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Biochar, i.e. carbonized biomass similar to charcoal, has been used in acute medical
treatment of animals for many centuries. Since 2010, livestock farmers increasingly use
biochar as a regular feed supplement to improve animal health, increase nutrient intake
efficiency and thus productivity. As biochar gets enriched with nitrogen-rich organic
compounds during the digestion process, the excreted biochar-manure becomes a more
valuable organic fertilizer causing lower nutrient losses and greenhouse gas emissions
during storage and soil application. Scientists only recently started to investigate the
mechanisms of biochar in the different stages of animal digestion and thus most published
results on biochar feeding are based so far on empirical studies. This review summarizes
the state of knowledge up to the year 2019 by evaluating 112 relevant scientific
publications on the topic to derive initial insights, discuss potential mechanisms behind
observations and identify important knowledge gaps and future research needs. The
literature analysis shows that in most studies and for all investigated farm animal species,
positive effects on different parameters such as toxin adsorption, digestion, blood values,
feed efficiency, meat quality and/or greenhouse gas emissions could be found when
biochar was added to feed. A considerable number of studies provided statistically non-
significant results, though tendencies were mostly positive. Rare negative effects were
identified in regard to the immobilization of liposoluble feed ingredients (e.g. vitamin E or
Carotenoids) which may limit long-term biochar feeding. We found that most of the studies
did not systematically investigate biochar properties (which may vastly differ) and dosage,
which is a major drawback for generalizing results. Our review demonstrates that the use
of biochar as a feed additive has the potential to improve animal health, feed efficiency,
and livestock housing climate, to reduce nutrient losses and greenhouse gas emissions,
and to increase the soil organic matter content and thus soil fertility when eventually
applied to soil. In combination with other good practices, co-feeding of biochar may thus
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have the potential to improve the sustainability of animal husbandry. However, more
systematic multi-disciplinary research is definitely needed to arrive at generalizable
recommendations.
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15 Abstract

16 Biochar, i.e. carbonized biomass similar to charcoal, has been used in acute medical treatment of 

17 animals for many centuries. Since 2010, livestock farmers increasingly use biochar as a regular 

18 feed supplement to improve animal health, increase nutrient intake efficiency and thus 

19 productivity. As biochar gets enriched with nitrogen-rich organic compounds during the 

20 digestion process, the excreted biochar-manure becomes a more valuable organic fertilizer 

21 causing lower nutrient losses and greenhouse gas emissions during storage and soil application. 

22 Scientists only recently started to investigate the mechanisms of biochar in the different stages of 

23 animal digestion and thus most published results on biochar feeding are based so far on empirical 

24 studies. This review summarizes the state of knowledge up to the year 2019 by evaluating 112 

25 relevant scientific publications on the topic to derive initial insights, discuss potential 

26 mechanisms behind observations and identify important knowledge gaps and future research 

27 needs. The literature analysis shows that in most studies and for all investigated farm animal 

28 species, positive effects on different parameters such as toxin adsorption, digestion, blood values, 

29 feed efficiency, meat quality and/or greenhouse gas emissions could be found when biochar was 

30 added to feed. A considerable number of studies provided statistically non-significant results, 

31 though tendencies were mostly positive. Rare negative effects were identified in regard to the 

32 immobilization of liposoluble feed ingredients (e.g. vitamin E or Carotenoids) which may limit 

33 long-term biochar feeding. We found that most of the studies did not systematically investigate 

34 biochar properties (which may vastly differ) and dosage, which is a major drawback for 

35 generalizing results. Our review demonstrates that the use of biochar as a feed additive has the 

36 potential to improve animal health, feed efficiency, and livestock housing climate, to reduce 

37 nutrient losses and greenhouse gas emissions, and to increase the soil organic matter content and 

38 thus soil fertility when eventually applied to the soil. In combination with other good practices, 

39 co-feeding of biochar may thus have the potential to improve the sustainability of animal 
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40 husbandry. However, more systematic multi-disciplinary research is definitely needed to arrive 

41 at generalizable recommendations.

42

43 Introduction

44 Biochar is produced by pyrolysis from various types of biomass in a low-to-no oxygen thermal 

45 process at temperatures ranging from 350°C to 1000 °C (EBC, 2012; IBI, 2015). Using water 

46 vapor or CO2 at temperatures above 850°C or chemical compounds like phosphoric acid and 

47 potassium chloride, the biochar undergoes an activation process resulting in activated biochar 

48 (i.e. activated carbon) (Hagemann et al., 2018a). When produced from pure stem wood, the solid 

49 phase of the pyrogenic process is known as charcoal. In contrast, the term biochar indicates that 

50 a broad spectrum of biogenic materials can serve as feedstock. Biochar, activated carbon and 

51 charcoal can all be considered as pyrogenic carbon materials (PCM). 

52 The term biochar indicates that it is used for any purpose that does not involve its rapid 

53 mineralization to CO2 (e.g. burning it) (EBC, 2012). In a broader sense, the term biochar denotes 

54 its intended long-time residence in the terrestrial environment, either as a soil amendment or for 

55 other material-use purposes (Schmidt et al., 2018). Since biochar-carbon decomposes much 

56 slower than the original biomass, the application and use of biochar is considered as a terrestrial 

57 carbon sink on at least a centennial scale (Zimmerman & Gao, 2013; Lehmann et al., 2015; 

58 Werner et al., 2018) and is therefore a promising negative emission technology (IPCC, 2018).

59 During the first decade of modern biochar research summarized in Lehmann & Joseph (2015), 

60 biochar was usually tested as a soil amendment that was applied pure to soils in large quantities 

61 (> 10 t ha-1) revealing modest to large yield increases for a multitude of crops in the tropics but 

62 only rarely in temperate climates (Jeffery et al., 2017). More recently it was (re-)discovered that 

63 blending biochar with organic amendments such as manure, cattle urine or compost may increase 

64 yields more significantly and in a broader spectrum of climates and soils (Steiner et al., 2010; 

65 Kammann, Glaser & Schmidt, 2016; Godlewska et al., 2017; Schmidt et al., 2017). As quality 

66 biochar is non-toxic and thus even feedable and edible (EBC, 2012), this apparently favorable 

67 combination of organic residues with biochar prompted researchers and a rapidly increasing 

68 number of practitioners to conduct trials where biochar was not only mixed with manure but also 

69 included as an input into animal farming systems. The incremental addition of biochar to silage, 

70 feed, bedding material, and liquid manure pit demonstrated that biochar can be used in cascades. 

71 In addition to the direct benefits for animal husbandry as discussed below in detail, biochar 

72 becomes thus enhanced with organic nutrients which increases the economic viability of biochar 

73 application while providing numerous environmental benefits along the (cascading) way. 

74 When combined with  silage, biochar can reduce mycotoxin formation, bind pesticides, suppress 

75 butyric acid formation, and enhance the quantity of lactic bacteria (Calvelo Pereira et al., 2014). 

76 Farmers observed that when biochar was combined with straw or saw dust bedding at 5-10% 

77 (vol) hoof diseases, odors, and nutrient losses were reduced (O’Toole et al., 2016). Moreover, 

78 farmers reported that adding 0.1% biochar (m/m) in a liquid manure pit reduced odors, surface 

79 crust, and nutrient losses (Schmidt, 2014; Kammann et al., 2017b). Throughout these cascades, 
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80 the biochar becomes enriched with organic nutrients and functional groups, while the cation 

81 exchange capacity (CEC) and redox activity increases, and pH decreases (Joseph et al., 2013). 

82 Analyses indicate that, by enriching the biochar with liquids organic nutrients (whether in the 

83 digestive tract, bedding, manure pit, or by co-composting), the interior surfaces of the porous 

84 biochar become drenched with an organic coating (Hagemann et al., 2017; Joseph et al., 2017). 

85 This increases both water storage capacity and nutrient exchange capacity (Conte et al., 2013; 

86 Kammann et al., 2015a; Schmidt et al., 2015). The biochar becomes thus a more efficient plant 

87 growth enhancing soil amendment, that improves the recycling of nutrients from organic 

88 residues of animal farming (Kammann et al., 2015b). The cascading use of biochar in animal 

89 farming systems also reduces the environmentally harmful loss of ammonia through 

90 volatilization or nitrate through leaching (Liu et al., 2018; Borchard et al., 2019; Sha et al., 2019) 

91 and it has the potential to reduce greenhouse gas emissions such as nitrous oxide (N2O) 

92 (Kammann et al., 2017b; Borchard et al., 2019), or methane (CH4) (Jeffery et al., 2016). To the 

93 best of our knowledge, no study so far has quantified biochar emission reduction effects along a 

94 full cascade. The studies cited above are reviews or meta-analyses summarizing mainly effects of 

95 the amendment of biochar to soil.

96 When in 2012 the cascading use of biochar and especially its addition to animal feed began in 

97 Germany and Switzerland (Gerlach and Schmidt, 2012), the biochar market in Europe started to 

98 grow considerably. Since then, the largest proportion of industrially produced biochar in Europe 

99 is sold for animal feed, bedding, manure treatment and thus subsequent soil application 

100 (Kammann et al., 2017; O’Toole et al., 2016; Schmidt and Shackley, 2016). In 2016, the 

101 European Biochar Foundation introduced a new biochar certification standard specifically for 

102 animal feed (EBC, 2018) to allow for quality control, as well as conformity with European 

103 regulations for animal feed. 

104 When ingested orally, biochar has been shown to improve the nutrient intake efficacy, adsorb 

105 toxins and to generally improve animal health (O’Toole et al., 2016; Toth & Dou, 2016). After 

106 numerous veterinary papers published last century, a number of scientific studies on biochar 

107 feeding have been published since 2010, dealing with biochars’ impact on the health of various 

108 animal species, on feed efficiency, pathogen infestation and on greenhouse gas emissions. Thus, 

109 we review the current state of knowledge regarding the use of biochar as a animal feed additive. 

110 We identify systematic gaps in the scientific understanding as it is still mechanistically unclear 

111 why biochar, as a feed additive, causes the observed effects. We also highlight potential side 

112 effects, the known and potential effects on greenhouse gas emissions, the necessity for adapted 

113 regulatory practice and quality control as well as the need for dedicated research to close 

114 knowledge gaps.

115

116 Research Methods

117 This study predominantly selected research papers published between 1980 and 2019 but 

118 included also a selection of historical articles and books published between 1905 and 1979. 
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119 Some rare oral communications were included to reference and illustrate farmer and feed 

120 certifier experiences. 

121 Search strategy

122 We searched the following electronic databases: Science Direct, Scopus, ISI Web of Science and 

123 Research Gate. To identify the relevant publications, we used the following search terms: 

124 (biochar OR charcoal OR activated carbon) & (animal OR feed OR livestock OR livestock type 

125 (cow, poultry, sheep etc.) OR methane OR pesticides OR silage OR manure). The references 

126 cited in the reviewed studies were also included in the search and scanned separately for relevant 

127 publications. To summarize the historical literature (20 studies) we used the Karlsruhe Virtual 

128 Catalogue and the literature cited in the respective historical works in English, German and 

129 French. We further interviewed Dr. Achim Gerlach, a veterinarian who has been treating large 

130 cattle herds with biochar for nearly a decade; only a small fraction of his experiences are 

131 published in peer-reviewed journals (e.g. Gerlach & Schmidt, 2012)     

132 Selection of studies

133 The authors assessed the titles and abstracts of all retrieved references of relevance to the 

134 objective of this review. Due to the relatively small number of studies, we included all studies 

135 that investigated biochar or charcoal or activated carbon in vivo as feed additive for improving 

136 performance and animal health (27 studies). We further selected in vivo or in vitro studies when 

137 animal tissue or digestive liquids were used as medium and if they were related to mycotoxin- 

138 (26 studies), bacteria related pathogen- (22 studies), poisoning & drug overdoses (21 studies), 

139 and pesticide- (23 studies) adsorption or methane emissions (12 studies). In total, 112 scientific 

140 studies on biochar effects in animal feeding were reviewed. Reported results were only discussed 

141 as significant when p < 0.05 was obtained in the respective study.

