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For reefs in SE Asia the synergistic effects of rapid land-development, insufficient
environmental policies and a lack of enforcement has led to poor water quality and
compromised coral health from increased sediment and pollution. Those inshore turbid
coral reefs, subject to significant sediment inputs, may also inherit some resilience to the
effects of thermal stress and coral bleaching. We studied the inshore turbid reefs near Miri,
in northwest Borneo through a comprehensive assessment of coral cover and health in
addition to quantifying sediment-related parameters. Although Miri Reefs had
comparatively low coral species diversity, dominated by massive and encrusting forms of
Diploastrea, Porites, Montipora, Favites, Dipsastrea and Pachyseris, they were
characterised by a healthy cover ranging from 22-39%. We found a strong inshore to
offshore gradient in hard coral cover, diversity and community composition as a direct
result of spatial differences in sediment at distances <10 kms. As well as distance to
shore, we included other environmental variables like reef depth and sediment trap
accumulation that explained 62.5% of variation in benthic composition among sites. Miri’s
reefs showed little evidence of coral disease and relatively low prevalence of compromised
health signs including bleaching (6.7%), bioerosion (6.6%), pigmentation (2.2%), scars
(1.1%) and mucus production (0.5%). Tagged colonies of Diploastrea and Pachyseris
suffering partial bleaching in 2016 had fully (90-100%) recovered the following year. There
were, however, seasonal differences in bioerosion rates, which increased five-fold after the
2017 wet season. Differences in measures of coral physiology, like that of symbiont
density and chlorophyll a for Montipora, Pachyseris and Acropora, were not detected

among sites. We concluded that Miri’'s reefs may be in a temporally stable state given
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minimal recently dead coral and a limited decline in coral cover over the last two decades.
This study provides further evidence that turbid coral reefs exposed to seasonally elevated
sediment loads can exhibit relatively high coral cover and be resilient to disease and
elevated sea surface temperatures.
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ABSTRACT

For reefs in SE Asia the synergistic effects of rapid land-development, insufficient
environmental policies and a lack of enforcement has led to poor water quality and compromised
coral health from increased sediment and pollution. Those inshore turbid coral reefs, subject to
significant sediment inputs, may also inherit some resilience to the effects of thermal stress and
coral bleaching. We studied the inshore turbid reefs near Miri, in northwest Borneo through a
comprehensive assessment of coral cover and health in addition to quantifying sediment-related
parameters. Although Miri Reefs had comparatively low coral species diversity, dominated by
massive and encrusting forms of Diploastrea, Porites, Montipora, Favites, Dipsastrea and
Pachyseris, they were characterised by a healthy cover ranging from 22-39%. We found a
strong inshore to offshore gradient in hard coral cover, diversity and community composition as
a direct result of spatial differences in sediment at distances <10|¢CDs. As well as distance to
shore, we included other environmental variables like reef depth, sediment trap accumulation and
particle size that explained 62.5% of variation in benthic composition among sites. Miri’s reefs
showed little evidence of coral disease and relatively low prevalence of compromised health
siens including bleaching (6.7%), bioerosion (6.6%), pigm{rmition (2.2%), scars (1.1%) and
s production (0.5%). Tagged colonies of Diploastrea Pachyseris suffering partial
bleaching in 2016 had fully (90-100%) recovered the following year. There were, however,
seasonal differences in bioerosion rates, which increased five-fold after the 2017 wet season.
Differences in measures of coral physiology, like that of symbiont density and chlorophyll a for
Montipora, Pachyseris and Acropora, were not detected among sites. We concluded that Miri’s
reefs may be in a temporally stable state given minimal recently dead coral and a limited decline
in coral cover over the last two d@es. This study provides further evidence that turbid coral
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reefs exposed to seasonally elevated sediment loads can exhibit relatively high coral cover and
be resilient to disease and elevated sea surface temperatures.

INTRODUCTION

Turbid reefs are commonly regarded as marginal reefs living near their environmental limits
(Kleypas et al., 1999; Guinotte et al., 2003; Perry and Larcombe, 2003; Palmer et al., 2010;
Goodkin et al., 2011). As such, these reefs are traditionally perceived to be in a reduced health
status (Kleypas, 1996; Kleypas et al., 1999) and more sensitive to rising sea surface temperatures
(SST; Nugues and Roberts, 2003; Crabbe and Smith, 2005; Fabricius, 2005; Woolridge, 2008).
Yet there is growing evidence that turbid reefs may actually be more resilient to future climate
change effects (Goodkin et al., 2011; Morgan et al., 2017) and serve as refugia for surviving
corals (Cacciapaglia and van Woesik, 2015; 2016; Morgan et al., 2016). This has been
demonstrated on turbid reefs with high coral cover and diversity yet experience si@icant
sediment and nutrient inputs, low bleaching, and rapid recovery rates from bleaching and
cyclonic events (Larcombe et al., 2001; Browne et al., 2010; Richards et al., 2015; Morgan et al.,
2016). Studying the level of resilience and survival of turbid reefs in different environmental
settings will provide clearer insights into the future of reefs subject to climate change (Guinotte

et al., 2003; Hennige et al., 2010; Richards et al., 2015).

Despite elevated resilience to naturally turbid conditions, many inshore turbid reefs face threats
from local pressures, largely related to declining water quality and increased sediment input. In
South East (SE) Asia, 95% of reefs are threatened from local sources and, therefore, are,
regarded as the most endangered reefs globally (Burke et al., 2011). From the 1980°s to early
2000’s these reefs have suffered an average 2% loss in coral cover per year with hard coral cover
declining from @to 22% in 2003 (Bruno and Selig, 2007). Most SE Asian reefs are located in
close proximity to countries with rapidly emerging economies and fast population growth
(Wilkinson, 2006; Burke et al., 2011; Heery et al., 2018). They are further characterised by
poorly developed environmental policies, inadequate regulation, lack of enforcement, a shortage
of institutional and technical capacity, insufficient community support and involvement, and
conflicts and tensions between stakeholders (Fidelman et al., 2012). The synergistic effects of
these factors has led to poor water quality on many inshore reefs via pollution and sediment input

derived by rapid land development, and over-fishing activities (McManus, 1997; Wilkinson,
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2006). As a consequence, sedimentation rates are high (>1@g cm? day-!'; Rogers 1990) with SE
Asian coastal systems experiencing the highest siltation loads globally (Kamp-Nielsen et al.,

2002; Syvitski et al., 2005).

