
Microbial taxonomical composition in
spruce phyllosphere, but not community
functional structure, varies by
geographical location
Yunshi Li1,2,3,*, Xiukun Wu1,3,*, Wanfu Wang1,4, Minghao Wang5,
Changming Zhao5, Tuo Chen1,6, Guangxiu Liu1,3, Wei Zhang1,3,
Shiweng Li7, Huaizhe Zhou8, Minghui Wu2,6, Ruiqi Yang1,2,3 and
Gaosen Zhang1,3

1 Key Laboratory of Desert and Desertification, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Lanzhou, China

2 University of Chinese Academy of Sciences, Beijing, China
3 Key Laboratory of Extreme Environmental Microbial Resources and Engineering, Gansu
Province, Lanzhou, China

4 Conservation Institute, Dunhuang Academy, Dunhuang, China
5 State Key Laboratory of Grassland Agro-Ecosystems, School of Life Sciences,
Lanzhou University, Lanzhou, China

6 State Key Laboratory of Cryospheric Sciences, Northwest Institute of Eco-Environment and
Resources, Chinese Academy of Sciences, Lanzhou, China

7 Lanzhou Jiaotong University, School of Environmental and Municipal Engineering,
Lanzhou, China

8 National University of Defense Technology, College of Computer, Changsha, China
* These authors contributed equally to this work.

ABSTRACT
Previous studies indicate that the plant phenotypic traits eventually shape its
microbiota due to the community assembly based on the functional types. If so,
the distance-related variations of microbial communities are mostly only in
taxonomical composition due to the different seeds pool, and there is no difference
in microbial community functional structure if the location associated factors
would not cause phenotypical variations in plants. We test this hypothesis by
investigating the phyllospheric microbial community from five species of
spruce (Picea spp.) trees that planted similarly but at three different locations.
Results indicated that the geographical location affected microbial taxonomical
compositions and had no effect on the community functional structure.
In fact, this actually leads to a spurious difference in the microbial community.
Our findings suggest that, within similar host plants, the phyllosphere
microbial communities with differing taxonomical compositions might be
functionally similar.
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INTRODUCTION
The phyllosphere provides an ecological niche for microorganisms inhabiting it
(Delmotte et al., 2009; Rico et al., 2014; Leveau, 2015). These taxonomically structured
microbial communities are functionally diverse and play an important role for the plant
ecological strategies aboveground (Friesen et al., 2011; Berlec, 2012; Kembel et al., 2014;
Rosado et al., 2018). For instance, the microbial members are involved in disease resistance
and/or pathogenesis of plant, promoting plant growth and development, changing
plant foliar activity, and fixing nitrogen (Innerebner, Knief & Vorholt, 2011; Reed,
Cleveland & Townsend, 2011). To this date, numerous investigations have shed light on the
phylogenetic compositions of microbial life within plant phyllosphere. These studies
have revealed that compositional changes within microbial functional groups are correlated
to changes in phyllosphere ecosystem processes (Cordier et al., 2012; Remus-Emsermann
et al., 2012; Rastogi, Coaker & Leveau, 2013). However, they did not demonstrate
a relationship between microbial taxonomical compositions and community functional
structures across geographical locations.

Several studies have compared taxonomic structure of phyllosphere microbial
communities from the same tree species across a range of geographic locations. Therefore,
we can infer that geographic locations may or may not influence the structure of these
taxonomic microbial communities. For example, microbial phyllosphere communities on
different Tamarix species are highly similar in the same locale, whereas trees of the
same species that grow in different regions possess distinct microbial communities (Finkel
et al., 2011). However, there was a remarkably little influence of geographic location
on phyllosphere community composition of Pinus ponderosa leaves, even over thousands
of kilometers (Redford et al., 2010). Studies further speculated that location-dependent
differences observed in the leaf microbiome were between samples taken from distant
locations with very different climates and soil properties (Badri et al., 2013). The taxonomical
microbial community shifts among various locations could be due to location-specific
properties but may also reflect host plant species relatedness. In general, the phyllosphere
microbiota is a multilayered structure, composed of both a flexible pool of microbes
modulated by the environment and a microbiota under the host genotypic and
phenotypic control.