142

143 Results and Discussion

144 1. Historical overview 

145 1.1. The use of biochar/charcoal as feed or feed additive before 2010

146 Charcoal is one of the oldest remedies for digestive disorders, not only for humans but also for 

147 livestock. Cato the Elder (234 -149 BC) was one of the first to mention it in his classic On 

148 Agriculture: “If you have reason to fear sickness, give the oxen before they get sick the 

149 following remedy: 3 grains of salt, 3 laurel leaves, …, 3 pieces of charcoal, and 3 pints of 

150 wine.” (Cato, §70, 1935). Besides the administration of medicinal herbs, oil or clay, charcoal was 

151 widely used by traditional farmers all over the world for internal disorders of any sort. 

152 Apparently, it never did any harm but was mostly beneficial (Derlet & Albertson, 1986).  For 

153 some animals like chicken or pigs, the charcoal was administered pure; for others it was mixed 

154 with butter (cows), with eggs (dogs) or with meat (cats). 

155 A textbook on animal husbandry dating from 1906 observed: "Swine appear to have a craving 

156 for what might be called 'unnatural substances.' This is especially true of hogs that are kept in 

157 confinement, which will eat greedily such substances as charcoal, ashes, mortar, soft coal, rotten 
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158 wood, etc. It is probable that some of the substances are not good for hogs, but there is no doubt 

159 that charcoal and wood ashes have a beneficial effect, the former being greatly relished” (Day, 

160 1906). 

161 19th century and early 20th century agricultural journals printed many discussions on the 

162 benefits of various "cow tonics", mostly composed of charcoal and a variety of other ingredients 

163 including spices, such as cayenne pepper, and digestive bitters like gentian. Manufacturers of 

164 these tonics claimed they would reduce digestive disorders, increase appetite and improve milk 

165 production (Pennsylvania State College, 1905). 

166 At this time in the USA, charcoal was considered a superior feed additive for increasing butterfat 

167 content of milk. Cow's milk was tested for butterfat content in competitions where top-producing 

168 cows could win a prize. Farmers took great care in formulating the feed ration for such tests: The 

169 grain mixture fed during the test consisted of 100 pound of distillers dried grains, 50 pounds of 

170 wheat bran, 100 pounds of ground oats, 100 pounds of hominy, 100 pounds of cottonseed 

171 meal…. Charcoal is seldom if ever left out the test ration by many of the breeders" (Savage, 

172 1917). 

173 The use of activated and non-activated biochar feed for animal health was already being 

174 researched and recommended by German veterinarians at the beginning of the last century. Since 

175 1915, research into activated biochar had revealed its effect in reducing and adsorbing 

176 pathogenic clostridial toxins from Clostridium tetani and C. botulinum (Skutetzky & 

177 Starkenstein, 1914; Luder, 1947). Mangold (1936) presented a comprehensive study on the 

178 effects of biochar in feeding animals, concluding that “the prophylactic and therapeutic effect of 

179 charcoal against diarrheal symptoms attributable to infections or to the type of feeding is known. 

180 In this sense, adding charcoal to the feed of young animals would seem a good preventive 

181 measure”.  Volkmann (1935) described an effective reduction in excreted oocysts through 

182 adding biochar to the food of pets with coccidiosis or coccidial infections. 

183 Later Totusek and Beeson (1953) wrote that biochar products are used since at least 1880 in US-

184 American hog breading and since 1940 in feed for poultry. In their influential article, the authors 

185 provided an extensive list of references. At around the same time, Steinegger and Menzi (1955) 

186 wrote: “It is generally common in Switzerland to add biochar to chick feed and to the meal for 

187 laying hens to prevent digestive problems and to achieve a regulating effect on digestion.” 

188

189 1.2 Biochar and wild animals

190 At first glance it might seem somewhat unnatural to feed biochar/charcoal to animals, but in fact 

191 even wild mammals occasionally eat biochar if it is available to them. In nature, charcoal 

192 residues from wild fires can still be found years later. Deer and elk are reported to eat from 

193 charred trees in Yellowstone National Park and domestic dogs to eat charcoal briquettes 

194 (Struhsaker, Cooney & Siex, 1997). The Zanzibar red colobus (Procolobus kirkii), a small 

195 monkey regularly eats charcoal to help digest young  Indian Almond (Terminalia catappa) or 

196 mango (Mangifera indica) leaves that contain toxic phenolic compounds (Cooney & Struhsaker, 

197 1997). Struhsaker et al. (1997) observed that individual colobus monkeys consumed about 0.25 – 
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198 2.5 g of charcoal per kg body weight daily. Additional adsorption tests performed by Cooney & 

199 Struhsaker (1997) indicated that in particular the African kiln charcoals (which the monkeys also 

200 ate) were surprisingly good at adsorbing hot-water-extracted organics from the above-mentioned 

201 tree leaves. Thus, the authors concluded that the monkeys’ charcoal consumption was likely a 

202 (self-)learned behavior, increasing the digestibility of their typical leaf diet. Interestingly, a 

203 population count of colobus monkeys on this African island showed that they reached the highest 

204 population density of all monkey species worldwide. It seems, therefore, that the daily 

205 consumption of such wood-based biochar has no negative long-term effect at least not on these 

206 monkeys. 

207

208 2. Mechanisms of biochar in feed digestion

209 2.1. Adsorption

210 Before biochar was investigated and used as a regular feed additive for animals in the early 

211 2010s, charcoal (i.e. biochar made from wood) and activated carbon (i.e. activated biochar when 

212 made from biomass (Hagemann et al., 2018b)) was considered a veterinary drug to tackle 

213 indigestion and poisoning. Charcoal was known for many centuries as an emergency treatment 

214 for poisoning in animals (Decker & Corby, 1971). Biochar has been and still is used because of 

215 its high adsorption capacity for a variety of different toxins like mycotoxins, plant toxins, 

216 pesticides as well as toxic metabolites or pathogens. Adsorption therapy, which uses activated 

217 biochar as a non-digestible sorbent, is considered one of the most important ways of preventing 

218 harmful or fatal effects of orally ingested toxins (McKenzie, 1991, McLennan and Amos, 1989).

219 From a toxicology perspective, most of the effects of biochar are based on one or several of the 

220 following mechanisms: selective adsorption of some toxins like dioxins, co-adsorption of toxin 

221 containing feed substances, adsorption followed by a chemical reaction that destroys the toxin, 

222 and desorption of earlier adsorbed substances in later stages of digestion (Gerlach und Schmidt, 

223 2012). However, classifiable distinctions need to be made to the time-dependent and partly 

224 overlapping processes of adsorption, biotransformation, desorption and excretion of the toxic 

225 substances throughout the digestive system of animals. 

226 Schirrmann (1984) described the effects of activated carbon on bacteria and their toxins in the 

227 gastrointestinal tract as: 

228 1. Adsorption of proteins, amines and amino-acids. 

229 2. Adsorption of digestive tract enzymes, as well as adsorption of bacterial exoenzymes.

230 3. Binding, via chemotaxis, of mobile germs.

231 4. The selective colonization of biochar with gram-negative bacteria might result in 

232 decreased endotoxin release as these toxins could be directly adsorbed by the colonized 

233 biochar when gram-negative bacteria dying-off. 

234 One further major advantage of the use of biochar is its “enteral dialysis” property, i.e. already 

235 adsorbed lipophilic and hydrophilic toxins can be removed from the blood plasma by the 

236 biochar, as the adsorption power of the huge surface area of the biochar interacts with the 

237 permeability properties of the intestine (Schirrmann, 1984).
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238 Susan Pond (1986)  explained various mechanisms by which biochar can eliminate toxins from 

239 the body. First, biochar can interrupt the so-called enterohepatic circulation of toxic substances 

240 between the intestine, liver, and bile. It prevents compounds such as estrogens and progestagens, 

241 digitoxin, organic mercury, arsenic compounds and indomethacin from being taken up in bile. 

242 Second, compounds such as digoxin, which are actively secreted into the intestine, can be 

243 adsorbed there. Third, compounds such as pethidines can be adsorbed to the biochar, which 

244 passively diffuse into the intestine. Fourth, the biochar can take up compounds that diffuse along 

245 a concentration gradient between intestinal blood and primary urine.

246

247 2.2. Redox activity of biochar-based feed additives

248 Although the adsorption capacity is the most prominent function of biochar to explain its positive 

249 impacts when fed to animals, adsorption alone cannot explain all phenomena that are observed in 

250 biochar feeding experiments. Another pivotal, but still widely overlooked function of biochar is 

251 its redox activity. Biochars act as so called geobatteries and geoconductors that can accept, store 

252 and mediate electrons from and for biochemical reactions (Sun et al., 2017). Low temperature 

253 biochars (HTT of 400 – 450 °C) function as geobatteries mainly due to their phenol and quinone 

254 surface groups.  High temperature biochars (HTT >600°), on the other hand, are good electrical 

255 conductors (Mochidzuki et al., 2003; Yu et al., 2015). Due to both of these qualities, both, high 

256 and low temperature biochars, can act in biotic and abiotic redox-reactions as electron mediators 

257 (Van der Zee & Cervantes, 2009; Husson, 2012; Liu et al., 2012; Kappler et al., 2014; Kluepfel 

258 et al., 2014; Joseph et al., 2015a; Yu et al., 2015; Sun et al., 2017). Biochar can accept and 

259 donate electrons as, for example, in microbial fuel cells where activated biochar can be used as 

260 an anode and as a cathode (Gregory, Bond & Lovley, 2004; Nevin et al., 2010; Konsolakis et al., 

261 2015). The electrical conductivity of biochar is, however, not based on continuous electron flow, 

262 like in a copper wire, but on discontinuous electron hopping (Kastening et al., 1997), which is of 

263 essential importance for biochar’s function as a (microbial) electron mediator or so-called 

264 electron shuttle, facilitating even inter-species electron transfer (Chen et al., 2014). Due to the 

265 comparably large size of biochar particles, the electron transfer capacity of biochar’s carbon 

266 matrices may lead to a relatively long-distance electron exchange that provides a spatially more 

267 extensive accessibility to alternative electron acceptors such as minerals for anoxic microbial 

268 respiration (Sun et al., 2017). 

269 During the microbial decomposition of organic substances in the gastrointestinal tract and 

270 particularly in the anaerobic rumen, digestive microbes require a terminal electron acceptor to 

271 get rid of surplus electrons that accumulate during the degradation of organic molecules. As 

272 electrons do not exist in a free state under ambient environmental conditions and cannot be 

273 stored in large enough quantities by cells, organisms always depend on the availability of both an 

274 electron donor (e.g. the metabolized organic matter) and an acceptor to which surcharge 

275 electrons can be transferred. This usually occurs in so-called redox reactions where molecules or 

276 atoms that donate an electron are coupled through electro-chemical reactions with molecules or 
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277 atoms that accept an electron. To allow this electron transfer, these chemical or biochemical 

278 redox-reactions usually have to take place in very close (molecular) proximity. 

279 The coupling of electron donating and electron accepting reactions can, however, be bridged by 

280 so-called electron mediators or electron shuttles. Those electron meditators can take up an 

281 electron from a chemical reacting molecule, solid interphase, or microorganism and provide it to 

282 another molecule, atom, solid interphase or microorganism. Well known and investigated 

283 electron mediating compounds include thionine, tannins, methyl blue or quinone, showing 

284 comparable capacities to humic substances and biochar (van der Zee et al., 2003; Liu et al., 2012; 

285 Bhatta et al., 2012; Kluepfel et al., 2014)

286 A well-balanced animal feed regime should contain multiple electron mediating substances. In 

287 the high-energetic diets used in intensive livestock farming, the supply with electron-shuttling 

288 substances is, however, often insufficient (Sophal et al., 2013). When inert or other non-toxic 

289 electron mediators like biochar or humic substances are added to high-energy feed, several redox 

290 reactions may take place more efficiently, which could in turn increase the feed intake efficiency 

291 (Liu et al., 2012; Leng, Inthapanya & Preston, 2013). Biochar, specifically, can act as both a sole 

292 electron mediator or a synergistic electron mediator that increases the efficiency of other 

293 mediators (Kappler et al., 2014). 