Nearshore coral reefs along the north central section of Sarawak, on the island of Borneo, are
highly diverse with an estimated 518 fish species (Shabdin, 2014) and 203 hard coral species
from 66 genera (Elcee Instumentation, 2002). Sarawak is a deforestation hotspot with only 3% of
its forest cover intact (Bryan et al., 2013). Ongoing deforestation and poor land use practices are
a growing threat for these biological diverse reefs that also support local fisheries and an
expanding dive tourism industry (Elcee Instumentation, 2002). As such, in 2007 a marine park
(the Miri-Sibuti Coral Reef National Park; MSCRNP) that covered 11,020 km? was established
to promote and protect 30 coral reefs adjacent to Miri, the second largest town in Sarawak. In
2001, a broad assessment of coral reef health within the park indicated that live coral cover was
approximately 35-50% and dead coral cover was @) (Elcee Instumentation, 2002). Subsequent
Reef Check surveys in 2010 and 2014 concluded these same reefs were experiencing multiple
stressors, but were in ‘fair’ condition (~40% @‘3; Reef Check, 2010;2014). However, despite
these cl@s there is limited quantitative data on coral health and biodiversity (Shabdin, 2014),
and more importantly no comprehensive assessment of environmental drivers of reef health. For
example, the Baram River (10 km north of the reef complex), is known to discharge 2.4 x 10'°
kg yr! of sediments into the coastal zone (Straub and Mohrig, 2009), such that sediment and
nutrient influx are considered to be the greatest threat to these poorly studied reefs (Pilcher and
Cabanban, 2000; Ferner, 2013; Shabdin, 2014). Without thoroughly quantifying sediment
impacts on corals, no conclusions can be made on coral tolerance levels, the drivers of
community composition and future resilience to both local and global pressures. Given the
Baram River delta is in a destructive phase due to rising sea level (Lambiase et al., 2002),
together with the increased frequency and intensity of rainfall events and plans for future
modification of both the river and adjacent land development (Nagarajan et al., 2015), it is likely

that threats from sediments will only increase.

The reefs within the MSCRNP provide a valuable opportunity to address several knowledge gaps

on turbid coral reef health and their potential resilience to local and global threats. The last
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comprehensive assessment of coral cover on Miri’s reefs was in 2@, with no assessments of
coral taxa health and disease for any Sarawak reefs recorded to date. In particular, coral disease
studies are rarely undertaken on SE Asian reefs largely due to a lack of resources and expertise
(Green and Bruckner, 2000; Raymundo et al., 2005; Heintz et al., 2015). The lack of quantitative
data on the health and stability (as defined by resistance, resilience and maintenance of key
functional groups) of these reefs coupled with ongoing unsustainable land use practices in
Sarawak, raises concerns over their long-term viability. This is of particular concern as Sarawak
reefs currently provide an estimated revenue of 6 million AUD per year in tourism and 13.5
million AUD from fisheries (Elcee Instumentation, 2@‘). We argue there is an urgent need for a
comprehensive assessment of coral cover and health measured alongside key environmental and
sediment-related parameters. The key objectives of this study therefore are to: 1) quantify
benthic cover, co@over and health, 2) compare the prevalence of impaired health in the
dominant coral species, 3) identify key parameters related to sediment delivery that il@nce
benthic cover and health along an inshore to offshore gradient, and 4@(355 how resilient these
inshore reefs are to future changes in sediment supply. These data will improve our
understanding of turbid coral reefs composition and potential resilience to both local and global
stressors, and promote current management strategies that aim to protect inshore turbid reefs

from future changes to land use.

MATERIALS & METHODS
Study sites

The study was conducted on three low profile submerged patch reefs (Eve’s Garden, Anemone
Garden and Siwa Reef) in the MSCRNP (Fig. 1). These sites were of a comparable depth (5-15
m) and size (<0.11 km?). Eve’s Garden (EG) is a shallow inshore reef close to shore (7.3 km)
with a coral community dominated by platy and massive corals such as Pachyseris sp. and
Porites sp. (Ferner, 2013). Anemone Garden (AG) is further offshore (11.7 km) and consists of a
considerable density of anemone colonies, with platy forms of Acropora sp. and exceptionally
large massive Porites sp. and Diploastrea sp. colonies (1-5 m length). Siwa Reef (SW) situated
further to the south is the most biologically diverse of the studied reefs consisting of encrusting

and massive coral forms (Ferner, 2013). These reefs lie on an inshore to offshore transect from
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the Baram (sediment influx 2.4 x 1@ kg.year!; Nagarajan et al., 2015) and Miri River mo@
located to the north of EG (10 km from Miri River and 30 km from Baram River).

Physical (temperature, light, turbidity and sediment trap accumulation) and biological (benthic
cover, coral health) data were collected at the end of the dry season (15™ September to 20t
October 2016) and during the wet season (11% May to 3 June 2017). At each of the three reefs,
six replicate line transects (20 m), separated by 20 m intervals to ensure independence were run
across the reef surface (EG = 8-12 m; AG =10-14 m; SW= 8-14 m). These reefs are not
characterized by typical windward and leeward reef edges, but are low profile patch reefs where
the majority of the reef sits in one relatively flat plane, sloping gently on all sides to the sea floor.

As such, all transects were laid out along the same axis across the flat section of each reef.

Physical data collection

Seasonal changes in light (measured with Photosynthetic Irradiance Recording System by
Odyssey, New Zealand) and temperature (measured with HOBO Pro V2 loggers, Australia) were
recorded every 10 minutes from September 2016 for 9 months (temperature at EG and AG) and
12 months (light at EG). To capture changes in suspended sediment loads over a tidal cycle,
turbidity loggers were deployed (in a horizontal position) for two weeks at the end of the 2016
dry season (September; EG and SW) and end of the 2017 wet season (May; EG; AQUA logger
210/310TY, Aquatech, UK). Data on cloud cover, rainfall and wind speed over the period from
October 2016 to October 2017 was retrieved from the online database World Wide Weather
(2017).

To assess small-scale spatial variation in sediment trap accumulation, fou@iment traps per
three transects (8 traps in total per reef) were deployed at each reef in September 2016 to collect
sediments during the NE monsoon. Each trap consisted of 3 cylindrical PVC plastic containers
(diameter of 7@11) attached to a metal rod positioned 30 cm above the substrate (Storlazzi et
al., 2011). The traps remained in-situ until May 2017. To determine if trapped sediments were
from local resuspension or transported on to the reef, 5@0f benthic sediment at the base of

each trap was sampled. The content of eac@ntainer was emptied into a labelled plastic bag
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and stored at -20°C until further analysis at the Curtin University Malaysia Laboratory facilities
(Laboratory SK2 204);-Malaysia.

Sediment samples were analysed for weight and particle size characteristics. Frozen samples
were thawed and allowed to settle overnight. Water remaining on the surface was filtered (0.45
um filter paper) to capture the fine suspended sediments. The sediments (washed, settled and
filtered) were oven-dried at 60 °C for 2-3 weeks and weighed to the nearest 0.001 g.
Sedimentation accumulation rate (g cm? day-') was calculated as the weight of sediment trapped
(g) divided by the number of days the trap was deployed and the surface area of the trap (cm?).
For the grain size analysis, the settled dry sediments were manually homogenized and weighed
before sieving. The sediments were homogenized using a pestle and mortar given the sediments
were mostly sand and loosely aggregated. Sediments were separated into 5 class fractions (>1
mm, 500 to <1000 pum, 250 to <500 um, 125 to <250 um and 63 to 125 um) by placing the sieve
stack on a mechanical shaker for 20 minutes. Each of the 5 sediment fractions were weighed to

the nearest 0.001 g.

Biological data collection

In water data collection

The benthic cover and coral diversity (to genus level) were assessed in September 2016 using the
photographic transect method (Bégin et al., 2013). Photographs were taken using a Canon
Powershot G7 mark II digital camera at a fixed height of 0.75 m above the transect line every 1
m along the transect (n = 21). Photographs (@) were analysed in Coral Point Count (CPCe)
with a uniform grid of 25 points to calculate benthic cover for each of 7 categories (hard coral,
soft coral, recently dead coral, turf algae, macroalgae, sponge, abiotic sul@lce) (CPCe; Kohler
and Gill, 2006). The hard coral category was further subdivided into 38 genera common to the
Indo-Pacific region according to Kelley (2009).