Host species are known to influence the taxonomical composition of phyllosphere
microbial communities. Current knowledge indicates two basic mechanisms that possibly
explain the host species effect. First, plant genotype may vary the phyllosphere microbial
community (Whipps et al., 2008; Bálint et al., 2013; Bodenhausen et al., 2014). It has
now been demonstrated that within plant species, contrasting genotypes can support
different microbial communities. Second, plant phenotypic differentiation has also been
shown to contribute to the variation of phyllosphere microbial communities. Plasticity
basis of variations in the phenotype of individual plants caused basic differences in
phyllosphere habitat, in which epiphytic microbes will choose favorable sites for survival
and growth (Hunter et al., 2010; Laforest-Lapointe, Messier & Kembel, 2016). Further,
microbial specialization to substrates probably underlies a fraction of differences in the
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phyllosphere microbiota, as bacterial species partition the niche space according to their
substrate preferences and use (Bulgarelli et al., 2013). As a result, leaf exudates and
the response of microorganisms to those as well as to leaf morphology were shown to alter
the relative abundances of the taxa that are present (Reisberg et al., 2013; Bodenhausen
et al., 2014).

In a recent report, we showed that the plant phenotypic traits eventually shape its
microbiota due to the community assembly based on the functional types (Li et al.,
2018). Plant trait differences across geographical locations had both genetic and plasticity
bases, with a stronger contribution of the latter (Schlichting, 1986; Al Hayek et al.,
2014). In different environments, a given genotype expresses different phenotypes, a
phenomenon known as phenotypic plasticity (Sultan, 2000; Nicotra et al., 2010). For
example, we can always observe the variations of tree morphology, physiology, and life
history under different conditions. Phenotypic variations within a plant species can
affect microbial communities due to their varying traits. Most changes in microbial
communities occurred as results of differing phenotypes under similar environmental
conditions. After excluding plant effects, the dissimilarity in the microbial taxonomical
composition come from the different regional species pool (Kinkel, 1997; Müller et al.,
2016). Callens et al. (2018) confirmed that the differences in the environmental
pool of colonizers can influence microbiota community assembly on the host. Previous
findings indicated that geographic locations will lead to an indirect effect on the
microbial community functional structure. Therefore, if the location associated factors
do not cause phenotypical variations in plants, the plant-associated microbial
communities will only differ in taxonomical compositions, rather than functional
structure variations. This is also justified based upon the high species diversity in
microbial communities and the ability of microbes to adapt rapidly to new conditions.
Dissimilarities in the community functional structures only result from the plant per se
when under similar environmental conditions. To test this assumption, we compared the
microbial community dissimilarities of the same tree species sampled from different
geographical locations, to those of different tree species from the same site. We have
done this by sampling trees in different areas having relatively uniform climatic
conditions. This paper tries to find a reasonable answer to the following questions: how
do the microbial communities reflect geographical location variations? Do such
alterations have consequences on microbial taxonomical compositions or community
functional structures? If geographic location-governed factors do not cause phenotypic
variations in plants, is there a variation in the community functional structure that
associates with different geographical locations?

MATERIALS AND METHODS
Sample sites and sampling
Leaves of spruce (Picea spp.) tree species were collected from three sites in Gansu Province,
China (Fig. 1): in the Yuzhong campus of Lanzhou University in Lanzhou city (LDU,
104.16�E, 35.94�N), in Xiaolongshan forest farm in Tianshui City (XLS, 106.56�E,
34.12�N), and a site in the Xinglongshan forest in Majiasi (MJS, 104.01�E, 35.88�N).
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At each location, five spruce (Picea spp.) tree species of Picea abies, Picea crassifolia,
Picea koraiensis, Picea likiangensis var. rubescens, and Picea wilsonii were selected. In total,
15 leaf samples were obtained at each location (three replicates per tree).

In the year 2006, spruce seedlings were bred in Xiaolongshan forest farm. The spruce
species germinated from seeds, which were surface sterilized with a 0.50% potassium
permanganate (KMnO4) solution. Then the spruce seedlings were transplanted in the
Yuzhong campus of Lanzhou University and the Xinglongshan forest in Majiasi in the year
2009 and 2014, respectively. All samples were collected in early October 2017 and all
the trees were 11 years old. Weather conditions were warm and moist during the sampling.

The Yuzhong campus of Lanzhou University is in the northwest of the Loess Plateau,
the middle part of Gansu Province, which is 46 km from Lanzhou city. The climate of
this location is semiarid, and the mean annual precipitation is low (381.80 mm), nearly
78% of rainfall events are below 10 mm and 36% of precipitations are below five mm, and
the mean annual temperature is 6.57 �C and droughts commonly occur. The soil in
the region, which is two m deep, is the clay loam of Loess origin with a bulk density ranging
from 1.38 to 1.45 g cm-3, and the water holding capacity of the soil is 21.18%. The results
are supported by Wang et al. (2008).