294 Inside the gastro-intestinal tract, nearly all feed-degrading reactions are facilitated by 

295 microorganisms (mostly bacteria, archaea, and ciliates). Within those reactions, bacterial cells 

296 may transfer electrons to biofilms or via biofilms to other terminal electron acceptors (Richter et 

297 al., 2009; Kracke, Vassilev & Kramer, 2015). However, biofilms are rather poor electric 

298 conductors and the electron-accepting capacity is low. Hence, microbial redox reactions can be 

299 optimized by electron shuttles, such as humic acids or activated biochar whose electrical 

300 conductivity is 100 to 1000 times higher than that of biofilms (Aeschbacher et al., 2011; Liu et 

301 al., 2012; Saquing, Yu & Chiu, 2016). Although the conductivity of non-activated biochar is 

302 lower compared to activated biochar, it has been shown that it can efficiently transfer electrons 

303 between bacterial cells (Chen et al., 2014; Sun et al., 2017). Bacteria were shown to donate an 

304 electron to a biochar particle while other bacteria of different species took up (accepted) an 

305 electron at another site of the same biochar particle. The biochar acts here like a “battery” (or 

306 electron buffer) that can be charged and discharged, depending on the need of biochemical 

307 (microbial) reactions (Liu et al., 2012). Moreover, as biochar can be temporarily oxidized or 

308 reduced by microbes (i.e. biochar is depleted or enriched in electrons), it can buffer situations 

309 with a (temporary) lack of electron donors or terminal electron acceptors (redox buffering effect) 

310 (Saquing, Yu & Chiu, 2016). A principal aim of feeding biochar to animals could thus be to 

311 overcome metabolic redox limitations by enhancing electron exchange between microbes, and 

312 between microbes and terminal electron acceptors. 

313 The redox-active carbonaceous backbone of the biochar as well as minerals it contains, such as 

314 iron (Fe(II) and/or Fe(III)) and manganese (Mn(III) or Mn(IV) minerals), can electrically support 

315 microbial growth in at least four different ways: (1) as an electron sink for heterotrophy-based 

316 respiration, (2) as an electron sources for autotrophic growth, (3) by enabling cell-to-cell transfer 
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317 of electrons, and (4) as an electron storage material (Shi et al., 2016). It can be hypothesized that 

318 enabling of extracellular electron transfer contributes to a more energy efficient digestion 

319 resulting in higher feed efficiency when activated or non-activated biochar is administered. 

320 Moreover, the electrochemical effects need to be considered as a major factor for explaining 

321 possible shifts in the functional diversity of the microbial community in the digestive system 

322 (Prasai et al., 2016). Leng et al. (2012) also suggested that electron transfer between biochar and 

323 microorganisms could be one of the reasons why feeding biochar to cows led to reduced methane 

324 emissions in their studies (see chapter 6).  

325 It is further very likely that biochar has the function of a redox wheel in the digestive tract, 

326 comparable to FeIII-FeII-redox wheels. It could act jointly as an electron acceptor and donator 

327 coupling directly various biotic and abiotic redox-reactions comparable to mixed valent iron 

328 minerals (Davidson, Chorover & Dail, 2003; Li et al., 2012; Joseph et al., 2015a; Quin et al., 

329 2015). Beside its polyaromatic backbone, biochar contain, depending on the production process, 

330 a multitude of volatile organic carbons (VOC) (Spokas et al., 2011). Some of the pyrolytic VOCs 

331 are strong electron acceptors and may act, like a redox wheel similar to how quinone works (van 

332 der Zee et al., 2003). Some of these pyrolytic VOCs that often undergo oxidative modifications 

333 during the aging of biochar (Cheng & Lehmann, 2009) are so-called redox-active moieties 

334 (RAMs) that have been shown to contribute to the biodegradation of certain contaminants (Yu et 

335 al., 2015). It can be surmised that in the digestive tract, a multitude of RAMs, adsorbed on the 

336 surfaces of biochar particles, can act as redox-wheels with various microorganisms. It can be 

337 further hypothesized that when biochar buffers electrons in the vicinity of redox active surface 

338 groups, it may provide stabile micro-habitats with different redox-pH-milieus for different 

339 species of microorganisms (Yu et al., 2015). Moreover, biochar adsorbs certain feed and 

340 metabolic substances like tannins, phenols or thionin, which are also electron acceptors and 

341 which might further increase the electron buffering of biochar particles during its passage 

342 through the digestive tract (Kracke, Vassilev & Kramer, 2015). 

343 Biochar, wood vinegar (i.e. aqueous solutions of condensed pyrolytic gases) and humic 

344 substances can act as redox buffering substances (Husson, 2012; Kluepfel et al., 2014) which 

345 may explain why the feeding of biochar, pyrolytic vinegar and humic substances often show 

346 similar effects; and why the blending of biochar with wood vinegar or humic substances seems 

347 to reinforce the effects (Watarai, Tana & Koiwa, 2008; Gerlach et al., 2014). However, unlike 

348 both dissolved organic substances, biochar provides a highly porous framework with high 

349 specific surface area, where humic-like substances or pyrolytic vinegar can be adsorbed and 

350 unfurl 3-dimensionally as a coating of the inner-porous aromatic carbon surfaces of biochar. Due 

351 to the redox buffering effect of biochar blended with humic substances or wood vinegar, 

352 variations of the redox potential may be minimized in the proximity of biochar particles, which 

353 could support those species of microorganisms that find their optimum at these redox potentials 

354 (Kalachniuk et al., 1978; Cord-Ruwisch, Seitz & Conrad, 1988). Biochar particles may thus 

355 provide selective hotspots of microbial activity. It can be assumed that the buffering of the redox 

356 potential as well as the effect of electron shuttling between microbial species can have a 
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357 selective, microbial milieu forming effect, which facilitates and accelerates the formation of 

358 functional microbial consortia (Kalachniuk et al., 1978; Khodadad et al., 2011; Sun et al., 2017). 

359 The mechanistic understanding of biochar used as feed additive, especially with regard to its 

360 impact on microbial mediated redox reactions, is clearly in its infancy (Gregory, Bond & Lovley, 

361 2004; Nevin et al., 2010; Konsolakis et al., 2015). However, we hypothesize with some 

362 confidence that biochar has a direct electro-chemical influence on digestive reactions, and that 

363 this is one, if not the main, reason for the extremely varying effects of different biochars. 

364 Electrical conductivity, redox potential, electron buffering (poising) and electron transfer 

365 capacity (shuttling) of a given biochar depend highly on the type of pyrolysed feedstock, 

366 pyrolytic conditions (Kluepfel et al., 2014; Yu et al., 2015) and especially on pyrolysis 

367 temperature (Sun et al., 2017). The higher the temperature above 600°C, the better is the electron 

368 transfer rate and electrical conductivity (Sun et al., 2017). However, the higher the VOC content 

369 of e.g. lower-temperature biochars and higher abundance of surface functional groups on lower 

370 temperature biochars (400-600°C), the more important the mediated electron transfer onto/from 

371 the biochar may become (Joseph et al., 2015a; Yu et al., 2015; Sun et al., 2017). In addition, the 

372 mineral content of biochars  should be taken into account as well, since it does not only influence 

373 biochar’s electro-chemical behavior, but it may also catalyze various biotic and abiotic reactions 

374 (Kastner et al., 2012; Anca-Couce et al., 2014). 

375

376 3. Specific toxin adsorption

377 3.1 Adsorption of mycotoxins 

378 The contamination of animal feed with mycotoxins is a worldwide problem that affects up to 

379 25% of the world's feed production (Mézes, Balogh & Tóth, 2010). Mycotoxins are mainly 

380 derived from mold fungi, whose growth on fresh and stored animal feed is difficult to prevent, 

381 especially in humid climates. Mycotoxin-contaminated feed can result in serious diseases of farm 

382 animals. To protect the animals, adsorbents are usually added to the feed to bind the mycotoxins 

383 before ingestion. In addition to the frequently used aluminosilicates, activated carbon and special 

384 polymers are increasingly being used (Huwig et al., 2001).

385 One of the most common mycotoxins is aflatoxin (Alshannaq & Yu, 2017), which has, therefore, 

386 been used in numerous studies as a model substance to investigate the adsorption behavior of 

387 biochar and how it reduces the uptake of the toxin in the digestive tract and hence in the animal 

388 blood and in milk (Galvano et al., 1996a). Galvano and co-workers (Galvano et al., 1996b) were 

389 able to reduce the extractable aflatoxin concentration in animal feed by up to 74% and the 

390 concentration in milk by up to 45%, by adding 2% activated biochar to pelleted aflatoxin-spiked 

391 feed for dairy cows. The non-systematic comparison of different activated biochars, however, 

392 showed that there are large differences in the adsorption efficiency between different types of 

393 (activated) biochar.

394 Diaz and co-workers (2002) showed in an in-vitro sorption batch study that four different 

395 activated carbons adsorbed 99% of the aflatoxin B from a 0.5% aflatoxin B-spiked solution when 

396 activated biochars were dosed at 1.11 g on 100 mL. However, when Diaz administered 0.25% 
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397 activated carbon to aflatoxin-B contaminated feed for dairy cows a year later (Diaz et al., 2004), 

398 they were unable to demonstrate any significant reduction in aflatoxin B levels in the milk. Here, 

399 it has to be considered that in the in-vivo test, an insufficiently characterized (activated) biochar 

400 was fed at a low concentration of 0.25% of the feed fresh weight, whereas in the in-vitro studies, 

401 the biochar was added at 1% to the aqueous solution, i.e. 4 times higher, and in the absence of a 

402 feed matrix.

403 Galvano et al. (1996a) also investigated the adsorption capacity of 19 different activated carbons 

404 for two mycotoxins, ochratoxin A and deoxynivalenol, and found that the activated biochar 

405 adsorbed 0.80 to 99.86% of the ochratoxin A and up to 98.93% of the deoxynivalenol, depending 

406 on the type of activated biochar. The large range of results clearly confirms the importance of a 

407 systematic characterization and classification of biochar properties. However, Galvano and 

408 colleagues concluded that neither the iodine number used for activated biochar characterization, 

409 nor the Brunauer-Emmet-Teller (BET) specific surface area derived from N2 gas-adsorption 

410 isotherms allowed straightforward predictions of the adsorption capacity for these mycotoxins. 

411 Di Natale et al. (2009) compared various natural and synthetic adsorbent feed additives for dairy 

412 cows to reduce the aflatoxin content in milk. Activated biochar showed the highest toxin 

413 reduction capacity (> 90% aflatoxin reduction in milk with 0.5 g aflatoxin per kg diet). 

414 Analytical studies of the milk quality also showed slight positive effects on the milk composition 

415 with regard to organic acids, lactose, chlorides, protein content and pH. The authors explained 

416 the high adsorption capacity with the high specific surface area in combination with a favorable 

417 micropore size distribution of the biochar, and the high affinity of aflatoxin for the polyaromatic 

418 surface of the biochar in general (Di Natale, Gallo & Nigro, 2009).

419 Bueno et al. (2005) investigated the adsorption capacity of various doses of activated biochar 

420 (0.1, 0.25, 0.5, 1%) for zearalenone, a dangerous estrogenic metabolite of the fungus species 

421 Fusarium, for which so far no treatment agents had been found. In vitro, all zearalenone could be 

422 bound at each of the four biochar doses. However, in vivo, where a wide variety of mycotoxins 

423 and numerous other organic molecules compete with the free adsorption surfaces of biochar, 

424 hardly any specific adsorption  could be achieved. 