To assess seasonal fluctuations in coral reef health, signs of compromised health (disease,
bleaching, bioerosion, pigmentation, mucus production, scars) were recorded in September 2016
and May 2017. The belt transect methodology was used, covering a v@r area along the transect

line via a zig-zag pattern (40 m? for each 20 m transect). Coral colonies within each belt transect
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were identified to genus level and classified as either healthy or affected by an impaired health
sign (Beeden et al., 2008). Signs of bioerosion included the presence of organisms such as
Christmas tree worms, boring bivalves and sponges, and bleaching was further subdivided into
whole, partial, focal and non-focal bleaching (as defined in Beeden et al., 2008). To determine if
bleached corals recovered or died, a total of 14 coral colonies from EG and SW in both sampling
seasons that showed signs of bleaching were tagged and photographed (4 Diploastrea sp., 6
Pachyseris sp., 4 Porites sp.). The percentage of bleached tissue was assessed from scaled
photographs using CPCe software (1=normal, 2=pale, 3=0-20%, 4=20-50%, 5=50-80% and
6=80+% bleached). While this is a low sample size, the data is included to provide further
insight into the recovery potential of corals on these reefs. Field work was approved by the

Sarawak Forestry Commission (#61JHS/NCCD/600-7/2/107).

Symbiont density and chlorophyll a analysis

In May 2017, fragments of three coral genera (Montipora sp., Pachyseris sp. and Acropora sp.)
were collected from EG, AG and SW for chlorophyll a and symbiont density analysis. Higher
chlorophyll @ and symbiont densities are typically recorded on turbid reefs (Browne et al., 2015)
as this increases the coral’s ability to photosynthesis under low light levels as they acclimate to
suspended sediments (Hennige et al., 2010). Fragments (5-10 cm for branching corals and ~10 x
10 cm for foliose corals) were collected using cutters and placed in plastic bags. Samples were
placed on ice during transportation back to the laboratory where they were stored at -80 °C until
further analysis. Symbiont density and chlorophyll a content were quantified following the
removal of coral tissue from the skeleton. The protocol for extracting tissue was adapted from

Ben-Haim et al. (2003) (Supplementary material).

Statistical analysis

Univariate statistical analysis was conducted in R Studio Desktop version 1.1.383. Prior to
analysis, normal distribution and homogeneity of variances were checked using the Shapiro Wilk
test and the Levene’s test, respectively. To assess if there were significant differences in benthic
cover (hard coral, soft coral, algae) and diversity among sites a one way analysis of variance
(ANOVA, n= 6, a= 0.05) was used followed by a Tukey HSD post-hoc test (Bonferroni

method), if necessary. Significant differences in the prevalence of compromised health signs
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(bleaching, bioerosion, mucus production, pigmentation and scars) among sites and between
seasons were identified for both total hard coral cover and for the most abundant coral genera
(Porites, Pachyseris, Montipora, Diploastrea, Acropora) using a Full Factorial ANOVA (FF
ANOVA, n= 6, a= 0.05) and a Tukey HSD post- hoc test. If required, a log10 transformation
was carried out for datasets to meet homogeneity of variance. However, as the bleaching
recovery was assessed using a scale, these data were tested using a Wilcoxon test to determine if
there had been a significant recovery in tagged coral colonies between years. To determine
differences in physiology (chlorophyll a content and zooxanthellae density) between the three
coral genera sampled (Acropora n=17, Pachyseris n=13, Montipora n=15) and across sites, a
non-parametric Kruskal Wallis test was performed. Furthermore, to evaluate cell health
differences between the three genera and among reefs, the percentage of cells from each grade
were compared using the Kruskal —Wallis test. Differences in sediment trap accumulation rates
was tested among reefs (Kruskal — Wallis). In addition particle size characteristics (median,
fine/coarse fraction) among reefs, and between the trapped sediments and the benthic sediments

were also tested (FF ANOVA, n=18).

Permutational multivariate analysis was conducted in PRIMER-7 version 7.0.13. A Distance-
based Linear Model (DISTLM) was used to determine how much of the variation in community
assemblage (hard coral cover=HCC, soft coral cover=SCC, algae, recently dead coral
cover=DCC, H’ index, number of coral genera) among transects and reefs was driven by depth,
distance from the two nearby river mouths, distance from shore and differences in sediment trap
accumulation rates and particle size characteristics. Depth was included in the analysis as depth
is known to influence sediment dynamics (Wolanski et al., 2005) as well as declines in light
associated with suspended sediments (Falkowski et al., 1990). A distance- based resemblance
matrix was created for the biological data set using Bray - Curtis similarity values following a
square-root transformation and for the environmental data using Euclidean distances and
normalised values. A DISTLM, using the BEST fit model with the Akaike’s Information
Criterion (AIC) and 9,999 permutations was performed using the resemblance matrices. The
multivariate scale relationship between the predictor (environmental) and response variables
(biological) was presented on a plot with a distance- based redundancy analysis (dbRDA;

Legendre and Anderson, 1999). To investigate whether environmental factors contributed to
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differences in health status among sites again a DISTLM model was used followed by dbRDA
plotting as above. Predictor variables included substrate structure (hard coral cover (HCC),
diversity) and physical conditions (depth, sediment trap accumulation rate, particle size
characteristics, distance from both river mouths and distance from shore). Hard coral cover
(HCC) and diversity were used since higher HCC can contribute to a greater probability of
impaired coral health (Bruno and Selig, 2007). In contrast, reefs that are more diverse can lower
susceptibility as it reduces the quick spread of a disease (Raymundo et al., 2005; Aeby et al.,
2011). As sediment data were obtained at the end of the wet season (May 2017), these were used
to explain the 2017 health data. For the 2016 coral health data, which had no associated sediment
data, only sampling year, HCC and coral diversity together with distance from shore and rivers

were used as explanatory variables.

RESULTS

Physical parameters

The dry season was characterized by less variable, warmer SST’s (mean monthly range = 30.0 to
30.7 °C; sup Fig. 2), greater in-water light penetration (mean monthly range at EG = 156 to 320
umol photons m= s™') and reduced rainfall (mean monthly rainfall range = 78 to 166 mm) and
cloud cover (Fig. 2). In contrast, the wet season was cooler (mean monthly range = 28.0 to 30.1
°C) with higher rainfall (mean monthly range 126 to 234 mm) and reduced light levels on the
reef (mean monthly range at EG = 19 to 150 pmol photons m s!). Wind speeds were also
slightly elevated during the wet season months (Fig. 2d). Mean sediment trap accumulation rates
following the wet season ranged from 13 to 28 mg cm day™!, with a rate almost three times
higher at EG compared to AG and SW (H , = 10.3, p<0.005; Fig. 3). Site differences in potential
sedimen@d were also observed during the dry season with higher and more variable turbidity
recorded at the nearshore EG reef (mean monthly range = <1 to 24 FTU) than at SW (mean
monthly range = 1-7 FTU) located 10 km further south from the large Baram River mouth (sup
Fig. 3).

