run
parameters employed unlinked substitution models, rated heterogeneity models, and based
frequencies across partitions. In the Bayesian analyses the first one million generations
(10%) were discarded as burn-in, based on log-likelihood tree scores. Meanwhile, the
convergence diagnostic was applied and the stop probability was set to 0.01. Nodal support
was evaluated individually for all trees using non-parametric bootstrapping with
1,000 ML replicates as employed in RAxML (Stamatakis, 2014), and by calculation of
posterior probabilities as employed in MrBayes. Lastly, we generated a median-joining
haplotype networks based on Cytb and Rag2 sequence datasets by using Popart 1.7
(http://popart.otago.ac.nz).

To date the ages of C. viridis clades, we arbitrarily subsampled 2 Cytb sequences from
each clade; we also included two outgroups, including C. atrilobata (AY208524.1) and
C. multilineata (AY208533.1) to calibrate date ranges as these two taxa diverged
3.1 Mya, (Quenouille, Bermingham & Planes, 2004). We created the XML BEAST input
file using the software BEAUti v.1.8.2. (as implemented in BEAST), with the setting
of 50 million generations under the uncorrelated relaxed clock model, and sampling
trees once every 1,000 generations. To test for inter-run variation, we conducted
two independent runs in BEAST 2.4.5 (Bouckaert et al., 2014), and then checked these
runs for convergence with the software Tracer v1.5 (available at http://beast.bio.ed.ac.
uk/Tracer/). After discarding the 20% burn-in, we pooled the remaining tree samples
from the two runs into a combined file to calculate the maximum clade credibility tree.
From this tree, we calculated the posterior mean divergence ages and 95% credibility
intervals for all nodes using Tree Annotator v1.8.2 (implemented in the BEAST
package). To compare the similarity of two gene tree topologies, Phylo.io software
(Robinson, Dylus & Dessimoz, 2016) was used.

Ecological niche characterization and comparison
To characterize the ecological niches of C. viridis (C. viridis Clade A) and potential cryptic
species (C. viridis Clade B), we obtained geophysical, biotic, and environmental data
layers for global sea surface from Bio-ORACLE (downloaded on February 20th, 2018;
Tyberghein et al., 2012; Assis et al., 2018). We then extracted the values of those factors for
the locations where C. viridis samples were collected. We excluded factors such as ice
thickness and sea ice concentration from our analyses because all sample sites were tropical
and ice free.

To explore niche differentiation between C. viridis Clade A and C. viridis Clade B,
we first compared the values of individual environmental factors between C. viridis
Clade A and Clade B sampling sites using Mann–Whitney tests. Next, we plotted niche
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differences in a two-dimensional non-metric multidimensional scaling (NMDS) space
based on the Euclidean dissimilarity of those factors. Due to the different units of
the environmental factors, we standardized factor values before running the NMDS
analysis. Lastly, we tested equivalency of ecological niches between the species based on
environmental factors of C. viridis Clade A and Clades B sampling locations in a
principle components analysis (PCA) framework. Due to potential correlations among
environmental factors, we ran the PCA on all environmental factors and then used
the resulting principal components to define niches of the species. Because C. viridis
mainly occur in coral reefs, we restricted our PCA to regions (grid cells) where the
maximum depth was equal or less than 50 m based on the bathymetry data obtained
from MARSPEC (http://www.marspec.org/; Sbrocco & Barber, 2013). To make the
spatial resolution of the bathymetry data layer, which is originally at 30-by-30-arc second
resolution, consistent with the Bio-ORACLE data, we upscaled it to 5-by-5-arc min
resolution with each pixel value in the upscaled data layer being the maximum value over
10 � 10 original pixels within that new pixel.

To measure niche similarity between C. viridis Clade A Clade B, we calculated the D and
I statistics developed by Warren, Glor & Turelli (2008). These two indices range from
zero and one with higher values indicating more similar niches. To test for niche
equivalency between these two cryptic lineages of C. viridis, we compared the observed
similarity values to null distributions of similarity obtained through a randomization
procedure under a hypothesis of an identical niche (Warren, Glor & Turelli, 2008), using
the “dismo” package in R (version 3.4.2).