425 A study with Holstein dairy cows investigated to what extent the negative effects of fungal-

426 contaminated feed silage can be reduced by co-feeding activated biochar at 0, 20 or 40 g daily 

427 (Erickson, Whitehouse & Dunn, 2011). Cows fed the biochar amendment and the contaminated 

428 silage had higher feed intake and improved digestibility of neutral detergent fiber, hemicellulose 

429 and crude protein, and had higher milk fat content compared to the control without biochar. 

430 When the same daily amounts of biochar were administered to uncontaminated quality silage, no 

431 changes in digestion behavior, milk quality or any other effect on the dairy cows could be 

432 detected. However, the authors showed in a second experiment that cows, when given the choice, 

433 clearly preferred good quality silage to contaminated silage either with or without biochar. They 

434 concluded that farmers should focus on providing high quality feed rather than mitigating 

435 negative effects of contaminated silage with biochar. 
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436 While Piva et al. (2005) found no protection against the injurious effects of fumonisin, a highly 

437 toxic mycotoxin, following a 1% addition of biochar to the feed of piglets, Nageswara Rao and 

438 Chopra (2001) showed that the addition of biochar to aflatoxin B1 contaminated feed of goats 

439 reduced the transfer of the toxin (100 ppb) to the milk by 76%. In the latter trial, the efficiency of 

440 activated biochar was significantly higher than that of bentonite (65.2%). Both adsorbents did 

441 not affect the composition of goat's milk nor the average level of milk production.

442 In vitro studies with porcine digestive fluids showed high rates of adsorption of Fusarium toxins 

443 such as deoxynivalenol (67%), zeralenone (100%), and nivalenol (21%) through activated 

444 biochar (Avantaggiato, Solfrizzo & Visconti, 2005; Döll et al., 2007). On the other hand, Jarczyk 

445 et al. ( 2008) found no significant effect when they added 0.3% activated biochar to the diet of 

446 pigs. Neither in the blood serum nor in the kidneys, the liver or in the muscle tissue could the 

447 ochratoxin concentrations be reduced by this small amount of supplement with uncharacterized 

448 industrial biochar (Jarczyk, Bancewicz & Jedryczko, 2008). However, no adverse effect was 

449 noted either.

450 Mycotoxins often cause serious liver damage in poultry. Biochar administered at daily rates of 

451 0.02% of the body weight significantly increased the activity of key liver enzymes (Ademoyero 

452 & Dalvi, 1983; Dalvi & Ademoyero, 1984). While aflatoxin (10 ppm) reduced feed intake and 

453 weight gain of broiler chickens, the addition of 0.1% biochar to the feed (w/w) reversed the 

454 negative trend (Dalvi & McGowan, 1984)

455 Comparing the effect of activated biochar with a conventionally used alumina product (hydrated 

456 sodium calcium aluminosilicate), it was found that the alumina product resulted in considerable 

457 liver and blood levels of aflatoxin B when administered at 0, 40, 80 μg AFB1 per kg diet, but not 

458 when combined with a 0.25% and 0.5% biochar treatment (Kubena et al., 1990; Denli & Okan, 

459 2007). In another study, activated biochar reduced the concentration of aflatoxin B in the feces of 

460 chickens for fattening, but only if the biochar was administered separately from the feed 

461 (Edrington et al., 1996). However, Kim et al. (2017) showed with an in-vivo pig feeding trial that 

462 the aflatoxin absorption capacity was reduced by 100, 10, and 20%, respectively, for three 

463 different biochars supplemented at 0.5% to the same basal diet, again demonstrating the 

464 importance of considering specific biochar properties. The importance of dosage was confirmed 

465 in another recent poultry trial where 0.25 or 0.5 % activated biochar was added to an aflatoxin 

466 B1 contaminated diet, decreasing aflatoxin B1 residues in the liver of the birds by 16-72%, 

467 depending on the aflatoxin B1 and biochar dosages (Bhatti et al., 2018).

468 In their review article, Toth and Dou (2016) document further conflicting studies in which 

469 biochar feeding may or may not mitigate the effects of mycotoxin intoxication. The results of 

470 most studies on sorption in aqueous solution (in vitro) did not correlate with the results in 

471 corresponding in vivo test results (e.g. Huwig et al., 2001). Thus, in vitro studies have to be 

472 interpreted with care, because matrix effects can dramatically impact mycotoxin sorption, e.g.  

473 Jaynes et al. (2007) found that an activated carbon (Norit®) could sorb up to 200 g kg-1 

474 aflatoxin, but only in clear solution. In a corn meal suspension, sorption capacity was 100 times 

475 lower due to matrix effects. Matrix effects in the digestive tract can be expected to be even more 
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476 complex due to varying pH and redox conditions. Still, based on our review, we conclude that 

477 negative effects of certain mycotoxins such as deoxynivalenol (Devreese et al., 2012, 2014; 

478 Usman et al., 2015) and zearalenone (Avantaggiato, Havenaar & Visconti, 2004) can be 

479 effectively suppressed with rather low dosages of activated biochar amended to feed, while no 

480 benefit was found for aflatoxin. It can be hypothesized that (activated) biochar is only able to 

481 suppress negative effects of mycotoxins that are rather hydrophobic (Avantaggiato, Havenaar & 

482 Visconti, 2004). 

483 However, most of these studies have in common that only commercial activated carbons and 

484 biochars were used without proper characterization, i.e. systematic trials with biochar of different 

485 feedstock (e.g wood vs. herbaceous feedstock) and production conditions (e.g. temperature) are 

486 barely available. Thus, systematization of the results remains difficult. 

487

488 3.2. Adsorption of bacteriological pathogens and their metabolites

489 The use of activated and non-activated charcoals to improve animal health was recommended 

490 and studied by German veterinarians as far back as the beginning of the 20th century. In 1914, 

491 the adsorbing effect of charcoal for various toxins in the digestive tract was described by 

492 Skutetzky and Starkenstein (1914). First experiments with bacterial toxins of Clostridium tetani 

493 and Clostridium botulinum as well as with diphtheria toxin were performed as early as 1919 

494 (Jacoby, 1919). In particular, Wiechowski pointed out how important the quality of the charcoal 

495 is, and how different the effect of different charcoals on the toxin adsorption can be 

496 (Wiechowski, 1914). Ernst Mangold described in 1936 the effect of charcoal in animal feeding 

497 comprehensively and concluded: "The prophylactic and therapeutic effect of charcoal on 

498 infectious or feeding-related diarrhea is clear, and based on this observation, the co-feeding of 

499 charcoal to juvenile animals appears as an appropriate prevention." (Mangold, 1936). At about 

500 the same time, Albert Volkmann published his findings about efficient reduction of oocyst 

501 excretion resulting from  coccidiosis and coccidial infections when charcoal was fed to domestic 

502 animals (Volkmann, 1935).

503 Gerlach et al. (2014) demonstrated that daily supplement of 400 g of a high-temperature wood 

504 based biochar (i.e. HTT 700°C) significantly reduced the concentration of antibodies against the 

505 Botox-producing pathogen Clostridium botulinum in the blood of cattle indicating the 

506 suppression of the pathogen. They concluded that the neurotoxin concentration was reduced by 

507 the biochar in the gastrointestinal tract of the animals. The feeding of only 200 g of biochar per 

508 day did not show the same efficiency. However, when this lower dosage was mixed with 500 ml 

509 of lactobacilli-rich sauerkraut juice, a similar significant reduction of C. botulinum antibodies in 

510 the blood could be measured.

511 Knutson et al. (2006) fed sheep infected with Escherichia coli and Salmonella typhimurium 77 g 

512 of activated biochar per animal per day. Although Naka et al. (2001) had shown earlier by in 

513 vitro trials that E. coli O157: H7 (EHEC) cell counts were reduced from 5.33 x 106 by 5 mg/ml 

514 activated biochar to below 800, the in vivo test by Knutson and colleagues with the same 

515 activated biochar (DARCO-KB, Norit®) revealed no biochar-related binding of either E. coli or 
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516 S. typhimurium in the gastrointestinal tract of sheep. The authors hypothesized that either the 

517 biochar binding sites were occupied by competing substances or other digestive bacteria or that 

518 the time between infection with the pathogen and administration of the biochar was too long.

519 Schirrmann (1984) indicated that biochar has a particularly strong adsorption or suppression 

520 capacity for gram-negative bacteria (e.g., E. coli) with high metabolic activity (see more below 

521 in section 7: Side effects of biochar). Fecal E. coli counts in manure after feeding 0.25% 

522 activated biochar or 0.50% coconut tree biochar were significantly lower than those of the 

523 control without biochar in a 10 days finishing pig trial, while the number of beneficial bacteria 

524 Lactobacillus in feces increased in both biochar treatments (Kim et al., 2017).  

525 Liquid cattle manure often contains E. coli O157: H7 (EHEC), which can contaminate water and 

526 soil and enter the human food chain (Diez-Gonzalez et al., 1998). Biochar can both adsorb E. 

527 coli and its toxic metabolites already in the digestive tract, as well as reduce the spread of those 

528 bacteria in water and soil by adding it to manure. Gurtler et al. (2014) investigated the effect of 

529 various biochar on the inactivation of E. coli O157: H7 (EHEC) when applied to soils. All 

530 biochars produced by either fast or slow pyrolysis from switchgrass, horse manure or hardwood 

531 significantly reduced EHEC concentrations, with fast pyrolysis of barley and oak log feedstock 

532 providing the best results in the contaminated soil mix, where EHEC after 4 weeks were 

533 untraceable using a cultivation based assessment (Gurtler et al., 2014). 

534 Abit et al. (2012) investigated how E. coli O157: H7 and Salmonella enterica spread in water-

535 saturated soil columns of fine sand or sandy loam, when the soil columns were blended with 2% 

536 of different biochars. While chicken manure biochar prepared at 350 °C did not improve the 

537 binding of either bacteria, the addition of biochar prepared at 700°C from pinewood or from 

538 chicken manure significantly reduced the spread of both bacteria. In a later study, the authors 

539 showed significant differences in immobilization between the two bacterial strains and suggested 

540 that the surface properties of the bacteria played a significant role in the binding of these bacteria 

541 to the biochar (Abit et al., 2014). The latter may turn out to be an important insight into biochar – 

542 bacterial interaction and needs to be investigated systematically.

543 Since E. coli infections are likely to spread through cattle herds via water troughs, the 

544 prophylactic addition of biochar to trough water may be a preventive measure that should be 

545 further investigated.

546 In the study of Watarai and Tana (2005), the mixture of fodder with 1 and 1.5% bamboo biochar 

547 and bamboo vinegar, respectively, slightly but significantly reduced the levels of E. coli and 

548 Salmonella in chicken excrement. A patented biochar - wood vinegar product, Nekka-Rich 

549 (Besnier, 2014), whose composition was not revealed, showed a highly significant reduction of 

550 Salmonella in chicken droppings. It was further found that the biochar - wood vinegar product 

551 reduced the pathogenic gram-negative Salmonella enterica bacteria in the droppings, but not the 

552 intestinal flora of ubiquitous, non-toxic, gram-positive Enterococcus faecium bacteria (Watarai 

553 and Tana, 2005).

554 A 0.3% bamboo biochar feed supplement (on DM base) suppressed the fecal excretion of gram-

555 negative coliform bacteria and gram-negative Salmonella in pigs up to 20 and 1100-fold, 
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556 respectively, compared to controls without biochar (Choi et al., 2009). The effect of biochar on 

557 the suppression of both bacterial species was of the same order of magnitude as that of 

558 antibiotics. Feeding biochar resulted in a 190-fold increase in the number of beneficial intestinal 

559 bacteria and a 48-fold higher level of gram positive Lactobacilli compared to the treatment with 

560 antibiotics (Choi et al., 2009).