All three reefs were dominated by sand (>98%), with the median particle size of benthic

sediments significantly increasing (F,=13.6, p<0.005) with distance from the mouths of the

Baram and Miri Rivers (Fig. 4). Benthic sediments at SW comprised 58% of very coarse sand,
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nearly three times that of EG (20%) (F3=24.9, p<0.001; PH: SW>EG, AG; sup Fig. 4) and a
significantly smaller proportion of medium/fine sands (F,=17.2, p=<0.001; PH: SW>AG>EQG).
In contrast there was little difference in the median particle size from the sediment traps among
sites (F,=2.25, p=0.133), although particle sizes of the benthic sediment were significantly
greater compared to the trapped sediments (F1=60.93, p<0.001).

Benthic cover

Hard coral cover increased with distance from the major sediment source (Baram River) and
varied significantly among sites (F,=5.3, p=0.01; PH: SW>EG). SW had the highest HCC
(39.3%) and EG almost half the HCC (21.9%; Fig. 5). Soft corals also varied significantly but
declined with increasing distance from the major sediment source (H, = 8.6, p=0.01; MWPH:
EG>AG, SW) with EG having nearly 15-fold higher cover than SW. Turf algae dominated the
algal community and contributed to 52-57% of all reefs’ benthos . However, there was no
significant difference in turf algal cover among reefs (F,=0.103, p>0.05). I@b coral cover was

consistently low among sites (4.25%).

In total 28 genera were recorded (Table 1). Coral diversity was considerably different among
sites (F,=4.6, p=0.03; PH: SW>EG) with SW the highest richness and 25 genera (H’=1.93), and
EG and AG 16 and 14 genera, respectively (H ~1.4). The surveyed sites were composed of
similar communities, with the most dominant genera including Diploastrea sp., Porites sp.,
Montipora sp., Favites sp., Dipsastrea sp. and Pachyseris sp. (Table 1). All other species
comprised a small fraction of the community (<2% cover). Most notable differences in the
composition were with the high cover of Diploastrea sp. at AG and EG, Galaxea sp. at EG, and

Acropora and Montipora sp. at SW.

Coral reef health

Of the compromised health signs recorded at each reef, the five most commonly observed were
mucus production (0.5 £ 0.3%), @nentation (2.2 + 0.7%), bioerosion (6.6 + 2%), bleaching
(6.7 + 0.9%) and scars (1.1 + 0.4%; Fig. 6). No diseases per se were observed except at EG
where one colony of massive Porites sp. had ulcerative white spots. Despite a clear decline in

prevalence along an inshore to offshore gradient following the dry season in 2016@. 7), total
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prevalence of compromised health (sum of the five commonly observed signs) was not
statistically significant among sites and seasons (p>0.05; Table 2). The prevalence of mucus
production by corals at Eves Garden (5%), however, was nearly five times that of other reefs
(F,=3.6; p<0.05; EG<AG, SW), and SW recorded the lowest levels of pigmentation prevalence
(Fig 7b; Table 2; F,=5.3; p<0.05; AG>SW). In contrast, bioerosion was comparatively similar
among sites within each season, but increased five-fold from 2.7 + 0.6% to 10 +1.3% following
the 2017 wet season (Table 1; F=20.2; p<0.001; 2017>2016). During both seasons, overall
bleaching prevalence was <10% with partially bleached the most common form and whole
bleaching the least observed (sup Fig. 5). Bleaching prevalence declined from 8.1 + 1.4%
following the dry season to 5.4 + 1.1 % after the wet season. Although this decline was not
statistically significant (F=3.3; p=0.08), the recovery of bleached corals that had been tagged the
year before was significant (p=0.002). The average bleaching scale dropped from 3.9 + 0.4 to 1.6
+ 0.2 (Fig. 8) with all Diploastrea sp. and Pachyseris sp. colonies recovered by 90-100% in
2017.

Patterns of compromised health differed among five representative coral @era (Acropora sp.,
Montipora sp., Pachyseris sp., Diploastrea sp. and Porites sp.). Acropora sp. displayed the least
signs of stress in both seasons (<3.5%). Porites sp. were the most compromised (2016 = 50.8 +
6%; 2017 =72 + 5%; Fig. 9) and the only coral genera with a significant increase in stress
symptoms (p=0.004), because of a 40% increase in bioerosion after the wet season (F;=10.17;
p<0.001; Table 3). Montipora sp. and Diploastrea sp. also suffered from an increase in
bioerosion between sampling seasons, although this as not statistically significant (p>0.05; Table
3). Despite a slight increase in the number of bleached Porites sp. corals, bleaching occurrence
for the other four corals declined, most notably for Pachyseris sp. (55% to 3%; F;=9.03;
p=0.008). Furthermore, the most abundant ra Porites sp. was the only coral to show
elevated signs of pigmentation (>10%) although this health sign was less prevalent at SW, the
most offshore site (F2=5.3; p=0.01; Table 3).

For the three coral genera, Montipora sp., Pachyseris sp. and Acropora sp., there was no
difference in symbiont density (H = 4.0397, df=2, p>0.05) and chlorophyll @ among sites (H =
2.3769, p>0.05) although SW scored the highest of both measures (3.2*10° +5.5 cells/cm?; 4.94
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+0.75 pg.cm?; Fig. 10a,b). Symbiont density differed among the three coral genera (chi-square =
23.1, df=2, p<0.001; MWPH: AC>MT,PH) with Acropora sp. scoring four and five times higher
symbiont densities (sup Fig. 6). Over 50% of the symbionts observed where healthy (stage 1;
sup Fig. 7a) with slightly more healthy cells observed at SW (H=1.7, p>0.05) and marginally
more degraded cells (stage 5) observed at AG (H=3.4, p>0.05). Among genera, Acropora had a
greater number of healthy cells (69 +3.9%) than both Montipora (49.4+5) and Pachyseris (52.6 +
4.8; H=14.4, p<0.001; sup Fig. 7b).

@ers of benthic cover and health

Environmental variables (depth, sediment trap accumulation rate, distances from shore/river
mouth, concentration of silt/fine/coarse particles, median particle size) explained 62.5% of the
variation in benthi@mposition among reefs. Key drivers (p<0.05) were distar@ from river
mouth (30.3%) and shore (1%), median particle size (16.4%), and sediment trap accumulation
rate (2.3%; Ta@). Variability among sites was higher than within, with sediment trap
accumulation rate and particle size a key driver of benthos at EG and AG, and distance of river

and shore more closely associated with SW (Fig. 11).

To determine key drivers of coral health, two DistLM models were run. The first model
included health data from both sampling seasons, with six explanatory variables (season, HCC,
diversity, distance from river mouth and shore, and depth). The second model included health
data and sediment related variables following the wet season and sediment trap contents
(sediment trap accumulation rate, concentration of silt/fine/coarse sediments, median particle
size). For the first model, year, HCC and diversity significantly explained <31% of the variation
in coral health among transects and sites (Table 5). Sites within a sampling season were
separated along a HCC and diversity gradient (Fig. 12), with transects at SW typically
characterised by higher HCC and diversity but lower prevalence of scars, pigmentation and
bleaching (sup Fig. 8). Furthermore, repeat transects were separated between seasons, with those
completed in 2017 recording higher bioerosion, but lower bleaching and pigmentation (sup Fig.
7), supporting our previous results. Of the sediment drivers, the BEST model included both silt
and the coarse sediments, which explained 18% of the variations in coral health in 2017. Higher

sediment trap accumulation rates, although not statistically significant (p=0.06; Table 5),
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explained 7% of the variation in health, and were most often associated with higher prevalence

of pigmentation, bioerosion and bleaching (sup Fig. 9).