Figure 1 Geographic locations of spruce trees sampled. The abbreviations of study sites are as follows:
LDU, Yuzhong campus of Lanzhou University in Lanzhou city; MJS, a site in the Xinglongshan forest in
Majiasi; XLS, Xiaolongshan forest farm in Tianshui City. Full-size DOI: 10.7717/peerj.7376/fig-1
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The Xinglongshan forest in Majiasi is a unique island-like area where primitive forest
is well preserved at the western edge of the Chinese Loess Plateau. The mean annual
temperature is 4.10 �C, with a mean annual precipitation of 625 mm (Lei et al., 2010).
Leached brown soil covers the area and was developed under semiarid climate under forest
cover (Liu et al., 1990).

Xiaolongshan forest farm is located in the southeast of Gansu Province. The climate of this
location is warm with humid and semi-humid continental monsoon. It is characterized
by a long-term average annual temperature of 7–12 �C and an average annual precipitation
of 600–900 mm. The soil in the area is dominated by mountain cinnamon soils and
brown forest soils listed in the Chinese Soil Taxonomy. The information was obtained
from the Xiaolongshan Forestry Bureau of Gansu Province.

Only “healthy” leaves that with no signs of disease or decay (such as browning
or spotting) were selected assessed with the naked eye. Ten grams of fresh needles and
shoots were collected from multiple canopy positions and mixed into a 100 ml plastic
centrifuge tube containing 50 ml sterile phosphate buffer. The tube was agitated on
vortex for 10 s and repeated for six times, and then the buffer was filtered through an
EMD Millipore Sterivex-GV Polyvinylidene Fluoride 0.22 mm filter (Millipore,
Billerica, MA, USA). Then, the filter was placed in a sterile screw-cap tube and frozen
at -80 �C before processing.

DNA extraction, PCR amplification, and sequencing processing
The phylloshperic microbial DNA was extracted using the E.Z.N.A.� Soil/Stool DNA Kit
(Omega Bio-tek, Norcross, GA, USA) according to manufacturer’s protocols. Quantity
and quality of the genomic DNA were checked on 0.80% (w/v) agarose gels. The V4
hypervariable region of the bacterial 16S rRNA gene was amplified with TransGen
AP221-02 (TransStart FastPfu DNA Polymerase) using primers 515F-806R (Caporaso
et al., 2011); PCRs contained 4 ml 5� FastPfu buffer, two ml 2.50 mM deoxyribonucleoside
triphosphates mix, 0.8 ml forward primer (five mM), 0.8 ml reverse primer (five mM),
0.40 ml FastPfu Polymerase, 0.20 ml 20 mg/mL bovine serum albumin solution and 10 ng
Template DNA in a volume of 20 ml. The ITS1-ITS2 (White et al., 1990) was used
to target partial fragments of the fungal ITS gene with TAKARA rTaq DNA polymerase
(Takara Shuzo, Kyoto, Japan); PCRs contained 2 ml 10 � PCR buffer, 2 ml 2.50 mM
deoxyribonucleoside triphosphates mix, 0.8 ml forward primer (five mM), 0.80 ml reverse
primer (five mM), 0.2 ml rTaq Polymerase, 0.20 ml 20 mg/ml bovine serum albumin
solution and 10 ng Template DNA in a volume of 20 ml. All samples were heated at 94 �C
for 3 min in the first round of denaturation and were then subjected to 32 cycles of PCR
consisting of 30 s at 95 �C, 30 s at 62 �C, and 45 s at 72 �C. Cycling was performed in
an automated DNA thermal cycler (ABI GeneAmp� PCR System 9700). After the last
cycle, the samples were incubated for an additional 10 min at 72 �C. Amplicons were
extracted from 2% (w/v) agarose gels and purified using the AxyPrep DNA Gel Extraction
Kit (Axygen Biosciences, Union City, CA, USA) according to the manufacturer’s
instructions and quantified using QuantiFluorTM -ST (Promega, Madison, WI, USA).
Sample libraries were pooled in equimolar and paired-end sequenced (2 � 300 bp) on
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an Illumina MiSeq (Illumina, San Diego, CA, USA) platform. Raw FASTQ files were
quality-filtered by Trimmomatic and merged by FLASH with the following criteria: (i) The
reads were truncated at any site receiving an average quality score <20 over a 50 bp
sliding window. (ii) Sequences whose overlap being longer than 10 bp were merged
according to their overlap with mismatch no more than two bp. (iii) Sequences of each
sample were separated according to barcodes (exactly matching) and Primers (allowing
for two nucleotides mismatching) and reads containing ambiguous bases were removed.
Then the dataset was analyzed using QIIME (version 1.9.1, http://www.qiime.org).
Operational taxonomic units (OTUs) with 97% similarity cutoff were clustered using
UPARSE (version 7.1, http://drive5.com/uparse/) (Edgar, 2013). Chimeric sequences were
identified and removed using UCHIME (Edgar et al., 2011). The taxonomy of each bacterial
16S rRNA gene sequence and fungal ITS sequence was analyzed by the RDP Classifier
algorithm (http://rdp.cme.msu.edu/) against the Silva (Release119, http://www.arb-silva.de)
and UNITE (Release 7.0, http://unite.ut.ee/index.php) databases at a confidence threshold
of 70%, respectively. Sequences shorter or longer than the expected amplicons size and
chimeras were removed. Cyanobacteria, mitochondria, archaeal and non-fungal reads were
also filtered. After quality control, 1,921,840 and 2,915,075 valid sequences were clustered
into 3,588 bacterial and 3,694 fungal OTUs at 97% sequence identity level, respectively
(Table S1). There are 40,654 and 120 bacterial and fungal sequences could not be classified to
any known bacterial and fungal phyla, respectively. Here, we defined OTUs with abundance
higher than 5% in at least one of the replicates as abundant OTUs. The rarefaction
analysis based on Mothur v.1.21.1 software was conducted to reveal the diversity indices,
including the Chao1, Shannon, Simpson, and coverage indices. All sequences can be
downloaded from the NCBI Sequence Read Archive database under the accession BioProject
number PRJNA506625.