561 In vitro studies revealed that biochar, as well as clay, can efficiently immobilize cattle rotavirus 

562 and coronaviruses at rates of 79 to 99.99% (Clark et al., 1998). Since the diameter of the viral 

563 particles were larger than the pore diameters of the clay and most pores of the biochar, the 

564 authors suspected that binding was mainly due to the viral surface proteins binding to the 

565 biochar.

566 In vitro and in vivo experiments with bovine calves showed that biochar, especially in 

567 combination with wood vinegar, was able to control parasitic protozoan Cryptosporidium 

568 parvum infection and to stop diarrhea of calves within one day. The number of oocysts in the 

569 feces dropped significantly after a single day of feeding biochar; after 5 days no more oocysts 

570 could be found in the feces of the calves (Watarai, Tana & Koiwa, 2008). Similar results were 

571 reported when a commercial biochar wood acetic acid product (Obionekk®, Obione, Charentay, 

572 France) was tested as feed additive in young goats (Paraud et al., 2011). The mixture 

573 administered twice or thrice daily reduced the clinical signs of diarrhea already on the first day, 

574 and the oocyst shedding in the feces decreased significantly. Over the period of the study, the 

575 mortality of the young goats was 20% in the control group and only 6.7% in the treatment group 

576 that received Obionekk® three times per day. Biochar feeding in goats may also reduce the 

577 incidence of parasites such as cestode tapeworms and coccidia oocysts (Van, 2006). 

578

579 3.3 Adsorption of drugs

580 Numerous human medical studies on the use of activated carbon in poisoning have been 

581 published in the 1980s providing important insights into the use of (activated) biochar as feed 

582 especially to treat feed poisoning (Erb, Gairin & Leroux, 1989). The adsorbing effect of 

583 activated carbon can be used to prevent the gastrointestinal uptake of most drugs and numerous 

584 toxins (Neuvonen & Olkkola, 1988), which is typically more effective than pumping out 

585 stomach contents. The repeated intake of activated carbon or biochar improved the elimination of 

586 overdosed toxicologically effective substances such as aspirin, carbamazepine, dapsone, 

587 dextropropoxyphene, cardiac glycosides and many more as summarized by Neuvonen & Olkkola 

588 (1988). Moreover, a faster elimination of many industrial and environmental toxins was 

589 assessed. In acute poisoning, 50 to 100 g of activated biochar are administered to adults and 

590 about 1 g per kg of body weight to children. The same authors also point out that there are no 

591 known serious side effects from accidental ingestion. In the case of acute poisoning, Finnish 

592 physicians recommend repeated oral treatment with activated carbon to reduce the risk of toxins 

593 being desorbed from the biochar-toxin complex in the digestive cycle (Olkkola & Neuvonen, 

594 1989). In general, repeated oral administration of biochar increases the efficacy of detoxication 

595 (Crome et al., 1977; Dawling, Crome & Braithwaite, 1978). However, regular administration of 
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596 0.2 % activated biochar in broiler feed did not significantly impact the blood levels of the 

597 antimicrobial drugs doxycycline and tylosin, and of the coccidiostats diclazuril and salinomycin. 

598 The pharmaceutical products were co-applied to the activated carbon amended feed (De Mil et 

599 al., 2017).

600

601 3.4 Adsorption of pesticides and environmental toxins

602 Based on the excellent adsorption properties of biochar in relation to numerous pesticides, 

603 insecticides and herbicides (Safaei Khorram et al., 2016; Mandal, Singh & Purakayastha, 2017; 

604 Cederlund, Börjesson & Stenström, 2017), which are increasingly found in animal feed (Shehata 

605 et al., 2012), biochar is considered as animal feed additive. Of particular importance is the 

606 adsorption of glyphosate, an herbicide that currently contaminates most of the feed produced 

607 from genetically modified maize, rapeseed and soybean. Although crop desiccation herbicides 

608 have been banned in Germany since May 2014, they are still permitted in many other countries 

609 as a treatment shortly before grain harvest. In addition to immobilizing magnesium and zinc, 

610 glyphosate has a potent antibiotic activity (US Patent 7,771,736, EP0001017636, issued in 2010) 

611 and is suspected of causing or promoting chronic botulism (Shehata et al., 2012). Glyphosate 

612 sorption efficiency onto biochar particles is both dependent on pH (high sorption at low pH, 

613 (Herath et al., 2016)) and the highest treatment temperature during biochar production (high 

614 sorption on high-temperature biochars (Hall et al., 2018)). However, Hall et al. (2018) showed 

615 that glyphosate sorbed by biochar from pure water could be remobilized by adding 0.1 M 

616 monopotassium phosphate (KH2PO4)solution. This finding indicates that biochar-sorbed 

617 glyphosate from feed may be remobilized in the digestive tract due to numerous ions potentially 

618 competing for sorption sites. Further research in vivo and/or in vitro in relevant matrixes is 

619 necessary, as low pH e.g. in the stomach, could favor glyphosate sorption (Herath 2016). In a 

620 study with 380 dairy cows, Gerlach et al. (2014) showed that daily feeding with humic acids 

621 (120 g d-1) or with a combination of 200 g of biochar and 500 g of sauerkraut juice for 4 weeks 

622 significantly reduced the glyphosate concentration in the urine of the cows that were fed with 

623 glyphosate contaminated silage. 

624 Preliminary pesticide adsorption studies using biochar were already carried out in the 1970s 

625 (Humphreys & Ironside, 1980). Deposits of the systemic organophosphorus insecticide Runnel 

626 in the gastric mucosa of sheep were significantly reduced by the feeding 50 g of activated 

627 biochar per kg of feed, i.e. 5% amendment rate (Smalley, Crookshank & Radeleff, 1971). While 

628 it was reported that activated biochar was successfully used to adsorb pesticides in the digestive 

629 tracts of cattle, sheep and goats and were eventually excreted (Wilson & Cook, 1970), similar 

630 experiments in chickens did not show any significant effects on the residue levels in eggs and 

631 tissues (Foster et al., 1972). Feeding of biochar with Dieldrin contaminated feed, an 

632 organochloride insecticide that was widely used until the 1970s and is still persistent in the 

633 environment though it is banned now, resulted in a very significant reduction of the Dieldrin 

634 concentration in the fat of the pigs (Dobson et al., 1971). On the other hand, Fries et al. (1970) 

635 found no reduction in the levels of Dieldrin and DDT in milkfat when cows were fed 1 kg of 
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636 activated biochar per day for 14 days. However, Wilson et al. (1971) found that when Dieldrin 

637 and DDT-contaminated feed was mixed with activated biochar at 900 g per animal and day, 

638 Dieldrin intake was reduced by 43% and DDT intake by 24%. When the contaminated feed and 

639 biochar were administered separately, DDT intake was not reduced as both the Dieldrin and 

640 DDT were probably absorbed by the oral mucosa already and not only in the digestive tract 

641 (Fries et al., 1970). Activated biochar also showed very good in vitro adsorption properties for 

642 the herbicide Paraquat (Okonek et al., 1982; Gaudreault, Friedman & Lovejoy, 1985), which has 

643 been banned in the EU since 2007 but is still legal in the US and other countries.

644 Fat-soluble organochlorine compounds such as Dibenzo-p-dioxin (PCDDs), Dibenzofuran 

645 (PCDFs) and dioxin-like PCBs are ubiquitous environmental toxins, and can often be detected in 

646 animal feed. These compounds accumulate in the adipose (fatty) tissue of animals and humans. 

647 Experiments with activated biochar to adsorb these substances were undertaken repeatedly in 

648 Japan (Yoshimura et al., 1986; Takenaka, Morita & Takahashi, 1991; Takekoshi et al., 2005; 

649 Kamimura et al., 2009). All experiments showed the strong affinity of the organochlorine 

650 compounds to activated biochar (Iwakiri, Asano & Honda, 2007). Fujita et al. (2012) carried out 

651 an extensive experiment with 24 laying hens whose feed contained the organochlorine 

652 compounds mentioned above and fed either with or without 0.5% biochar over a period of 30 

653 weeks. Depending on the structure and aromaticity of the organochlorine compounds, 

654 concentrations of PCDDs / PCDFs, non-ortho PCBs and mono-ortho PCBs in the tissue and eggs 

655 of the laying hens could be reduced by more than 90%, 80% and 50%, respectively (Fujita et al., 

656 2012). The fact that different organochlorine compounds are bound to different degrees by 

657 biochar has been previously demonstrated in studies of contaminated fish oil (Kawashima et al., 

658 2009). In general, molecules with higher aromaticity have a stronger affinity to biochar; this also 

659 applies to polycyclic aromatic hydrocarbons (Bucheli, Hilber & Schmidt, 2015). Olkkola and 

660 Neuvonen (1989) concluded that the regular intake of biochar as food supplement can be very 

661 helpful in the elimination of industrial and environmental toxins including dioxins and PCB 

662 ingested by humans, a valid statement for animal feed too. 

663

664 3.5 Detoxification of plant toxins

665 Another benefit of a regular use of biochar is the alleviation of adverse effects of naturally 

666 occurring though potentially harmful ingredients such as tannins contained in many feeds 

667 (Struhsaker et al., 1997). Tannins are complex and extraordinarily diverse compounds that are 

668 partly beneficial but may also be harmful especially to ruminants. Tannins are often found in 

669 high protein feeds such as legumes and the strong taste repels the animals, which reduces 

670 digestability and weight gain (Naumann et al., 2013). Several studies have investigated how 

671 biochar feeding alters the impact of tannin-rich foods. Van et al. (2006) found that in goats, 

672 feeding 50 to 100 g of bamboo biochar per kg of a tannin-rich acacia leaf diet increased daily 

673 weight gain by 17% compared to the control without biochar. The authors found that digestion of 

674 crude proteins and nitrogen conversion were significantly improved. Apparently, there was an 

675 optimal biochar dose: While 50 and 100 g of bamboo biochar feed additions resulted in similar 
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676 goat weight gains, feeding 150 g of the same biochar per kg diet did not show any improvement 

677 compared to control. Stuhsaker et al. (1997) found, as previously described, that the consumption 

678 of wild fire derived charcoal by Zanzibar red colobus monkeys increased the nutritional 

679 efficiency of tannin-rich Indian almond and mango leaves. Banner et al. (2000) found that the 

680 mixture of 10-25 g of activated biochar per day with rye significantly increased the uptake of 

681 tannin and terpene rich compounds. Similar results for sage and other terpenic and tannin-rich 

682 shrubs were reported by (Rogosic et al., 2006, 2009), whereas others could not confirm that 

683 lambs consumed significantly more sage due to biochar amended feed (Villalba, Provenza & 

684 Banner, 2002).

685

686 In winter, when hardly any fresh pasture plants are available, sheep also eat bitterweed 

687 (Hymenoxys odorata DC.), which contains toxic levels of sesquiterpene lactones. Poage et al. 

688 (2006) conducted therefore a series of bitterweed feeding trials with 0.5 to 1.5 g of biochar per 

689 lamb per day mixed directly to the feed. While the lambs rejected the bitterweed-containing feed 

690 without biochar, they did consume bitterweed up to 26.4% of the total feed intake when 

691 combined with biochar revealing no signs of toxicosis. 

692 Several studies have shown that poisoning of both livestock and sheep through contamination of 

693 feed with  Lantana camara, a species of flowering invasive species, can be effectively treated 

694 with 5 g of biochar per kg of body weight (Pass & Stewart, 1984; McLennan & Amos, 1989). 

695 While five out of six calves recovered from Lantana camara poisoning after treatment with 

696 activated biochar, five out of six calves not treated with biochar died (McKenzie, 1991). 