DISCUSSION

The three reef sites in the MSCRNP are characterised by healthy coral cover yet low coral
diversity. Average live coral cover among the three reefs was 30%, ranging from 22% at EG to
39% at Siwa Reef. This is lower than reefs to the north in Sabah, with reports of live coral cover
from 23 to 75% (Pilcher and Cabanban, 2000; Chou and Tun, 2002; Lee, 2007; Praveena et al.,
2012; Waheed et al., 2016), but greater than the average coral cover for the wider Pacific region,
estimated at 22% in 2003 (Bruno and Selig, 2007). Previous assessment of coral cover in 2000
on the Miri reefs range from 28% (Pilcher and Cabanban, 2000) to 22-58% (Elcee
Instumentation, 2002). Although the higher coral cover reported by the latter study is most likely
an artefact of the methodology used (ex-situ Acoustic Ground Discrimination System), which
can result in the misidentification and, therefore, quantification of live coral cover. Regardless,
our data suggest that coral cover at Miri’s reefs has been relatively stable over the last two
decades. Miri’s coral cover is comparable to both turbid and clear water reefs (Roy and Smith,
1971; Loya, 1976; Larcombe et al., 2001; Wesseling et al., 2001; Palmer et al., 2010; Goodkin et
al., 2011), yet diversity was comparatively low (14 to 25 genera per reef) for the Coral Triangle
region. Turak and Devantier (2010) reported 391 coral species (~70 genera) on reefs near Brunei
(~80 km from Miri), and Teh and Cabanban (2007) reported 120 species within 71 hard coral
genera for Banggi Island in Sabah. A comprehensive biodiversity assessment of all 30 reefs with
the MSCRNP in 2000 reported 66 genera (203 coral species; Elcee Instumentation, 2002). We
only observed a third of the number of coral genera (n=28), which is expected given we surveyed
only 10% (n=3) of the reefs surveyed in 2002. However, this report also found that coral
diversity was highly variable among reefs, with an average of nine coral genera per transect. It is
likely that MSCRNP reefs found further to the south and in deeper (15-35 m) offshore waters but
outside the scope of this study (characterized by different environmental conditions) include
several coral species not observed at our shallow nearshore sites, which are influenced by

terrestrial sedimentation from both natural and anthropogenic processes.
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Low diversity at the surveyed sites is likely the result of poor water quality in the nearshore
shallow coastal zone. The inshore reefs of Miri are found in a narrow depth range between 7 and
15 m, hence there is a complete lack of reef structure in 1-5 m depth range. These very shallow
depths, however, are often characterised by a distinct set @ral species (Morgan et al., 2016;
DeVantier and Turak, 2017) which in part may explain lower coral diversity than on reefs to the
north in Brunei and Sabah that have reached sea level. But these inshore reefs are also
characterised by high levels of terrigenous sediments, which can also reduce coral diversity
(Rogers, 1990; Fabricius, 2005). High sediment input from rivers are typically correlated with
high nutrient loads that can lead to increase in reef algal biomass (De'ath et al., 2012). Algal
cover on all three reefs was high (>50%) compared to reefs in northern Borneo (0 to 29%;
Wabheed et al., 2015), and will most likely be competing with corals for reef space. Some coral
taxa will be less resilient to both sediments and algal competition resulting in lower coral
diversity (Fabricius et al., 2005; De'ath and Fabricius, 2010). In Indonesia, Edinger et al. (1998),
recorded lowest coral diversity on reefs with algae cover reaching 46%. Reduced diversity was
also attributed to land pollution as well as destructive and over-fishing practices that destroy the
reef structure and reduce fish biomass thereby removing the top-down control on algal growth by
herbivore browsers (Hughes, 1994; Rogers and Miller, 2006; De'ath and Fabricius, 2010). In
Miri, overfishing and poor land management practices have been a long-term concern for the
regional government (Elcee Instumentation, 2002) but there are limited funds to actively protect

the reefs (Teh and Teh, 2014) and collect data on these impacts.

Low coral diversity does not necessarily suggest a degraded reef condition. Typically, low
diversity in nature results in lower resilience (Raymundo et al., 2005) and community stability
(Bellwood et al., 2004). Yet there is growing evidence to suggest that a few but tolerant species
can maintain reef resilience to local and global impacts, and implies that the diversity-resilience
links need further investigation (Bellwood et al., 2004; Fabricius et al., 2005; Nystrom et al.,
2008). A recent study on relatively undisturbed and well protected reefs in the Philippines that
looked to identify site specific benchmarks for coral diversity, measured high coral cover (>30%)
at the majority of sites, but 10@ generic diversity (10 to 25 coral genera per 75 m by 25 m area;
Licuanan et al., 2017). This highlights that high diversity is not necessarily a key benchmark for

a healthy reef system. As well as assessing the number@:oral species on a reef, it is important
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to determine if and how coral community structure has changed over time. Significant shifts in
coral composition can affect the reef’s ecological function such as framework building, habitat
complexity and food source diversity (Aronson et al., 2004; Pratchett, 2005; Graham et al.,
2006). At six reef sites on the Great Barrier Reef coral communities shifted over 12 years
towards a high abundance of Porites spp. and soft corals; a community assemblage that is less
likely to re-establish to the pre-disturbance coral assemblage (Johns et al., 2014). Inshore reefs
in Miri are similarly dominated by massive corals including Porites sp. and Diploastrea sp., with
some (e.g. EG) also characterized by high soft coral cover (>10%). While we have no long-term
data sets to evaluate change in both diversity and composition, Miri’s reefs may have
experienced a community shift due to reduction in water quality. Yet our tendency as coral reef
ecologists to focus on coral cover, composition and diversity, has resulted in a misconception as
to what constitutes an overall healthy reef (Vroom, 2011). Some reefs may naturally be
dominated by non-coral organisms, such as calcifying algae that are equally important for reef
accretion and stability but possibly less resilient to climate change. Thus our perception of the
reefs current state and its future trajectory are likely inaccurate and need adjusting to go beyond

diversity assessment:

The MSCRNP reef community can best be described as representative of turbid reefs in the
Indo-Pacific. The dominant coral species include several genera (Acropora, Montipora, Porites,
Pachyseris, Faviidae and Galaxea spp.) that have been observed on nearshore reefs in Singapore
(Chou, 1988; Dikou and van Woesik, 2006), the Great Barrier Reef (GBR) (Ayling and Ayling,
1991; Larcombe et al., 2001; Browne et al., 2010; Morgan et al., 2016), Thailand (Tudhope and
Scoffin, 1994), Hong Kong (Goodkin et al., 2011) and Sabah (Pilcher and Cabanban, 2000).
These corals are considered to be more resilient to sediment influx either through: 1) enhanced
photo-acclamatory abilities required during periods of low light (e.g. Stylophora; Dubinsky et al.,
1984; Browne et al., 2014), 2) active sediment removal processes by the coral polyp (e.g.
Goniastrea; Rogers, 1990; Erftemeijer et al., 2012), 3) enha@i mucus production to remove
settled sediments (e.g. Porites; Bessell-Browne et al., 2017) or, 4) morphological advantages that
result in greater degree of vertical growth thereby reducing tissue mortality from sediment burial
(e.g. Acropora and Montipora; Erftemeijer et al., 2012). There were also distinct differences in

the community assemblages particularly between SW Reef and EG. Siwa Reef had a mixed
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assemblage of branching, foliose and massive corals, whereas EG was dominated by massive
corals, such as Porites sp. and Diploastrea sp. These coral community differences suggest there
are significant differences in environmental drivers (including sediments) over a comparatively

small spatial scale (10 km@

The inshore to offshore gradient in hard coral cover and diversity, and differences in coral
composition is heavily influenced by the spatial differences in sediment related parameters. Over
62% of the variation in benthic cover at our three reef sites is explained by differences ir@th,
sediment trap accumulation rates and distance from sediment sources as well as sediment particle
size characteristics. Consequently, we saw a significant increase in both coral cover and diversity
with increasing distance from the river mouths. Similar observations have been reported from
Indonesia and Puerto Rico, where hard coral cover nearly halved towards shore (Loya, 1976;
Edinger et al., 2000), and in Hong Kong, where inshore coral cover was 20% lower than offshore
(Goodkin et al., 2011). Reduced coral cover occurs because of low larval recruitment as a
consequence of limited hard substrate following sediment settling (Birrell et al., 2005; Fabricius,
2005; Dikou and van Woesik, 2006), or colony mortality caused by anoxic conditions that occur
under sediment layers (Rogers, 1983; Riegl and Branch, 1995; Wesselin@ al., 2001). The
sediment particle size and source (marine versus terrestrial) are considered equally important to
sediment volume in assessing the impacts of sediments on coral health (Weber et al., 2006).
Recent studies show that as the percentage of terrestrial sediments increases, there are greater
declines in coral cover either through direct contact of sediments on corals (n etal., 2016) or
following the reduction of coral recruitment (F@ey and Figueiredo, 2017). The significantly
lower hard coral cover and diversity at EG than at SW could be driven in part by a higher
per@age of terrestrial sediments from the Baram and Miri Rivers. Although we did not assess
sediment origin, sediment trap accumulation rates at EG were over double that at AG and SW,
which may be due to the reefs closer proximity to the two river mouths. However, it could also
be the result of increased sediment resuspension in shallow water or a combination of these
factors. Sediment traps do not provide a comprehensive assessment of sediment dynamics on
reefs, and given that our traps were out for 7 months, we recognize that our monthly sedimant
trap accumulation rates can only be compared among our study sites and not to other sts.

Regardless, it is likely that river flow and sediments are influencing reef health, but these reefs
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appear to be in a temporally stable state given low recentld coral cover (4.35%) and the

limite@cline in coral cover over the last two decades.

The prevalence of impaired health signs was dominated by bioerosion and pigmentation with no
signs of coral disease (with one exception). These health indicators are typically related to high
sediment and nutrient influx. High levels of bioerosion in particular has been linked to land
based pollution whereby lower light, from high turbidity, reduces CaCOj; density (Risk and
Sammarco, 1991; Lough and Barnes, 1992) weakening the coral skeleton and increasing
susceptibility to bioeroders (e.g. molluscs, worms etc.; Prouty et al., 2017). Furthermore, even
modest increases in nutrient levels can lead to an increase in the abundance of bioeroding
organisms shifting a reef community from one of net production to net erosion (Hallock and
Schlager, 1986; Hallock, 1988; Prouty et al., 2017). Bioerosion levels were significantly greater
following the wet season when the impact of sediments on the Miri reefs were elevated as
indicated by declines in light and higher suspended sediment loads. Conversely, pigmentation
rates were higher following the dry season. Pigmentation is an indicator of immune function in
response to a stressor (Willis et al., 2004; Palmer et al., 2009). These stressors have been related
to settling sediments (Pollock et al., 2014) or lesions from abrasion or scars (Willis et al., 2004),
or for the case of Miri reefs elevated SST’s recorded in the region in 201A leading to the
moderate bleaching event as observed by the diving operators and fishe . Spatially,
pigmentation rates were significantly lower at SW, which may suggest that corals at the least
sediment impacted site were also less stressed than at AG aéli

diseases in corals (Voss and Richardson, 2006; Haapkyla et al., 2011; Pollock et al., 2014) with
Black Band Disease and White@que widely observed in the Indo-Pacific (Harvell et al., 2007;

G. Sediments can also promote

Beeden et al., 2008), although generally low (~8% of current global records) in SE Asian reefs
compared to the Caribbean (Green and Bruckner, 2000). Suggested explanations for this include
poor reporting of coral diseases and relatively high coral diversity that might aid in diminishing a
quick spread of a disease (Raymundo et al., 2005). At Miri, the more likely explanation of low to
no coral diseases are more resilient individual corals and coral species, and potentially limited
connectivity with nearby coral populations, although this remains speculative until further work

1s carried out.
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Hard coral cover and diversity also explained a significant portion of the variation in coral
health. Miri reefs with a higher frequency of impaired health at sites recorded less coral cover
and diversity. In a recent study by Miller et al. (2015) reefs in Sabah, had four common coral
diseases at varying frequencies (<0.1 to 0.6 per affected colonies in an m?) and signs of tissue
necrosis and pigmentation responses. They found a positive correlation between disease
frequency and coral cover, which suggested that host density was a key driver of disease
prevalence and compromised health. This relationship is due to reduced distances between
colonies, and greater shading and competition by fast growing species as coral cover increases
(Bruno and Selig, 2007). In Miri, we see the reverse truggesting that factors other than host
density are driving coral health, n@ likely changing sediment loads and finer sediment particles
not present in Sabah. However other variables often associated with sediment such as nutrient

levels and pollution such as heavy metal loads are also worth investigating.

Variable species composition among sites would also partly explain the spatial variation in coral
health. Different coral taxa have different susceptibilities to bioerosion, bleaching, disease and
compromised health (Raymundo et al., 2005; Couch et al., 2014; Heintz et al., 2015). In Miri
signs of pigmentation and bioerosion were most prominent on massive Porites sp. colonies.
Porites sp., although typically considered a hardier coral taxa (Raymundo et al., 2005) tolerant of
turbid waters, often have the most lesions, highest tissue loss and pigmentation response
(Tribollet et al., 2011; Pollock et al., 2014; Heintz et al., 2015) as well as being a target for
disease (Raymundo et al., 2005). The level of bleaching observed in Porites at Miri was
comparable to other abundant coral genera, but recovery potential after 9 months was lower,
possibly due to other stress symptoms. Bleaching was the most common sign of impaired health
among coral taxa, most commonly observed in Pachyseris, Porites, Montipora, Dipsastrea and
Acropora spp. (in declining order). A comprehensive study by Marshall and Baird (2000) of 40
coral taxa on the GBR found the same coral taxa were highly (>50% bleached or dead) or
severely (>15% dead) susceptible to thermal stress. In contrast, the other five most abundant
corals at the Miri reefs (Diploastrea, Favites, Galaxea, Echinopora, Merulina spp.) are
considered to be less sensitive to rising SST’s (Marshall and Baird, 2000; Guest et al., 2016).
However, bleaching susceptibility does vary considerably according to the thermal history of a