Tax4Fun and FUNGuild analyses
Tax4Fun is an inexpensive method to estimate the functional capacity of a microbial
community (Aßhauer et al., 2015). This tool uses 16S rRNA gene profiles and then
indirectly infers the abundance of functional genes. The results are KEGG orthologs (KOs)
which wholly depend on the Silva ontology. Formatted sequences were clustered at
0.97 sequence similarity described above. Then, taxonomic information was assigned using
Silva 123 downloaded from the Tax4Fun website (http://tax4fun.gobics.de/). An OTU
table was created and fed to Tax4Fun R package. The Tax4Fun function was run with
all default settings as described on the Tax4Fun website.

The fungal functional guild of the OTUs was inferred using FUNGuild v1.0
(http://funguild.org). This tool will infer organism trophic mode (Nguyen et al., 2016).

Data analysis
Alpha-diversity parameters were estimated (for a complete list of the calculated indexes see
Table S2 in Supporting Information), and distance matrices (Bray–Curtis) of the samples
were computed. A two-way ANOVA on the calculated alpha-diversity indices were
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performed in order to test differences in microbiome diversity between the different
samples. Variations between different groups in Principal Coordinate Analysis (PCoA)
were calculated by permutational multivariate analysis of variance (PERMANOVA) in
R package “vegan,” using the function “adonis,” permutations ¼ 999 (R Core Team, 2008).
Bray–Curtis distance matrices used in the PCoA analysis were calculated by “dist.shared”
command to test differences in the microbiome composition between different samples.
A permutational multivariate analysis of dispersion (PERMDISP) for vegan’s betadisper was
then run on this Bray–Curtis dissimilarity matrix to test the homogeneity of variance in
community data (Anderson & Walsh, 2013). The statistical significance of the relationship
between species dissimilarities and geographic locations was tested by ANCOVA analysis
using SPSS. Analyses for the Venn diagram generation in microbial communities were
performed using the Mothur v.1.21.1 suite of programs. The species typical of the different
locations were determined using indicator species analysis (ISA). ISA was performed
using the multipatt function implemented in the “indicspecies” package in R with 99,999
permutations and allowing combinations between habitats (De Cáceres, Legendre & Moretti,
2010). In this study, ISA were conducted with taxa grouped at the class and order level
of taxonomic resolution, respectively. The p.adjust command was used to define a corrected
critical p-value corresponding to a “false discovery rate” (FDR) of 0.05 (Benjamini &
Hochberg, 1995). An FDR of 5% means that among all features called significant, 5% of
these are truly null on average. Map created in ArcMap 9.3.

RESULTS
Phyllosphere microbial communities associated with spruce trees
To identify the phyllosphere microbiota associated with spruce trees, 16S rRNA and
ITS sequences of 45 replicates across five species and three locations were obtained.

A heatmap representation of the abundant OTUs abundances is presented in Fig. S1.
A total of 19 abundant OTUs were identified in 16S datasets. A total of 18 identified
abundant OTUs were ascribed to four bacterial phyla (Proteobacteria, Actinobacteria,
Bacteroidetes, and Firmicutes), while one unclassified at phylum level. A total of
24 abundant OTUs were identified in ITS datasets. At a finer taxonomic level, 20 identified
abundant OTUs were ascribed to five fungal orders (Pleosporales, Chaetothyriales,
Taphrinales, Capnodiales, and Dothideales), while four were unclassified at the order level.
Some OTUs were shared between different species from geographically distant samples,
suggesting the associated microbial taxa may be widespread.