697 Treatment with bentonite achieved similarly high cure rates, but complete healing took about 

698 twice as long. Similarly significant results are found for treating Yellow tulip (Moraea pallida) 

699 poisoning of cattle (Snyman et al., 2009) and oleander poisoning of sheep (Tiwary, Poppenga & 

700 Puschner, 2009; Ozmaie, 2011).

701

702 4. Regular biochar feeding to improve performance and animal welfare

703 While therapeutic administration of biochar is a historically proven practice and has been 

704 scientifically studied for over 50 years and recommended as a cure for numerous symptoms, 

705 regular co-feeding of biochar with the purpose of improving productivity is discussed again only 

706 since 2010. The feeding of livestock with biochar and biochar products is rapidly spreading in 

707 practice, due to the apparently good experiences of farmers, especially in Germany, Switzerland, 

708 Austria and Australia. However, systematic scientific research on regular feeding with various 

709 types of biochar is still rare. One reason for this is the fact that with veterinary medicine and 

710 biochar research two areas of expertise collide that could hardly be more different and whose 

711 methods and vocabulary have little in common. The latter also explains why usually non-

712 characterized or only poorly characterized biochar was used for feeding experiments.

713 Despite the diversity of biochar properties, key features of this heterogeneous material are 

714 similar and apparently lead to comparable effects when provided as feed supplement. The review 

715 of  27 peer reviewed scientific publications and clinical studies (table 1) about regular biochar 
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716 feeding revealed no negative effects on animal welfare and performance.  Still, there are open 

717 question on some effects on long-term biochar feeding that should be addressed prior to an 

718 unconfined recommendation of regular biochar feeding. These include effects on the resorption 

719 of liposoluble feed ingredients and potential interaction with the mycotoxin fumonisin. These 

720 risks of regular biochar feeding are summarized in a separate section below. While results of 

721 feeding trials were sometimes neutral (no significant difference between biochar and control 

722 treatment), often one or several of the following effects were observed when biochar was 

723 provided as feeding additive to livestock:

724

725 - Increase in feed intake

726 - Weight gain

727 - Increased feed efficiency

728 - Higher egg production and quality in poultry

729 - Strengthening of the immune system

730 - Improvement of meat quality

731 - Improvement of stable hygiene and odor pollution

732 - Reduction of claw and feet diseases

733 - Reduction of veterinary costs

734

735 Sorted by animal species, the following subsection reviews the scientific literature on medium to 

736 long term feeding of biochar in regard to improving livestock productivity, product quality, 

737 animal fitness, welfare and performance in the respective animal farming system. Risks of 

738 regular biochar feeding are summarized in a separate section. 

739

740

741 4.1. Cattle 

742 As evidenced by farmer practice, veterinary advice, and European regulations, biochar is already 

743 widely used as a regular feed supplement in cattle farming especially in Germany, Austria, and 

744 Switzerland (personal communication from the European Biochar Certification body). However, 

745 there are only very few scientific studies on biochar feed additives for cattle so far. 

746 Since 2011, the German veterinarian Achim Gerlach has been feeding 100 to 400 g of high 

747 temperature wood biochar (HTT 700°C) per cow per day to numerous herds of cattle without 

748 detecting negative side effects (Gerlach and Schmidt, 2012 & Gerlach personal communication, 

749 2018). His survey of 21 farmers with at least 150 cattle revealed that overall health and vitality 

750 had improved since they had started biochar feeding. The somatic cell count (SCC) of the milk, 

751 an indicator of level of harmful bacteria, decreased significantly, whereas milk protein and milk 

752 fat content increased. When biochar additions to feed stopped, SCC quickly increased and a 

753 general loss of performance of the animals compared to the biochar-feeding period was 

754 observed. It was also reported that hoof problems were reduced, and that postpartum health was 

755 stabilized through biochar co-feeding. Within 1-2 days after the onset of the biochar feeding, 
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756 diarrhea symptoms decreased and feces became firmer. Mortality rates declined, as did overall 

757 veterinary costs. The liquid manure viscosity improved significantly and the odor load of the 

758 manure decreased (Gerlach & Schmidt, 2012). 

759 For 98 days, Leng and colleagues fed four cattle 0.6% of a rice hull-derived biochar, with 

760 another four in a control group without biochar in their feed. The biochar feeding resulted in a 

761 25% higher weight gain compared to the control animals (Leng, Preston & Inthapanya, 2013). 

762 Another study, however, did not find any significant effect on weight gain and blood values in 

763 Hanwoo bulls when an undefined biochar was administered at a rather high dose of 2% (Kim & 

764 Kim, 2005). A supplement of 1% rice husk biochar was added to a basal diet consisting of 

765 ensiled cassava root, urea, rice straw and fresh cassava foliage (Phongphanith & Preston, 2018). 

766 Live weight gain increased by 15% and feed conversion rate also improved by 15% in the 

767 biochar treatment, compared to the control without biochar supplement. Interestingly, when a 

768 rice wine distillers’ byproduct was added at 4%  to the biochar-supplemented feed, the live 

769 weight gain and the feed conversion rate increased by 60% compared to the control without 

770 either supplement. They further found an increase of 18% compared to feeding with the rice 

771 wine distillers alone (without biochar), or 31% compared to the biochar-only supplement. This 

772 shows a strong interactive effect between the two supplements indicating that the combination 

773 and interaction of biochar with other feed additives should increasingly be investigated. 

774 In a semi-continuous artificial rumen system, a high temperature biochar (HTT 600°C) was 

775 added at 0, 0.5, 1, and 2% to a high-forage diet for 17 days. The biochar linearly increased the 

776 digestion of dry matter, organic matter, crude protein, and fiber. Microbial protein synthesis also 

777 increased linearly. The microbial production of acetate, propionate and total volatile fatty acids 

778 in the artificial rumen increased (Saleem et al., 2018).  

779

780 As early as 2010, Marc McHenry pointed to the possibility of using biochar as a feed additive 

781 not only to increase feed efficiency but to also increase nutrient availability of the manure, to 

782 protect ground and surface water, and to sequester carbon in the soil (McHenry, 2010). This 

783 cascading approach of improving not only animal performance and welfare but also various 

784 ecosystem services has been the subject of discussion and investigation by various authors since 

785 (O’Toole et al., 2016; Schmidt & Shackley, 2016; Kammann et al., 2017a). A far-reaching study 

786 of these cascades has been carried out by Stephen Joseph and colleagues in Australia (Joseph et 

787 al., 2015b): Since 2011, 60 grazing cattle on an Australian farm were fed 330 grams per day of a 

788 high temperature biochar (HTT 600°C) made from Jarrah wood mixed with 100 grams of 

789 molasses. From 2011 to 2015, soil organic matter, pH (CaCl2), Colwell-P, Colwell-K, electrical 

790 conductivity and the content of all exchangeable cations increased in the pasture soil that 

791 received the dung of the free ranging cattle. During its passage through the digestion system of 

792 the cattle, biochar seems to capture organic and mineral compounds with high plant fertilizing 

793 properties that would otherwise probably be subject to rather quick leaching during storage. Most 

794 of these captured plant nutrients (especially nitrogen and phosphorus) remain bound in the 

795 porous structure of the biochar until its incorporation into the soil, where they likely become, to a 
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796 large extent, plant available as has also been found for biochar after aerobic composting 

797 (Kammann et al., 2015c; Schmidt et al., 2017). The authors of the Australian study reported that 

798 increased retention of the digested nutrients in the biochar increased the fertilizing effect of the 

799 bovine manure so that no additional fertilizers was required for the pasture growth (Joseph et al., 

800 2015b). However, they did not set-up a control pasture to proof the latter. To prove their 

801 conclusion, a more systematic scientific experiment would be required. 

802 In addition to the improvement of the fertilizing properties of biochar-amended manure, the 

803 application of biochar to manure either via feed or via bedding materials is recommended as a 

804 potent strategy to reduce manure related greenhouse gas emissions (Kammann et al., 2017a). 

805 When biochar (wood shavings, HTT 650°C) was applied at 13% to a cattle slurry and 

806 subsequently applied to a field at 3.96 m3 biochar ha-1, the biochar decreased total NH3-

807 emissions by 77%, N2O-emissions by 63%, and CH4-emissions by 100% compared to the control 

808 of cattle slurry only (Brennan et al., 2015). 

809 Since 2012, German and Swiss farmers have been using biochar in the production of feed silage 

810 to stabilize lactic acid fermentation, prevent fermentation failure, and reduce risks of fungal 

811 infestation and formation of mycotoxins (O’Toole et al., 2016). Lower levels of acetic acid and 

812 especially butyric acid are expected to minimize the risk of Clostridia infestation. The high-

813 water holding capacity of biochar appears to buffer the water content of the silage, reducing the 

814 formation of excess fermentation liquids. 

815 Calvelo Pereira et al. (2014) investigated the addition of various amounts and types of biochar (0 

816 – 2.1 – 4.2 – 8.1 – 18.6 % made from pine wood or maize straw and pyrolyzed at 350 °C, and 

817 550 °C, respectively) to hay silage and to cattle rumen liquid. The biochar treatments did not 

818 significantly affect the investigated silage quality parameters, nor did it negatively affect in vitro 

819 incubation with rumen fluid. 

820 4.2 Goats and sheep

821 In a 12-week experiment with 42 young goats, it was found that feeding 1 g of bamboo biochar 

822 per kg of bodyweight resulted in significantly higher crude protein intake (Van, 2006). The total 

823 amount of digested nitrogen increased and was thus lower in the urine and feces of the animals. 

824 The body weight increased on average 53 g per day compared to 44 g in the control group fed 

825 without biochar; a statistically significant difference of 20%. The basic feeding of the goats 

826 included a large proportion of tannin-rich acacia (Acacia mangium) leaves, and the authors 

827 hypothesized that biochar eased digestion of those leaves by sorption of their tannins which 

828 apparently lead to higher crude protein and improve total DM intake.  

829 In a trial with groups of 12 goats (N=3), growth performance was tested when a basal diet of 

830 tannin rich leaves of Bauhinia acuminata were provided either with or without 1% biochar 

831 (Silivong & Preston, 2016). Biochar improved the nutrient assimilation and led to a 27% increase 

832 in daily weight gain over the 100 day period of the trial. In another study, a goat feed additive of 

833 1.5% and 3% activated coconut biochar did not produce significant improvement of feed intake 

834 nor did it alter the microbial community structure compared with the control (Al-Kindi et al., 

835 2017). However, the activated biochar increased the fecal concentration of slowly decomposable 
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836 carbohydrates while reducing fecal N. This left the authors to surmise a beneficial slow-down in 

837 the mineralization rate of the organic carbon contained in the manure when applied to soil, which 

838 may be beneficial for the built-up of soil organic matter.  

839 4.3 Horses

840 Very few publications exist yet on feeding biochar to horses. Edmunds et al. (2016) investigated 

841 the effect of a woody biochar on the microbial community of the equine hindgut and the 

842 metabolites they produce. They did not find any significant effect of the biochar and concluded 

843 that the effect of biochar as a control for toxic substances is at its highest in the foregut or midgut 

844 of animals, and therefore should have little impact on the hindgut.

845 According to the EBC certified manufacturers of biochar and biochar products, horse breeders 

846 and farmers widely apply biochar in horse manure management and also in feeding, but apart 

847 from the above, not a single scientific study is known to the authors.  