region. For example, Acropora sp. is susceptible to bleaching on some reefs (Marshall and Baird,
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2000; Pratchett et al., 2013; Hoogenboom et al., 2017), but was less susceptible on other reefs
(e.g. Singapore following the 2010 bleaching event: Guest et al., 2012). Only ~5% of Acropora
sp. colonies in Miri showed signs of thermal stress, which suggests moderate thermal tolerance
to high SST’s. High levels of algal density in coral tissue are linked to higher thermal stress
resistance (Glynn, 1993; Stimson et al., 2002) due to the symbionts providing a greater
concentration of mycosporine-like amino acids that protect corals from UV radiation (Xu et al.,
2017). Symbiont densities measured at Miri were high (mean = 2.4* 10° cells per cm?) but
comparable to corals on other turbid reefs like those from Singapore (e.g. 0.5 to 3*10° cells per
cm?; (Browne et al., 2015). However, it was Acropora sp. that had significantly higher symbiont
density than the more frequently bleached Montipora sp. and Pachyseris sp. Our results suggest
that resilience to stress for these corals is a complex, but synergistic relationship between level
and frequency of environmental stressors, community composition and a coral’s adaptability to

increased SST.

In 2016, a severe coral bleaching event occurred throughout the Indo-Pacific region. The
impacts of this event were thoroughly assessed on the GBR, where over 90% of reefs bleached
resulting in the loss of 29% of shallow water coral cover (Great Barrier Reef Marine Park
Authority, 2016). In January to March 2016, SST along the northern shore of Borneo were in the
highest 10% of global records since 1990 (Great Barrier Reef Marine Park Authority, 2016). SST
reported by NOAA for Brunei peaked in May to June 2016 at 31°C (the bleaching threshold
temperature; Fig. 12). During this time there was 1 to 2.5 Degree Heating Weeks (DHW) and
mid-level bleaching warnings. SST remained at ~30°C until January 2017 (National Oceanic &
Atmospheric Administration, 2018), which agree with our in-water assessment of SST during
September 2016 to early 2017 (sup Fig. 2). This suggests that while corals at Miri were subject
to elevated SST’s for 5 or more months our surveys revealed low bleaching rates (~10% of
colonies bleached), and high recovery rates (as suggested by the tagged corals; >90%). This
suggests these nearshore turbid water reefs are resilient to high SST’s supporting the growing
body of evidence that turbid reefs bleach less severely and frequently than their clear-water
counterparts (Marshall and Baird, 2000; Heintz et al., 2015; Morgan et al., 2017). Low
bleaching and high recovery rates of Miri reefs is possibly due to nearshore coral assemblages

more frequent exposure to higher temperatures than their offshore deeper conspecifics, resulting
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in the development of adaptive mechanisms (Marshall and Baird, 2000; Guinotte et al., 2003;
Guest et al., 2016; Morgan et al., 2017). It may also be due to lower UV light penetration that
can exacerbate temperature stress (Courtial et al., 2017), or potentially from higher heterotrophy,
which increases the supply of essential metals to the symbionts thus sustaining them through
elevated temperatures (Ferrier-Pages et al., 2018). This study further suggests that while turbid
reefs are more potentially @e resilient to elevated SST, the mechanism/s responsible for this

resilience remain unclear.

CONCLUSIONS

In conclusion, the MSCRNP reefs are characterized by relatively high coral cover, low
prevalence of impaired health and are composed of a few but tolerant coral taxa. Low recently
dead coral cover and almost no decline in coral cover over the last two decades indicates these
reefs are stable despite elevated sediment inputs and regular exposure to thermal stress events.
There are, however, potential risks from proposed coastal and in-land developments given we
found that sediment related parameters have resulted in an on- to offshore gradient in coral
cover, diversity and health. Furthermore, high bioerosion and algae cover indirectly suggests
high nutrient influx, most likely from the Baram River. The high prevalence of bioerosion
observed in Porites sp. colonies is a concern given that this coral is a key reef framework
builder, and any notable declines in Porites sp. health will reduce coral reef complexity and
habitat availability for other invertebrate and fish species. Currently, there is no baseline data on
spatial and temporal changes in river outputs and sediment plume dynamics within the
MSCRNP, which is crucial in evaluating future threats to these reefs. Local management
agencies will need to address this knowledge gap if they plan to develop strategies that address
the potential impacts of changing land use on MSCRNP. The reefs current health state and
elevated stress tolerance does, however give hope that these reefs could be resilient to future

climate change but only if local water quality does not deteriorate.
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Figure 1

Map of south China Sea with enlarged map of study area, showing locations of the three
reefs, Miri city and the closest rivers.

(Image credit Hedwig Krawczyk modified from Natural Earth - Free vector and raster map

data).
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Figure 2

Average monthly data for A. light, B. wind speeds, C. cloud cover, and D. rain fall.

Light data was collected at EG as part of this study whereas wind, cloud and cover data was

taken from the worldwideweatheronline.com website (error bars = SE).
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Figure 3

Average sedimentation rates at the three surveyed sites (error bars = SE).
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Figure 4

Particle size data from the sediment traps and the benthos at EG, AG and SW.
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Figure 5

Average percentage benthic cover at EG, AG and SW. Sites are organised from inshore
to offshore (error bars = SE).
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Figure 6

Signs of impaired health

A. Mucus, B. Feeding scars, C. Christmas tree worms and bivaIvD. pigmentation response

in Porites sp. E. Non-focal bleaching, and F. Partial bleaching.
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Figure 7

Average prevalence of the dominant signs of impaired health across all three surveyed
sites (EG, AG, SW) following the 2016 dry season and 2017 wet season (error bars =
SE).
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Figure 8

Average bleaching scale for the three coral genus across the three survey sites (EG, AG,
SW) that were tagged in September 2016 following the warm dry season and cooler wet
season (error bars = SE).

(1=normal, 2=pale, 3=0-20% bleached, 3=21-50% bleached, 4=51-80% bleached,
5=81-100% bleached)
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Figure 9

Prevalence of the most common impaired health signs following the 2016 dry season
and the 2017 wet season for the five most common observed coral genus across all
three sites surveyed (EG, AG< SW).
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Figure 10

Average symbiont density (A) and chlorophyll a pigment density (B) across the three

coral species assessed (Acropora, Monitpora and Pachyseris) at EG, AG and SW (error
bars = SE).
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Figure 11

Distance-based redundancy analysis (dbRDA) plot with an AIC criterion selection
illustrating the significant environmental factors (p<0.05) that influence community
composition at EG, AG and SW.

The length and direction of the vectors represent the strength of the correlation (circle
denotes a correlation of 1) and direction (+/-) of the relationship with transects (points

plotted) at each site.
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Figure 12

Distance-based redundancy analysis (dbRDA) plot with an AIC criterion selection
illustrating the that influence coral health at at EG, AG and SW.

Significant explanatory variables (p<0.05; HCC = hard coral cover, diversity = coral diversity,
year = Sept 2016 and May 2017). The length and direction of the vectors represent the
strength and direction (+/-) of the relationship with transects (points plotted) at each site.