In the bacterial communities, the most abundant bacterial phylumwas the Proteobacteria,
with an average abundance of 54.15% of the reads, followed by Bacteroidetes (20.32%),
and Actinobacteria (10.92%). The remaining 14.62% of reads belonged to other bacterial
phyla or were unclassified (unable to be taxonomically assigned, given the training set).
In the fungal communities, the most abundant fungal order was the Pleosporales,
with an average abundance of 33.2% of the reads, followed by Capnodiales (17.1%),
Chaetothyriales (8.5%), and Taphrinales (7.8%). The four orders belonged to Ascomycota,
which accounted for 66.6% of the reads.
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Community dissimilarity estimation by diversity indices
The two-way ANOVA on the alpha-diversity measures (Chao 1 index (C), Shannon
diversity index (H′), and Simpson diversity index (l); Fig. 2; Table S3) of both bacterial and
fungal communities evaluating all the factors considered in the experimental design
and their interactions. The results revealed that the geographical location, the host plant
species and the interaction of these two factors had the most influence on microbial
alpha diversities. Comparing different samples (LDU, MJS, and XLS) in the bacterial
communities, only the richness was highly significant with the location effect (F ¼ 283.34,
p < 0.001; Table S3), the host tree effect (F¼ 10.79, p < 0.001; Table S3), and the interaction
effect of the location and host tree (F ¼ 3.97, p ¼ 0.003; Table S3), respectively,
whereas for the fungal communities, the richness, the evenness, and the diversity were
all significant with these factors at different degrees (Table S3). Host tree species had
significant, albeit small, influences on the fungal community diversity (F ¼ 2.89, p < 0.05;
Table S3) and evenness (F ¼ 3.50, p < 0.05; Table S3). The interaction between the
sample location and the host tree species showed a highly significant effect of the fungal
community for all the analyzed indexes (C, F ¼ 7.33, p < 0.001; H′, F ¼ 5.57, p < 0.001;
l, F ¼ 5.04, p ¼ 0.001; Table S3), while only the OTUs index was significant in the
bacterial community (D, p < 0.001; H′, p ¼ 0.78; l, p ¼ 0.15; Table S3).

Figure 2 Boxplot of alpha-diversity indecies of bacterial (A, B and C) and fungal (D, E and F) communities among different replicates of
phyllosphere samples. Two-way ANOVA on the calculated alpha-diversity indices were performed: �p < 0.05; ��p < 0.01; ���p < 0.001. The
abbreviations of study sites and plant species are as follows: LDU, Yuzhong campus of Lanzhou University in Lanzhou city; MJS, a site in the Xinglongshan
forest in Majiasi; XLS, Xiaolongshan forest farm in Tianshui City. PA, Picea abies; PC, Picea crassifolia; PK, Picea koraiensis; PL, Picea likiangensis var.
rubescens; PW, Picea wilsonii. Number of sample replicates are 3, which are coded as 1–3. Full-size DOI: 10.7717/peerj.7376/fig-2
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Similarity in community composition depends upon taxonomical
OTUs and functional groups
Differences in the microbial OTUs datasets both for the bacterial (Fig. 3A) and fungal
(Fig. 3B) communities between all samples were visualized in a PCoA plot, where a
clear separation of samples attributed to their geographic locations was evidenced. The
significance of these differences was proven by PERMANOVA (Table S4). PERMDISP
test demonstrated that variance is homogeneous in different sample groups for bacterial
community, bacterial KO, fungal community, fungal guilds (p > 0.05) similar in all groups
(Table S5). Leaves sampled as little as 14 km apart were found to harbor significantly