RESULTS
We sequenced 911 bp of mitochondrial Cytb, and 743 bp of nuclear gene (Rag2, 743 bp)
from 248 individual C. viridis, representing 15 locations across the Indo-Pacific (Fig. 1).
In total, there were 135 unique haplotypes of Cytb; nucleotide diversity (p) ranged from
0.0033 to 0.0544, and haplotype diversity (h) ranged from 0.8824 to 1 among locations.
For Rag2, 30 samples would not amplify, resulting in a total of 218 Rag2 sequences,
representing fourteen unique haplotypes after omitting those sites with ambiguity codes
(e.g., Y and K), additionally, there were 40 parsimony informative sites after alignment
and 26 (heterozygotes) out of 40 were contained ambiguous signals. The nucleotide
diversity (p) and haplotype diversity (h) of Rag2 ranged from 0 to 0.0154 and 0.9933 to 1,
respectively, (Table 1). These two genetic diversity indexes could be over-estimated
since those ambiguous sites were been considered as variable sites during computation
in Arlequin 3.5.

The ML tree based on Cytb gene revealed three deeply divergent lineages within
C. viridis; Clade A, Clade A-1, and Clade B (Fig. 2). In contrast, the corresponding Rag2
likelihood tree only differentiated Clades A and B, with no additional divergence within
Clade 1. However, Clades A and B were not concordant across Cytb and Rag2; four
mtDNA Clade B samples, one from Komodo and three from Lizard Island, clustered with
Clade A based on Rag2. Additionally, one sample from Komodo contained a Clade B Rag2
sequence, but a Clade A Cytb sequence (Table S1).
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Whether based on Cytb or Rag2, all Clade B haplotypes came from only three locations;
Lizard Island on the Great Barrier Reef, Komodo Island in Indonesia, and the island of Fiji.
In contrast, Clade A occurred broadly throughout the Indo-Pacific, including all three
Clade B localities. Based solely on mtDNA, Clade A was further divided into two clades;
Clade A was broadly distributed, and Clade A-1 was restricted to the Red Sea, although
the Red Sea clade was not recovered in the Rag2 phylogeny. The general tree topology

Figure 2 Bayesian phylogenetic tree (A, B) and corresponding haplotype network (C, D) based on two
genetic markers including Cytb and Rag2.Nodes are presented only for those with bootstrap scores >85%
majority rule for maximum likelihood and >90% majority probabilities for Bayesian probability values
(BI/ML). For the Haplotype network, different colors indicate different clades (e.g., white = Chromis
viridis Clade A, gray = Chromis viridis Clade B, and black = Red Sea), mutation step larger than 20
were denoted by hatch marks with number of mutation steps.

Full-size DOI: 10.7717/peerj.7384/fig-2
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of these two genes was highly similar (Fig. S1), except the Clade A-1 and those samples
clustered with it, which can be revealed only by Cytb.

The patterns from the median joining network tree were identical to the phylogenetic
trees based on either Cytb and Rag2. However, a few individuals assigned to Clade B based
on Cytb clustered with Clade A based on their Rag2 sequences (Fig. 2).

Results from BEAST indicated thatC. viridisClade A and Clade B diverged approximately
3 Mya (95% HPD: 0.631–6.291 Mya), with the divergence between Clade A and A-1
dating to 1.165 Mya (95% HPD: 0.247–2.49 Mya), and crown age of A-1 (Red Sea) was
dated 0.138 Mya (95% HPD: 0.013–0.332 Mya) (Fig. 3).

Niche divergence tests
Results spanning 11 environmental factors (Table 2) showed no significant difference in
ecological niche parameters of Clade A or Clade B of C. viridis. Moreover, there was also no
significant environmental difference between the locations where two clades co-occur
and those where only Clade B occurs (Table 2), suggesting that the environmental factors
cannot explain why Clade B co-occurs with Clade A at some locations, but not at others.