848 4.4 Pigs

849 Gyo Moon Chu and his colleagues published several fundamental studies in 2013 on the feeding 

850 of bamboo biochar to pigs. Young pigs (N=12) were fed for 42 days in addition to their normal 

851 fattening diet (corn, wheat, soybean meal) either with 0, 0.3 or 0.6% of biochar. The average 

852 weight gain during the trial period was 750 g per day in the control without biochar and 877 g 

853 per day in the 0.3% biochar treatment; this corresponded to a significant feed efficiency increase 

854 of 17.5%. Doubling the biochar supplement to 0.6% did not lead to statistically significant 

855 differences compared to the 0.3% treatment. While leucocytes, erythrocytes, hemoglobin, 

856 hematocrit and platelets did not differ significantly between the experimental groups, the biochar 

857 group showed significant positive effects on total protein, albumin, cholesterol, HDL-CH and 

858 LDL-cholesterol levels in the blood plasma. In addition, the cortisol content was significantly 

859 lower, which indicates a reduced susceptibility to stress (Chu et al., 2013c). In another study, the 

860 authors showed that feeding 0.3% and 0.6% bamboo biochar improved the quality of marketable 

861 meat and the composition of pig fat, with an increase in unsaturated fatty acid content and a 

862 decrease in saturated fat (Chu et al., 2013b). In a third study, the authors examined to what extent 

863 biochar feeding can replace the regular supplementation of growth-promoting antibiotics, 

864 something which is still legal in many though not all countries. In an very comprehensive 

865 publication (Chu et al., 2013a), they concluded that feeding 0.3% bamboo biochar gave the same 

866 growth rate in fattening pigs as the standard antibiotic treatment, notably without the negative 

867 side effects to the environment that antibiotics can have. 

868 Another hog feed trial was done in South Korea using different concentrations of biochar and 

869 stevia mixed into the common diet of 420 pigs (Choi et al., 2012). While neither 30 g of biochar 

870 nor 30 g of stevia per kg of feed alone had any significant effects, 30 g of biochar plus 30 g of 

871 stevia had higher daily weight gain, feed efficiency and immune responses as well as 

872 significantly higher meat quality and storage capacity of meat products (Lee et al., 2011; Choi et 

873 al., 2012). In a Japanese study by Mekbungwan et al. (2004), piglets were fed with increasing 

874 concentrations of a 4:1 mixture of a low temperature biochar (HTT 450°) and wood vinegar. 

875 When fed with 1, 3 and 5% of this mixture, no statistically significant effects on body weight and 
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876 feed efficiency were observed compared to the 0% control. However, duodenal villi height, an 

877 animal health indicator, increased significantly. The same authors showed four years later, with 

878 the same biochar-wood vinegar mix added at 1% and 3% to a protein-rich feed, that the biochar 

879 treatments prevented negative side-effects of pig fattening with protein-rich pigeon peas 

880 (Mekbungwan et al., 2008). The biochar-fed animals presented significantly better values in 

881 parameters related to health such as intestinal villi height, cell area and cell mitosis number 

882 compared to the control groups.

883 In Switzerland, Kupper et al. (2015) fed 80 weaned piglets for 28 days with a 1% commercial 

884 biochar feed additive mixture that had undergone a lactic fermentation beforehand. The biochar 

885 treatment did not reveal any significant difference in daily weight gain, feed consumption, and 

886 feed conversion rate compared to the control group that received the same feed but without the 

887 biochar containing supplement. Moreover, no significant difference in NH3-emissions of the 

888 stored or field applied manure was observed. 

889 In a trial with native Moo Lath pigs (N=20), the addition of 1% biochar to a basal diet consisting 

890 of ensiled banana pseudo stem and ensiled taro foliage increased the feed conversion rate by 

891 10.6% compared to the control. The total weight gain of the piglets was on average  higher by 

892 20.1% (p=0.089) after the 90 days of the experiment  (Sivilai et al., 2018).

893 6.5 Poultry

894 Of all publications on the performance-enhancing use of biochar, a majority have focused on its 

895 use with poultry, not  least because scientific studies using poultry are easier and less costly to 

896 perform than on large ruminants or pigs. One of the more frequently cited studies is that of Jean 

897 Raphael Kana and colleagues who systematically fed two different biochars, one from corncobs 

898 and the other from canary tree (Bakeridesia integerrima) seeds, to broiler chickens at different 

899 feeding concentrations from 0 to 1% per kg feed (Kana et al., 2010). Unfortunately, the 

900 production of biochar was only designated as “traditional” and was not described in detail, but 

901 the high ash levels of 47% and 25%, respectively, indicate that a substantial portion of the initial 

902 biomass was burned and not fully pyrolyzed. Nevertheless, feeding both biochars up to 0.6% led 

903 to greater, mostly significant weight gain, while the higher dosages led to no further significant 

904 weight gain, but also to no weight loss compared to the control. Liver weight, abdominal fat nor 

905 bowel length and weight were affected by the biochar feeding. The study is an important 

906 indication that biochar derived from non-woody biomass and with a higher ash content may also 

907 be suitable for feeding, which is so far not allowed by the EBC (EBC, 2012). In a later study 

908 with the same biochars, the authors examined whether chickens can, thanks to the biochar 

909 supplement, be fed with 20% chickpeas, a feed that is protein-rich but generally difficult for 

910 chickens to digest. Surprisingly, when the ash-rich biochar from corncobs was added, the boiled 

911 chickpeas could be fed and provided the same weight gain in the broilers as the control without 

912 chickpeas. However, the lower-ash biochar from the tree seeds did not show the same effect here 

913 (Kana, Teguia & Fomekong, 2012). 

914 Bakr (2007) used traditionally produced citrus wood charcoal purchased at the local market in 

915 Nablus and added them at very high dosages of 0, 2, 4 and 8% to the standard broiler feed. At 
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916 2%, significant increases on body weight, feed intake and feed efficiency were measured during 

917 the first three weeks compared to control. After this initial period, all results were similar. Of 

918 particular note in this study is that even the very high feeding dosage of 8% of a biochar of at 

919 least doubtful quality did not cause any adverse effects. Kutlu et al. (2001) also used very high 

920 biochar dosages of up to 10% of the base diet, and found that all dosages significantly increased 

921 basal feed intake in the first 28 days, and also weight gain and feed efficiency of both broilers 

922 and laying hens but did not show significantly higher gains after this initial period.

923 A Polish working group led by Teresa Majewska conducted several feed trials on chickens and 

924 turkeys between 2000 and 2012 (Majewska and Pudyszak, 2011, Majewska et al., 2009, 2002). 

925 They achieved consistently positive results with doses of 0.3% of a hardwood biochar. They not 

926 only found higher weight gain and better feed efficiency, but also higher protein levels in the 

927 pectoral muscles and a significantly lower mortality compared to the control. Majewska and her 

928 colleagues explained these improvements by (1) the detoxification of feed components, (2) the 

929 reduction in surface tension of the digestive pulp and (3) the improvement in fat loss in the liver.

930 Ruttanavut et al. (2009) did not find a statistically significant increase in duck growth when co-

931 fed with a 1% biochar - wood vinegar blend, but they showed significant biochar effects on the 

932 size of the villi, the cell surface, and the rate of cell division in the gut, which confirms similar 

933 results from literature (Samanya & Yamauchi, 2001; Ruttanawut, 2014). Islam et al. (2014) 

934 showed in an experiment with 150 young ducks that feeding with 1% of a 1:1 mixture of biochar 

935 and sea tangle (Laminaria japonica) can be recommended as an alternative to the use of 

936 antibiotics in the feeding of ducks.

937 Several research groups have shown that the quality of chickens’ meat can be significantly 

938 improved by feeding of biochar (Cai et al., 2011, Kim et al., 2011, Yamauchi et al., 2010, 2014). 

939 It was for example  found that no significant weight gain was recorded when fed with 0.5% 

940 activated coconut shell biochar but that SGOT (Serum Glutamine, Oxaloacetic Transminase), 

941 SGPT (Serum Glutamine Phosphate Transminase), Albumin, and triglycerides as well as sensory 

942 evaluation and weight of abdominal fat, heart and spleen significantly improved while the 

943 cholesterol level decreased (Jiya et al., 2013, 2014). Also, when broiler chickens were fed with 

944 1% activated biochar the useful fatty acid, oleic acid, and total mineral content of the meat 

945 increased significantly (Park & Kim, 2001). Other trials with 2% biochar or a mixture of bamboo 

946 biochar and wood vinegar did not show significant differences in meat quality compared to 

947 controls (Sung et al., 2006; Fanchiotti et al., 2010; Ruttanawut, 2014). 

948 It was observed in several studies that the strength of eggshells can be improved by co-feeding 

949 biochar (Kutlu, Ünsal & Görgülü, 2001; Ayanwale, Lanko & Kudu, 2006; Kim et al., 2006). 

950 Yamauchi et al. (2010) found an increase in egg production of nearly 5% when hens were fed 

951 with a blend of bamboo biochar and wood vinegar. The collagen content of the eggs increased 

952 highly significantly by 33% with a 1% feed of the same bamboo biochar – wood vinegar 

953 mixture. Collagen not only increases the shelf life of the eggs but is also an interesting ingredient 

954 for pharmaceuticals and cosmetics (Yamauchi et al., 2013).
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955 Prasai et al. (2016) investigated biochar, bentonite and zeolite for selective pathogen control in 

956 hens. Their treatments involved the commercial layer diet (control group) amended with biochar, 

957 bentonite, and zeolite at 4% w/w, respectively. While bird weight and number of eggs did not 

958 differ significantly between the control and the biochar treatment, the total egg weight increased 

959 by 5% and the feed conversion ratio increased by 12% compared to the control. Feeding 

960 bentonite and zeolite revealed comparable increases and non-significant differences to biochar, 

961 respectively. The biochar feed amendment did not result in altered gut microbial community 

962 richness and diversity compared to the control. However, individual phylotypes at different 

963 phylogenetic levels did respond differently to the three amendments and reduced especially the 

964 abundance of Helicobacter and Campylobacter. Both genera are gram-negative and include 

965 multiple pathogenic species. The authors demonstrated that biochar, bentonite and zeolite can be 

966 used to selectively reduce the abundance of some major poultry zoonotic pathogens without 

967 reducing chicken microbiota diversity or causing major shifts in the gut microbial community 

968 and are thus a viable alternative to antibiotics in the poultry industry. A recent Vietnamese study 

969 on supplementing chicken feed with 1% rice husk biochar confirmed positive effects on 

970 pathogen occurrence with reduced plasma triglycerides, total coliform bacteria in litter and E. 

971 coli in feces (Hien et al., 2018). However, no impact on live weight gain, feed consumption and 

972 feed conversion ratio were observed.

973 In Switzerland, two groups of 400 broilers were fed for 36 days with a 0.7% biochar supplement 

974 provided as a commercial feed additive mixture that had undergone a lactic fermentation 

975 beforehand (Kupper et al., 2015). The biochar treatment did not reveal any significant difference 

976 in daily weight gain, feed consumption, feed conversion rate or food pat and hook lesions 

977 compared to the two control groups that received the same feed without the biochar containing 

978 supplement. Moreover, no significant difference in NH3-emissions of the stored or field applied 

979 broiler manure was measured. The results of Kupper et al. (2015) are in puzzling contradiction 

980 with a similar trial in the same country undertaken at the Swiss Aviforum where groups of 270 

981 broilers with four replicates were fed for 37 days with the same 0.9% biochar based commercial 

982 feed additive, with 1% pure wood based biochar (HTT of 700°C) or with 0% biochar as control 

983 group (Albiker & Zweifel, 2019). Here, the weight gain increased significantly by 5% 

984 (fermented biochar product) and 6% (pure biochar) compared to the control. Moreover, both 

985 biochar treatments decreased the foot pat and hook lesions by 92% and 74%, respectively, 

986 compared to the control. 

987 For a study at West Virginia University with test groups of 1472 broiler chicks (N=8), pyrolysed 

988 poultry manure was provided as feed additive despite insufficient feed quality analyses (Evans, 

989 Boney & Moritz, 2016). The arsenic content of the poultry manure biochar exceeded the 

990 threshold of the European Biochar Feed Certificate (EBC, 2012) by a factor of 6.5, and no PAH 

991 analyses were carried out, despite using gasification technology that is known for the risk of 

992 producing biochars with high levels of PAH contaminations which often exceed threshold values 

993 of the EBC by factor 100 and more (Hilber et al., 2012; Bucheli, Hilber & Schmidt, 2015). 