Figure 3 Principal Coordinate Analysis (PCoA) plot of OTUs of bacteria (A) and fungal
(B) communities and KEGG orthologs (KOs) (C) and functional guilds (D) based on the Bray–
Curtis distance matrix. The symbols are as follows: circles ¼ PA; triangles ¼ PC; pentagram ¼ PK;
diamonds ¼ PL; four-angle star ¼ PW. Full name of each plant species is reported into the text. Symbol
colors correspond to the different study sites as identified in Fig. 1 (wine red¼ LDU: Yuzhong campus of
Lanzhou University in Lanzhou city; yellow ¼ MJS: a site in the Xinglongshan forest in Majiasi; blue ¼
XLS: Xiaolongshan forest farm in Tianshui City). The values are means of three replicate samples for each
host type. Results of the PERMANOVA are given in the higher right of each panel: �p < 0.05; ��p < 0.01;
���p < 0.001. Full-size DOI: 10.7717/peerj.7376/fig-3
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different taxonomical communities (between LDU and MJS), and the geographic
variability on same tree species exceeded the variability in community composition
between different trees sampled at one site. Regarding the functional datasets of 16S
(Fig. 3C), there is no clear cluster by the geographic location than there was by the
taxonomic composition. But the functional composition of the fungal assemblage via
FUNGuild designations appears to be more closely tied to the geographical location
(Fig. 3D). It could be that this clustering phenomenon is caused by the shortage of the
software itself. Because the FUNGuild is a tool of functional prediction which is a simple
way to sort large sequence pools into ecologically meaningful categories, in an organism
trophic mode not functional gene. Unlike Tax4Fun, the FUNGuild-based methods are
inefficient to predicate various functional genes of microorganisms due to the technical
shortage. The shortage of FUNGuild can be improved by metagenomic analysis, which is
the key to know more about the energy and material metabolism of microbes and
communities. But it is less cost-ineffective than FUNGuild, a tool that can be used to
taxonomically parse fungal OTUs by the ecological guild independent of the sequencing
platform or the analysis pipeline.

Venn diagrams of taxonomical OTUs and functional groups
To evaluate the distribution of OTUs and functional groups among the different sampling
locations, Venn diagrams were constructed (Figs. 4A, 4B, 4E and 4F). This showed that

Figure 4 The extent of overlap of phyllosphere microbiome among three locations (A), (B), (E), (F) and among five tree species (C), (D), (G),
(H), respectively. At the level of (A), (C), (E), and (G) OTUs clustered at 3% difference; (B), (D), (F), and (H) functional KOs by Tax4Fun and guilds
by FUNGuild. The abbreviations of study sites and plant species are as follows: LDU, Yuzhong campus of Lanzhou University in Lanzhou city; MJS,
a site in the Xinglongshan forest in Majiasi; XLS, Xiaolongshan forest farm in Tianshui City. PA, Picea abies; PC, Picea crassifolia; PK, Picea
koraiensis; PL, Picea likiangensis var. rubescens; PW, Picea wilsonii. Full-size DOI: 10.7717/peerj.7376/fig-4
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40.74%, 67.65%, and 54.29% of the bacterial OTUs (Fig. 4A) and 37.3%, 24.6%, and
30.2% of the fungal OTUs (Fig. 4E) were common (area in gray) to the three locations
(LDU, XLS, and MJS, respectively). However, the proportion of the overlapped functional
groups was much higher than those shared by OTUs. In 16S datasets, the overlapped
KOs were 99.44% (LDU), 99.78% (XLS), and 99.84% (MJS), respectively (Fig. 4B).
Similarly, the overlapped functional guilds were 81.8% (LDU), 73.8% (XLS), and 78.9%
(MJS), respectively (Fig. 4F). Among the five-tree species, the Venn Diagrams showed that
67.11% ± 4.62% of the bacterial OTUs (Fig. 4C) and 56.73% ± 2.96% fungal OTUs (Fig. 4G)
were shared, respectively. While the overlapped bacterial KOs was up to 99.77% ± 0.06%
(Fig. 4D), and the overlapped functional guilds was up to 86.56% ± 1.57% (Fig. 4H).

Indicator species analysis
Indicator species analysis identifies the bacterial and fungal taxa that are significantly
unique to each location. A total of 54 bacterial classes and 58 fungal orders were found with
a significant preference (q < 0.05) for the three sampling sites, respectively (Tables S6
and S7). In 16S datasets, the 54 classes represented 2.36% of the total bacterial sequences.
In ITS datasets, the 58 orders represented 4.09% of the total fungal sequences. There
were 20, 12, and 40 indicator fungal taxa in LDU, MJS, and XLS, respectively (Fig. S2B).
And there were 53, eight, and five indicator bacterial taxa in LDU, MJS, and XLS,
respectively (Fig. S2A). Nearly all the relative abundance of the indicator taxa was low;
except two taxa (the classes of Acidobacteriia and Gemmatimonadetes) were more
than 1% in bacterial community (Fig. S2A) and two taxa (the orders of Sebacinales and
Pezizales) were more than 2% in fungal community (Fig. S2B). Taxonomic names such as
“other” and “unidentified” (has no assignment of affiliation at the relevant taxonomic
level) were not shown in the bubble plot (Fig. S2).