The NMDS analysis also showed a lack of niche differentiation. The first two NMDS
axes explained 86.7% of the variation in the 11 environmental factors across the 15 sampling
sites. The three sampling sites where C. viridis B occurs fall at the center of the convex
hull of all sampling sites in the two-dimensional NMDS space (Fig. 4), indicating complete
niche overlap between Clades A and B. The first four principal components of the
environmental factors, which were standardized before the analysis, had eigenvalues higher

Figure 3 Time-tree of cryptic lineages among Chromis viridis obtained from BEAST.With a 3.1 Mya
time constraint on the node between Chromis atrilobata and Chromis multilineata (Quenouille,
Bermingham & Planes, 2004). Horizontal gray bars at nodes indicate 95% posterior probability den-
sities (HPD) intervals of age. Full-size DOI: 10.7717/peerj.7384/fig-3
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than 1. Together they explain about 83.1% of the total variation across all the grid cells with
the maximum water depth less than or equal to 50 m. Based on the component scores
corresponding to the locations where Clades A and B were found, niche similarity indices
were high, with D = 0.841 and I = 0.973. Moreover, niche equivalency tests showed that
none of the two values were significantly different from the values obtained through a
randomization process under the hypothesis of an identical niche (P-values forD and I were
0.311 and 0.294, respectively).

DISCUSSION
Range-wide phylogeographic analyses of the blue green damselfish, C. viridis revealed two
divergent lineages in both mitochondrial Cytb and nuclear Rag2 DNA sequence data.
These cryptic lineages were first reported by Froukh & Kochzius (2008) in the Coral
Triangle and Red Sea, and subsequently by Messmer et al. (2012) who examined Australia
and French Polynesia. However, these studies each only covered a fraction of the
geographic range of C. viridis. By examining patterns across its entire range, this study
shows that these cryptic lineages of C. viridis are sympatric over a portion of their
Pacific range.

Moreover, previous studies (Froukh & Kochzius, 2008; Messmer et al., 2012) only used
mtDNA markers, providing incomplete insights into genetic structure due to its maternal
inheritance (Prugnolle & De Meeûs, 2002; Daly-Engel et al., 2012). By sequencing both
mtDNA and nuclear markers, this study confirms the presence of two cryptic clades
in C. viridis, Clades A and B. These clades diverged approximately 3 Mya similar to the
divergence of C. atrilobata and C. multilineata that were separated by Isthmus of Panama
(Domingues et al., 2005). Given the depth of this divergence and the largely concordant

Table 2 Mann–Whitney U-tests for the environmental differences between presence locations of clade A and those of clade B, and between
presence and absence locations of clade A.

Environmental factor A presence
(Mean ± SD)

B presence
(Mean ± SD)

A absence
(Mean ± SD)

A presence
vs. B presence

A presence
vs. A absence

U P-value U P-value

Temperature (�C) 27.44 ± 0.86 27.15 ± 1.35 27.08 ± 1.47 20.5 0.86 20 0.84

Salinity (PSS) 34.31 ± 0.86 34.55 ± 1.43 34.61 ± 1.57 22.5 1 18 1

Current velocity (m-1) 0.09 ± 0.06 0.13 ± 0.19 0.14 ± 0.21 23.5 0.95 17 0.95

Nitrate (mol · m-3) 0.007 ± 0.009 0.11 ± 0.31 0.13 ± 0.34 25.5 0.77 15 0.73

Phosphate (mol · m-3) 0.25 ± 0.05 0.23 ± 0.06 0.22 ± 0.06 18.5 0.68 22 0.63

Silicate (mol · m-3) 3.57 ± 1.99 3.74 ± 1.85 3.79 ± 1.90 23.5 0.95 17 0.95

Dissolved molecular
oxygen (mol · m-3)

203.15 ± 1.50 203.65 ± 3.34 203.78 ± 3.70 22.5 1 18 1

Iron (mmol · m-3) 0.001 ± 0.0003 0.0007 ± 0.0005 0.0006 ± 0.0005 10.5 0.17 30 0.1

Chlorophyll (mg · m-3) 0.14 ± 0.04 0.15 ± 0.12 0.15 ± 0.13 18.5 0.68 22 0.63

Phytoplankton
(mmol · m-3)

1.19 ± 0.16 1.14 ± 0.48 1.13 ± 0.54 15.5 0.44 25 0.36

Primary productivity
(g · m-3 · day-1)

0.006 ± 0.003 0.006 ± 0.008 0.007 ± 0.009 17.5 0.59 23 0.54
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differentiation of Clade A and B in Cytb and Rag2, it is likely that these two lineages
represent distinct species, raising interesting questions about the sympatry of Clades A and B
in part of their range.