(Image credit: Amitay Moody).
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Table 1l(on next page)

Average (%) coral cover of the 28 genera observed at the three surveyed reefs
illustrating the 10 most dominant coral genus.
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Genus Eve’s Garden Anemone’s Garden Siwa reef
Acropora (branching) 0.07+0.07 2.60+0.40
Diploastrea (massive) 14.80 + 1.60 10.60 + 3.70 0.40=+0.10
Echinopora (encrusting) 0.50+0.14 1.90 + 1.60
Dipsastrea 0.90+0.30 3.44+£0.40 3.60 £2.00
Favites (massive) 1.70 + 0.80 2.40 £ 0.86 5.10 = 1.60
Galaxea 3.00+ 1 0.62 £0.20 0.90 +0.30
Merulina 1.60+ 1.5 0.10£0.03 1.33 £0.80
Montipora (plate) 1.30 £ 100 2.09+£1.10 8.60 = 3.00
Pachyseris (plate) 2.10+1.10 0.50+0.30 2.00+1.30
Porites (massive/plate) 5.70 +2.80 7.30+1.50 7.30+2.30
Astreopora 0.90 + 0.60
Caulastrea 0.07+0.19 0.04 £0.04
Ctenactis (solitary) 0.07 £0.07 0.62 +£0.15 0.14£0.09
Echinophyllia 0.30+0.30 0.06 £0.06
Fungia 0.10£0.01
Goniastrea 0.10£0.03 0.04 +£0.04
Goniopora 0.03 £0.03
Heliofungia 0.10£0.10
Leptoria 0.03 £ 0.03 0.08 +0.08
Leptoseris 0.17+0.17 1.60 +1.50
Montastrea 0.04 £ 0.04
Oxypora 0.03 +0.03 0.17+0.17
Pectinia 0.08 +0.08
Physogyra 0.17+£0.17
Platygyra (massive) 0.90 +0.80 1.79 £ 1.60 0.60 £ 0.40
Psammocora 0.10+0.10
Symphyllia 0.40+0.20 0.69 £0.30
Turbinaria 0.68 +0.68
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Table 2(on next page)

Statistical results from two-way ANOVA of the total impaired health and each impaired

health indicator with site (EG = Eves Garden, AG = Anenomes Garden, SW = Siwa) and
season (2016, 2017), and the interaction.
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Health sign Factor df F value p value Post hoc
Total impaired Site 2 0.25 0.780
health Season 1 1.11 0.300
Site*Season 2 0.15 0.860
Bleaching Site 2 0.19 0.830
Season 1 3.30 0.080
Site*Season 2 0.69 0.510
Mucus Site 2 3.60 0.040 EG<AG,SW
Season 1 0.15 0.700
Site*Season 2 7.20 0.003
Bioerosion Site 2 0.87 0.430
Season 1 20.20 <0.001  2017>2016
Site*Season 2 3.80 0.040
Pimentation Site 2 5.30 0.010 AG>SW
Season 1 1.00 0.320
Site*Season 2 0.82 0.440
Scars Site 2 0.10 0.910
Season 1 0.33 0.570
Site*Season 2 2.59 0.090
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Table 3(on next page)

Statistical results from two-way ANOVA of the total impaired health and each impaired

health indicator for the 5 most dominant coral genera with site and season and the
interaction.

If impaired health result is missing then it was not observed for that coral genus. Sites; EG =

Eves Garden, AG = Anenomes Garden, SW = Siwa: Seasons; 2016, 2017.
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Species Health sign  Factor df F value p value Post hoc
Porites Total Site 2 1.71 0.202
Year 1 10.17 0.004 2017>2016
Site*year 2 4.00 0.031
Bleaching Site 2 0.36 0.701
Year 1 0.08 0.774
Site*year 2 1.81 0.185
Mucus Site 2 6.72 0.034 EG>SW
Year 1 2.64 0.104
Site*year
Bioerosion  Site 2 1.61 0.219
Year 1 21.79 <0.001 2017>2016
Site*year 2 6.29 0.006
Pimentation  Site 2 8.79 0.001 EgAG>SW
Year 1 2.49 0.128
Site*year 2 2.09 0.145
Scars Site 2 0.46 0.637
Year 1 0.38 0.543
Site*year 2 2.25 0.126
Pachyseris Total Site 2 0.30 0.744
Year 1 9.02 0.008 2016>2017
Site*year 2 0.14 0.869
Bleaching Site 2 0.37 0.699
Year 1 9.69 0.006 2016>2017
Site*year 2 0.11 0.897
Bioerosion  Site 2 0.49 0.622
Year 1 1.42 0.249
Site*year 2 0.39 0.685
Montipora Total Site 2 0.77 0.476
Year 1 1.65 0.211
Site*year 2 1.45 0.254
Bleaching Site 2 2.06 0.149
Year 1 0.29 0.594
Site*year 2 0.73 0.494
Bioerosion  Site 2 0.83 0.449
Year 1 0.83 0.371
Site*year 2 0.68 0.519
Diploastrea  Total Site 2 0.66 0.527
Year 1 0.10 0.752
Site*year 2 2.54 0.104
Bleaching Site 2 0.63 0.541
Year 1 1.69 0.209
Site*year 2 2.06 0.152
Mucus Site 2 0.58 0.570
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Year 1 2.75 0.113

Site*year 2 0.71 0.502

Bioerosion  Site 2 1.64 0.220
Year 1 0.86 0.364

Site*year 2 0.99 0.391

Acropora Total Site 2 1.92 0.171
Year 1 0.22 0.644

Site*year 2 0.14 0.872

Bleaching Site 2 1.27 0.300
Year 1 1.02 0.323

Site*year 2 0.64 0.538
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Table 4(on next page)

PERMANOVA results highlighting the significant drivers that explain variation in benthic
community assemblage among reefs in 2017
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Explanatory variable p value  Pseudo-F R?

Depth 0.094 2.3 0.010
Dist. Baram River 0.002 7.0 0.303
Dist. Shore 0.007 5.1 0.008
Sedimentation rate 0.025 39 0.023
Course sediments 0.069 2.7 0.001
Fine sediments 0.070 2.7 0.100
Silt 0.153 1.9 0.015
Median particle size 0.010 5.0 0.164
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Table 5(on next page)
PERMANOVA results highlighting the significant drivers in coral health.

The top panel are the results of a DistLM that includes substrate structure and physical
conditions among reefs and across both sampling seasons, and the bottom panel are the

results of a DistLM that includes data from the sediment traps among reefs in 2017 only.

Peer] reviewing PDF | (2018:10:31951:1:2:NEW 23 Apr 2019)



PeerJ

Pseudo-
Explanatory variable  p value F R?
Year 0.003 5.0 0.128
HCC 0.042 2.8 0.052
Diversity 0.003 5.1 0.129
Dist. Baram River 0.304 1.3 0.019
Dist. Shore 0.521 0.8 0.020
Depth 0.467 0.9 0.017

Pseudo-
Sediment variable p value F R?
Sedimentation rate 0.059 2.4 0.070
Course sediments 0.031 2.9 0.152
Fine sediments 0.031 2.9 0.030
Silt 0.067 2.3 0.110
Median particle size 0.083 2.2 0.024
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