DISCUSSION
Our results demonstrate that both geographic locations and host tree species were
determinants of the microbial community structure, with the former being significantly
more dominant. That is, the effect of the geographic location was probably large
enough to cover the influence on the phyllosphere microbiota by the host tree species.
The communities on Arabidopsis thaliana from a certain site were more similar to those of
other plant species from the same site than to A. thaliana collected from a different
site (Knief et al., 2010). Geographic locations will cause a variation of diverse biotic and
abiotic factors between and within the different sampling sites. On the one hand, the
geographical location is always accompanied by the site-dependent properties and/or
seasonal differences, which can cause changes in the regional species pool. The composition
of the pool of colonizing microbiota can be an important structuring factor of the microbiota
assembly on the host plant (Callens et al., 2018). And the pool continues to contribute
on the microbial community composition. Regarding the Methylobacterium community
from A. thaliana leaves, there is a lower effect of the pure factor plant species contribution
compared with the site factor (Knief et al., 2010). On the other hand, the host tree per se is
also affected by the contemporary environmental (biotic) factors. Individual trees can alter
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their development and physiology depending on different environmental conditions
(Miner et al., 2005; Nicotra et al., 2010).

The variations in microbial communities stated above refer to microbial taxonomical
compositions. Our findings suggest that phyllosphere microbial communities of
the differing taxonomical composition are functionally similar. The increase or decrease
of individual species will not affect the entire function of the microbial community.
The species that are similar taxonomically and morphologically can accomplish many of
the equal ecological and physiological functions through their own genetic adaptabilities
(Fonseca & Ganade, 2001). The redundant species hypothesis suggests that most
species are redundant in their roles, which is known as species “functional redundancy”
(Walker, 1992; Lawton & Brown, 1993; Allison & Martiny, 2008). As a result, the
species of the same functions will lead to spurious taxonomically differences within a
microbial community. The phyllosphere ecosystem function is conserved while species
richness varies. This can partly be explained as a result of the initial microbial seed pool
plus historical assembly contingencies, for which geographic distance is often used as
a measure. We propose future work to explore the assumption of “functional redundancy”
for microbial communities in different ecosystems, such as in complex system like the
soil-plant-atmosphere continua or aquatic ecosystems.

As indicator species with different indicator values among the various sampling sites,
some of them have the same ecosystem functions. To this date, our knowledge about
the metabolic properties of members of class-level clades is derived from several closely
related cultivated strains. The type strains of the class Holophagae were isolated
from anoxic environments (Fukunaga & Ichikawa, 2014). The members of the class
Chthonomonadetes, such as Chthonomonas calidirosea, is able to metabolize a wide range
of mono- and disaccharides as well as branched polysaccharides (Vyssotski et al., 2011).
Anaerolineae-type clones have been found frequently within various ecosystems, the
organisms within the group have been thought to be ubiquitous and to play important
roles in these ecosystems (Yamada et al., 2006). All cultured members of the class are
non-motile and can utilize sugars and polysaccharides such as starch, pectin, and xylan
(Podosokorskaya et al., 2013). The members from the class Coriobacteriia are also
non-motile bacteria (Göker et al., 2010; Gupta et al., 2013). The non-motile property seems
to be adverse for the microbes to survive in this habitat. Motility is well established as
an important epiphytic fitness factor of plant colonizing microbes, such as Pseudomonas
(Haefele & Lindow, 1987), and the phylum Bacteroidetes, which is large and diverse,
with rapid gliding motility associated with many genera and species (McBride & Zhu,
2013). Characterization of uncultivated groups within Anaerolineae is essential to better
understand the metabolic and lifestyle complexity, and epiphytic fitness of this class.
We can see that most of the phyllosphere microbes mentioned above based upon their
ability to grow via a wide range of mono- and disaccharides as well as branched
polysaccharides. Phyllosphere is an oligotrophic environment, in which saccharides are the
main source of carbon and energy for heterotrophic microorganisms (Vorholt, 2012).
In addition to the saccharides, carbon sources in the leaf surfaces such as one-carbon (C1)
compounds are also prominent for the phyllosphere microbes. For example, the
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phylum Planctomycetes present on the leaf surface, harbor a plethora of genes encoding C1