Origin of lineage diversification
Although the divergence of Clades A and B of C. viridis is clear, the origin of this
divergence is not. Within the Indo-Pacific region, the “Indo-Pacific Barrier” has been
considered as a soft barrier that could be the main driving force of marine biological
provinces in this region (Gaither et al., 2011). Barber & Bellwood (2005) and Cowman &
Bellwood (2013) examined the importance of this barrier by evaluating the extent of
temporal concordance in vicariance in three prominent families of reef fish, including
Labridae, Pomacentridae, and Chaetodontidae. Both studies showed that the isolation effect
of Indo-Pacific barrier on the widely distributed fishes mainly occurred mostly between
endMiocene and Early Pliocene (2–6Myr), and the majority of vicariance events occurred in
a narrow time interval at approximately 2.5 Myr.

The date of divergence of Clade A and B broadly conforms to the onset of Plio-Pleisetocene
sea level fluctuations (Voris, 2000). However, Clade B populations of C. viridis occur

Figure 4 Non-metric multidimensional scaling (NMDS) plot of the 15 sampling sites. The two
NMDS axes (NMDS1 and NMDS2) represent environmental gradients defined by the 11 environmental
factors examined across the sites. The convex hulls for the sampling sites where C. viridis A and C. viridis
B were found are shown in red and blue, respectively. Please see the legend of Fig. 1 for the abbreviation of
the site names. Full-size DOI: 10.7717/peerj.7384/fig-4
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on islands surround by deep water where lowered sea levels would not result in land
barriers that promote vicariance, unlike other marine taxa distributed on opposite sides
of the Sunda Shelf (Barber, Erdmann & Palumbi, 2006; Crandall et al., 2008, 2014;
DeBoer et al., 2014a, 2014b; Waldrop et al., 2016; Simmonds et al., 2018). Given the
Indo-Pacific wide range of C. viridis and a divergence time between two cryptic clades
dating to 3 Mya, isolation across the Indo-Pacific Barrier is the most likely driver of
divergence between Clades A and B. Under this scenario, Clade A would be an Indian
Ocean clade that has expanded into the Pacific, where it now overlaps with the Pacific
Clade B, a process previously noted in Neritid snails (Crandall et al., 2008).

An alternate, but not mutually exclusive explanation for divergence of Clade B comes
from recent studies of coral associated marine taxa. Similar to phytophagus insects that
undergo ecological divergence associated with host switching (Berlocher & Feder, 2002;
Hébert, Scheffer & Hawthorne, 2016), recent studies from the marine realm demonstrate
that changes in coral host taxa can promote lineage divergence, potentially leading to
speciation (Simmonds et al., 2018). Samples were not collected in a way that allows us
to test this hypothesis, but future studies separating samples by coral host to determine
whether individuals from Clades A and B exist in mixed schools in sympatric populations,
and if so, whether those schools are associated with different coral hosts.

The geographic distribution of Clade B is curious in that it is observed in Komodo,
but not in other populations in the Lesser Sunda Islands (e.g., Amed, Nusa Lembongan).
Similarly, Clade B is observed on the Great Barrier Reef and Fiji, but not in New Caledonia,
a population located between these too population. One explanation for this disjunct
distribution is that Clade B individuals are relatively rare, and that greater sampling
intensity would reveal Clade B haplotypes in adjacent ranges, as would be expected.
Alternatively, it is possible that Clade A is gradually displacing Clade B populations, and the
areas of sympatry represent locations where this process is incomplete. Similar arguments
were made to explain sympatry of highly divergent clades of marine snails in the Pacific
Ocean (Crandall et al., 2008).

In contrast to the divergence of Clade A and B, the divergence of Clade A-1, unique to
the Red Sea, is more easily interpreted as the result of vicariance. The Red Sea is a
semi-enclosed basin that is frequently invoked in driving population differentiation of reef
organisms between the Red Sea and Indian Ocean (DiBattista et al., 2013). Additionally,
the 95% HPD of Red Sea Clade is ranged from 0.013 to 0.332 Mya which aligns with
the most recent closure of the Red Sea (Siddall et al., 2003). However, while mitochondrial
DNA shows a well-supported Red Sea sub clade within C. viridis Clade A, this clade is not
confirmed with nuclear Rag2 sequence.

Lack of concordance between the mtDNA and nuclear phylogenies is not surprising.
First, there is substantially more genetic variation in the mtDNA sequences because
DNA repair mechanisms are less efficient in mtDNA, resulting in much higher substitution
rates (Alexeyev et al., 2013). Second, because mitochondrial genome is maternally inherited
and haploid, its effective population size is one-fourth that of a nuclear gene, meaning
that lineage sorting occurs more rapidly in mtDNA (Hare, 2001). Thus, mitochondrial gene
trees have a substantially higher probability of accurately recovering recently divergence

Liu et al. (2019), PeerJ, DOI 10.7717/peerj.7384 11/21

http://dx.doi.org/10.7717/peerj.7384
https://peerj.com/


lineages with short internode distances than do nuclear genes (Moore, 1995). Given that the
Red Sea mtDNA clade only dates to 0.138 Mya, it is unsurprising that divergence in this
region is not recovered in the Rag2 sequences. Thus, while the Red Sea population is clearly a
sub-population of C. viridis Clade A, it is unlikely a cryptic species, like Clades A and B.

Cryptic species
Many phylogeographic studies in the Indo-Pacific find highly divergent clades, often with
regions of sympatry (Barber et al., 2002; Barber, Erdmann & Palumbi, 2006; Crandall et al.,
2008; Gaither et al., 2011; Liu et al., 2012; DeBoer et al., 2014a; Bowen, Karl & Pfeiler,
2007). In many cases, these cryptic clades may represent cryptic species, similar to Liu et al.
(2012) where a divergent clade of Pomacentrus coelestis in Micronesia was subsequently
described as a new species (Liu, Ho & Dai, 2013). The concordant phylogeographic
patterns in mtDNA and nuclear DNA, and the depth of this divergence suggests that
Clades A and B of C. viridis may represent two cryptic species with different geographic
ranges; Clade A is a widely distributed Indo-Pacific, while Clade B is only found in Lizard
Island, Komodo, and Fiji.

Comparison of Cytb and Rag2 trees revealed a limited amount of discordance.
Given the relatively recent divergence, one potential explanation for this pattern is
incomplete lineage sorting (Tang et al., 2012). Incomplete lineage sorting is the simplest
explanation for individuals with Clade B C. viridis haplotypes in the mtDNA tree having
Clade A C. viridis Rag2 sequences (Table S1). However, incomplete lineage sorting
could not explain the sequence of komo4 clustered with C. viridis clade B in the Rag2 tree
but clustered with C. viridis Clade A in the mtDNA tree. The later finding could likely
explain by the consequence of hybridization.

Hybridization is in C. viridis is unsurprising as closely related Pomacentrids often have
overlapping geographic distributions, co-occur in the same microhabitats (e.g., colonies
of branching corals) (Randall & Allen, 1977). Hybridization has been observed in
several sibling species of damselfish, including Abudefduf abdominalis � Abudefduf
vaigiensis (Coleman et al., 2014), Amphiprion chrysopterus � Amphiprion sandaracinos
(Gainsford, Van Herwerden & Jones, 2015), Amphiprion mccullochi � Amphiprion
akindynos (Van Der Meer et al., 2012), Dascyllus carneus � D. marginatus (DiBattista
et al., 2015), and D. reticulatus � D. aruanus (He et al., 2017). As such, both
hybridization and incomplete lineage sorting are likely responsible for the discordant
patterns in the two markers.

Incongruence between genetic and ecological niche divergence
Hutchinson (1978) proposed that two species cannot occupy the same ecological niche, yet
niche conservatism predicts that closely related taxa retain ancestral ecological affiliations
and persists in similar environments (Lord, Westoby & Leishman, 1995; Webb et al.,
2002; Wiens & Graham, 2005). Allopatric sister taxa are often characterized by niche
conservatism, but because geographic isolation drives speciation (Peterson, Soberón &
Sánchez-Cordero, 1999; Peterson et al., 2001; Kozak & Wiens, 2006) sibling species can’t
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compete for the same niche space, because, by definition, they have non-overlapping
geographic ranges.