compounds metabolism (Youssef & Elshahed, 2014). Most of the C1 compounds in the
plants are plant-derived metabolic substrates. For instance, methanol is a by-product
of cell wall metabolism by pectin methyl esterases (Nemecek-Marshall et al., 1995).
Another C1 compound that is postulated to be produced in trace amounts by plants is
photochemically formed methane (Keppler et al., 2006). Phyllosphere microbes use these
as carbon sources for survival (Vorholt, 2012). Some phyllosphere epiphytic microbes
are methanogens (Poulsen et al., 2013). For example, some isolates affiliated with the
class Thermoplasmata are methanogens, such as archaeon Kjm51a. It is likely to
produce methane by the hydrogen-dependent reduction of methanol, which suggested
that archaeon Kjm51a is a methanol-reducing hydrogenotrophic methanogen (Iino et al.,
2013). The methane that produced by methanogens may also be taken up by other
coexisting microorganisms in this niche. There is evidence that carbon source phenotyping
of bacteria is frequently used to determine the overlap in substrate utilization
among strains as a measure of their potential to coexist (Wilson & Lindow, 1994).
The methylotrophic methanogenic lifestyle seems to be very suitable for survival on leaves
in which nutrients are scarce and C1 compounds are valuable. Thus far, there is no
isolation of Parcubacteria. The genomes of all previously studied Parcubacteria bacteria
have respiratory and fermentative capacities as well as nitrogen and fatty acid metabolisms.
Nonetheless, Parcunitrobacteria appears to be unable to synthesize some essential metabolites.
Parcunitrobacteria is still known to depend on other organisms (or the community)
for many basic building blocks (Castelle et al., 2017). This suggested a coexisting lifestyle
for the microbiota establishment of phyllosphere microbial communities. Nitrogen
fixation by phyllosphere bacteria has been reported. The globally distributed genus
Nitrospira (belong to the class Nitrospira) represents the most diverse known group of
nitrite-oxidizing bacteria (Daims et al., 2015). Nitrospira members are key components
of nitrogen-cycling microbial communities (Lücker et al., 2010). In Thaumarchaeota, genes
encoding a homologue of the ammonium-monooxygenase enzyme have been discovered,
which is the key enzyme involved in the oxidation of ammonia. Their ability to
oxidize ammonia has radically changed the perception of nitrification and global nitrogen
cycling in general (Stieglmeier, Alves & Schleper, 2014). All of the taxa discussed above seem
to have a propensity for phyllosphere habitat.

Aside from requiring carbon and nitrogen, phyllosphere bacteria need to face the extreme
conditions. Microorganisms living on this surface are exposed to a stress consisting of
periodic desiccation, moderately high temperatures, high levels of UV radiation, and in some
cases high alkalinity (Finkel et al., 2011). Species of Gemmatimonadetes are well adapted to
not only arid but also oligotrophic conditions (DeBruyn et al., 2011; Paši�c et al., 2010).
Some indicator species are associated with stochastic events. For example, the phylum
Fibrobacteres, were proven to contain a large amount rumen bacteria. These taxa occur in
the intestines of ruminants and nonruminant herbivores and in omnivorous animals
(Rosenberg, 2014).

Most fungi within the fungal orders, Ustilaginales (Barr, 1980), Platygloeales
(Moore, 1990), Exobasidiales (Begerow, Bauer & Oberwinkler, 2002), Spizellomycetales
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(Martínez-Espinoza, García-Pedrajas & Gold, 2002), Diaporthales (Rossman, Farr &
Castlebury, 2007), and Phaeomoniellales (Chen et al., 2015), are plant pathogens. Caliciales
(Holien, 1996), Lichinales (Schultz, Arendholz & Büdel, 2001), and Verrucariales
(Gueidan, Roux & Lutzoni, 2007) are lichenized fungi. Most members of Lulworthiales
(Kohlmeyer, Spatafora & Volkmann-Kohlmeyer, 2000), Melanosporales (Marin-Felix et al.,
2018), and Amylocorticiales (Binder et al., 2010) are undefined saprotrophic fungi.
Further, some different indicator taxa in one location always have the same functions.
Entylomatales (Begerow, Stoll & Bauer, 2006) and Venturiales (Zhang et al., 2011), are
indicators strongly associated with XLS, of which the best-known members are identified
as plant pathogens. Mycorrhizal associations are established by the majority of Boletales
(Binder & Hibbett, 2006), Pezizales (Danielson, 1984), and Thelephorales (Hibbett, 2006)
and they are identified as indicators for LDU.

In conclusion, we observed that the geographical location varies microbial
taxonomical compositions in spruce phyllosphere, rather than does the community
functional structure. The variation of microbial taxonomy in phyllosphere resulted from
the regional seed pool in different geographical locations. Host plant species had both
genotypic and phenotypic effects on the microbial communities, in which plant
phenotypic traits eventually shape its microbiota due to the community assembly based
on the functional types. If the geographic location-governed factors do not cause
variations in plant phenotypic traits, the microbial community functional structure
will not vary.
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