The alternative to niche conservatism is niche divergence, in which sister taxa occupy
different niches (Dayan & Simberloff, 2005). Niche divergence is typically associated
with sympatric speciation as diversification results from reduction in gene flow associated
with divergence in traits with ecological function (e.g., habitat segregation, pollinator
divergence, behavioral changes, phenological shifts, and mating system shifts). Under
niche divergence, young sister species with high degrees of range overlap should
ecologically diverge (Dayan & Simberloff, 2005; Davies et al., 2007). While ecological
modeling and phylogenetics are commonly integrated to understand the relationship
between evolutionary and ecological divergence of sibling species (Kalkvik et al., 2012;
Schorr et al., 2012), few studies examine the intra-specific (cryptic lineage) level
(Gutiérrez-Tapia & Palma, 2016).

Our results show that Clade A and B of C. viridis are sympatric, with Clade B haplotypes
occurring only at three localities. There are two possible explanations for this pattern.
First, lineage diversification could have occurred in sympatry, as seen in Indo-Pacific
coralivorous snails (Simmonds et al., 2018). Alternatively, diversification could have
occurred in allopatry with secondary overlap in geographic ranges as proposed for
neritid snails (Crandall et al., 2008). Niche comparisons based on 11 environmental
factors showed that Clade A has a broader ecological niche than Clade B does (Fig. 4).
Despite this difference, there is no significant niche differentiation between these two
lineages. As such, diversification is more likely to have arisen with niche conservatism
rather than niche differentiation.

Given the absence of niche differentiation, our results suggest that the diversification
of Clades A and B most likely occurred in allopatry, and that secondary contact is the
most likely explanation for their current distribution. If true, niche conservatism could
help explain the disjunct distribution of Clade B. Under this scenario, Clade A and Clade B
would compete for the same niche space when they occur in sympatry. If Clade A is a
superior competitor, it would gradually displace Clade B populations, potentially
explaining the relative rarity of Clade B haptotypes and their disjunct distributions.

Alternatively, Pyron et al. (2015) suggested that niche conservatism could result from
soft allopatry where there is low environmental heterogeneity. As noted above, the shallow
Sunda and Sahul continental shelves exposed during low sea level stands (Voris, 2000),
forming long land bridges that restricted larval exchange between the tropical Indian
Ocean and the western Pacific (reviewed in Randall, 1998). However, because deep water
passages in what is modern day Indonesia remained open, and because low sea level stands
were intermittent, the Indo-Pacific Barrier has been considered a soft dispersal barrier
for marine taxa (Cowman & Bellwood, 2013). The 11 environmental factors we used to
define the niches of the two lineages of C. viridis only reflect broad-scale environmental
conditions. However, there could be subtle variation in environmental factors, or variation
could occur at finer scales (e.g., microhabitat), resulting in soft-allopatric divergence.

It is important to note that the broad environmental variation we examine does not
capture the potential diet shifts observed in sibling species (Goodheart et al., 2017),
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novel traits (Liu et al., 2018), and/or micro habitat preference (Whitney, Donahue &
Karl, 2018) that could act to drive or reinforce lineage diversification. The latter is
particularly intriguing given recent studies demonstrating ecological speciation resulting
from shifts in coral hosts (Simmonds et al., 2018). Further studies such as stable isotope
analysis and detailed morphological examinations in a phylogenetic framework are
needed to better understand the ecological and morphological divergence between these
two lineages.

CONCLUSIONS
Although cryptic diversification in widespread marine species is common (Hubert
et al., 2012), phylogeographic studies typically ignore the potential role of ecological
niche partitioning on lineage diversification. The present study shows evolutionary
divergence between two lineages of C. viridis that have overlapping ecological niches,
supporting niche conservatism. It is unclear whether this pattern results from allopatric
divergence with secondary contact, or from subtle differentiation in ecological niches
not captured by the broad scale environmental data used to compare ecological
niches. Regardless of the origins, the substantial genetic divergence between the two
clades of C. viridis in both mtDNA and nuclear loci strong suggest that they are
cryptic taxa. Because C. viridis is highly exploited in the aquarium trade (Wabnitz,
2003), we suggest that a higher conservation priority needs to be given on the
Clade B lineages restricted to Australia, Indonesia, and Fiji to protect this unique
genetic lineage.
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