994 Irrespective of these issues, supplementing poultry manure biochar at 2% increased the feed 
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995 conversion ratio by 7% while at 4% biochar supplementation the life weight gain decreased by 

996 8% both compared to the control. No other investigated parameter showed significant differences 

997 to the control over the 21-day experimental period. The feeding of such pyrolysed material is in 

998 several regards not in agreement with the EBC-feed standard, and feeding uncharacterized 

999 excrement-based materials is certainly not up to ethical standards.   

1000 In an Australian trial, groups of 20 layer hens (N=4) were fed a biochar made at 550°C from 

1001 green wood waste at rates of 0, 1, 2, and 4%, respectively (Prasai et al., 2018a) for 25 weeks. 

1002 While no significant difference in weight gain was observed, the feed conversion ratio improved 

1003 significantly between 10 and 13 % in the three biochar treatments compared to the control 

1004 without biochar. The egg weight was 5% higher in the 2% biochar treatment and 4% higher in 

1005 the 4 % treatment compared to the control. Standardized indicators of egg quality (i.e. Haugh 

1006 unit, Albumen height, stability of egg shell) where not changed by the biochar feed amendment. 

1007 The Yolk color index, however, decreased with increasing biochar dosage. The same effect was 

1008 also found when bentonite or zeolite was used instead of biochar. Yolk color is mainly the result 

1009 of carotenoid content (Bovšková, Míková & Panovská, 2014). Carotenoids are lipophilic organic 

1010 molecules that accumulated from the feed. Thus, we hypothesize that biochar may sorb a certain 

1011 amount of lipophilic ingredients of the feed. The N-balance between feed-N intake, egg-N, 

1012 excreta-N, and lost N did not differ significantly between the treatments though the excreta-N 

1013 was reduced by 20 to 34% in the 2% and 4% biochar treatment compared to the control. The 

1014 lower recovery of N in excreta is indicative of a more efficient digestive extraction of N, 

1015 consistent with the observed higher feed conversion efficiency. Remarkably, the inclusion of 2% 

1016 and 4% biochar maintained egg production at normal levels when birds were challenged with 

1017 fungal-contaminated feed. In the control treatment, the contaminated feed led to decreased egg 

1018 production by 16%. The same main author found, in another publication based on a similar trial 

1019 with the same 1, 2 and 4% biochar amendments, improvements of the poultry manure especially 

1020 in regard to granule size, water retention and decomposition characteristics (Prasai et al., 2018b). 

1021 N-contents in the decomposed poultry manure were lower by 20% and 26%, respectively, in the 

1022 treatment with 2% and 4% biochar feed compared to the control. NH3-emissions of the manure, 

1023 measured in a separate experiment using incubated bell jars, increased by 31% in the treatments 

1024 with 2 and 4% but not with 1% biochar feed amendments compared to the control. This increase 

1025 in ammonia emissions due to high doses of poultry feed applied biochar is puzzling as the 

1026 addition of higher dosages (5 - 15% (m/m)) of biochar to poultry manure composting was shown 

1027 to decrease ammonia emissions between 53 and 89% (Rong et al., 2019). Apparently, biochar 

1028 affects poultry manure composting differently when applied to the feed versus when applied 

1029 directly to the manure.   

1030 6.6 Aquaculture

1031 Nowadays aquaculture provides as much product for human consumption as capture fisheries, 

1032 yet it causes considerable harm to the environment if effluents with fish feces and excess feed 

1033 nutrients are not treated and recycled into valuable fertilizers (UN, 2016). Biochar supplements 

1034 have been fed to fish with the intention to improve water quality as well as fish health and 
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1035 productivity. Japanese flounder were fed with 0 to 4% incremental doses of a bamboo biochar 

1036 mixed into the regular feed (Thu et al., 2010). While all biochar feed additions resulted in 

1037 significantly higher flounder weight gains, the variability of individual results was so high that 

1038 only the 0.5% dose provided statistically significantly higher weight gain rates of 18%. It was 

1039 noteworthy that all biochar feeding rates resulted in significantly lower nitrogen excretions and 

1040 reduced the nitrate content in the fish water by >50%. In a South Korean experiment also with 

1041 flounder, dosages from 0 to 2% of a biochar – wood vinegar blend were fed. At a dose of 1%, the 

1042 feed efficiency increased significantly by 10%, and also the total weight gain of the fish was 

1043 significantly higher (Yoo, Ji & Jeong, 2007). The authors concluded that feeding rates between 

1044 0.5 and 1% of DM feed intake may deliver maximum weight gain and feed efficiency.

1045 Two different biochars, one made from rice husks in a TLUD stove (Anderson, Reed & Wever, 

1046 2007) and one made from wood in traditional charcoal kilns, were compared as a 1% feed 

1047 additive for tank raised striped catfish (Pangasius hypophthalmus) (Lan, Preston & Leng, 2018). 

1048 Growth rates increased by 36% with the rice husk biochar and 44% with the wood biochar 

1049 compared to the control. Both biochars led to 25% increased ratio of weight to length indicating 

1050 an enhanced flesh to bone ratio due to the faster growth rate caused by the biochar additive. 

1051 Water quality improved significantly as levels of ammonia nitrogen, nitrite, phosphate, and 

1052 chemical oxygen demand decreased by 24%, 22%, 15%, 21%, respectively, in the rice husk 

1053 biochar treatment with similar values for the other biochar. The authors hypothesized that 

1054 biochar may facilitate the formation of biofilms as habitat for gut microbiota which could be the 

1055 explanation for the improved growth rates.

1056 In China, a dietary bamboo biochar was added to the feed of juvenile common carps at rates 

1057 from 1 - 4% (Mabe et al., 2018). The biochar treatments did not produce any obvious effect on 

1058 the growth performance of the carps compared to 0% control. However, significant 

1059 improvements were reported on serum indicators such as alanine aminotransferase, aspartate 

1060 aminotransferase, total protein, triglycerides, total cholesterol, high density lipoprotein (HDL) 

1061 and glucose (GLU), demonstrating an increase in fish quality and health. The most beneficial 

1062 effects were found at the highest biochar dosage. No adverse effects were observed. 

1063

1064 5. Reduction of methane emissions from ruminants

1065 Ruminant production accounts for about 81% of the total GHG from the livestock sector (Hristov 

1066 et al., 2013). While in chickens, pigs, fish and other omnivores most of the greenhouse gas 

1067 emissions are caused by the decomposition of solid and liquid excretions, ruminants’ GHG 

1068 emissions are mainly produced by direct gaseous excretions through flatulence and burping 

1069 (eructation). The latter mainly affects cattle which are capable of producing 200 to 500 l of 

1070 methane per day (Johnson & Johnson, 1995). These methane emissions, mainly produced 

1071 through rumen microbial methanogenesis, are responsible for 90% of the GHG caused by cattle 

1072 (Tapio et al., 2017). 

1073 In the bovine rumen, methanogenesis is carried out by archaea that convert microbial digestion 

1074 products H2 and CO2 or formate (HCOOH, methanoate) to CH4 to gain energy under anoxic 
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1075 conditions. While hydrogen serves as an electron donor for the microbial reduction of CO2 to 

1076 methane (CH4), the reduction of formate (requiring 6 electrons to be reduced to H2 and CO2) can 

1077 have several biochemical pathways. The production of methane means a significant loss of 

1078 energy for the animal (from 2 to 12% of the total energy intake (Tapio et al., 2017)) as the high-

1079 energy methane cannot be digested any further and has to be eliminated almost entirely through 

1080 eructation (burp) and only minimally via flatulence from the digestive tract (Murray, Bryant & 

1081 Leng, 1976). Since methane is a 28-34 times more harmful than CO2 (global warming potential 

1082 with and without climate-carbon feedbacks over a period of 100 years (Myrhe et al., 2013)), 

1083 there is an increasing interest in feed supplements that not only increase feed efficiency, but also 

1084 can reduce methane emissions resulting from ruminant digestion. 

1085 Numerous studies have sought to find other electron acceptors besides CO2 and enteric fatty 

1086 acids to reduce methanogenesis. However, until recently, apart from the addition of nitrate and 

1087 sulfate reacting to ammonia and hydrogen sulfide, respectively, which are toxic for the animals 

1088 in higher concentrations, no convincing options have been found to date (van Zijderveld et al., 

1089 2010; Lee & Beauchemin, 2014).

1090 The first evidence that biochar might act as an electron acceptor and reduce methane production 

1091 in the rumen came from Vietnam in 2012 (Leng, Inthapanya & Preston, 2012; Leng, Preston & 

1092 Inthapanya, 2012). In vitro studies revealed that 0.5 and 1% biochar additions to the ruminal 

1093 liquid significantly reduced methane production by 10 and 12.7%, respectively. Higher levels of 

1094 biochar did not further reduce methane production. All experiments were conducted in the 

1095 presence of 2% urea as a non-protein source of nitrogen (NPN). When urea was replaced with 

1096 nitrate (6% of DM feed intake as KNO3 to supply the same amount of N), methane production 

1097 decreased by up to 49%. 

1098 While both, nitrate and biochar, may act as electron acceptor in the rumen and likely explain at 

1099 least part of the effect, it is difficult to elucidate on the base of the data provided why the 

1100 methane reductions by nitrate (-29%) and biochar (-22%) were higher when fed combined (-

1101 49%). However, as the effect appears dosage independent (0.5 or 1% biochar) it is unlikely that 

1102 the two substances reduce methane production by the same mechanisms. It may be hypothesized 

1103 that the biochar acts as a redox-active electron mediator that takes up electrons from microbial 

1104 oxidation reactions (e.g. oxidation of acetate to CO2) and donates the electron at a certain 

1105 distance from the microbial reaction center (at another spot of the same biochar particle) to 

1106 mediate an abiotic reduction of nitrate (Saquing, Yu & Chiu, 2016). Biochar at feeding ratios of 

1107 about 1% (100 g day-1) would not have the capacity to act as terminal electron acceptor for all 

1108 rumen produced hydrogen considering a daily production of about 200 l methane for the various 

1109 studies of Leng et al. in SE-Asia and up to 500 l methane for typical cattle in Europe or the US. 

1110 Nitrate (at 6% of DM intake) would have this capacity as terminal electron acceptor but is not 

1111 efficient as direct electron acceptor in microbial oxidation reaction due to the toxic effects of its 

1112 reaction products (i.e. nitrite and ammonia).

1113 Another likely mechanism is the biotic reduction of nitrate through Methylomirabilis oxyfera-

1114 like bacteria using the supplemented nitrate as an oxygen source for methane oxidation in the 
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1115 rumen. Denitrifying anaerobic methane oxidizing (DAMO) bacteria like Candidatus 

1116 Methylomirabilis oxyfera  belonging to the NC10 phylum were shown to efficiently oxidize 

1117 methane anaerobically in deep lake sediments (Deutzmann et al., 2014). NC10 DAMO bacteria 

1118 were equally found in wetlands (Shen et al., 2015), in grassland soils used for animal husbandry 

1119 (Bannert et al., 2012), and with a robust abundance of 3.8 × 105 to 6.1 × 106 copies g−1 (dry 

1120 weight) in flooded paddy fields (Shen et al., 2014). DAMO bacteria were further found in the 

1121 rumen fluid of Xinong Saanen dairy goats in Southern China. The proportion of NC10 in total 

1122 bacteria in the rumen fluid was 10%, and it could clearly be seen that NC10 mediated nitrate 

1123 reduction led to reduced enteric methane emissions (Shen et al., 2016). Notwithstanding further 

1124 evidence, it may be hypothesized that the additional effect of combined biochar and nitrate 

1125 supplements is due to the biotic denitrifying methane oxidation that might further be enhanced 

1126 through electron accepting and redox mediating properties of the biochar. Systematic 

1127 investigations to better understand the likely mechanisms are urgently needed.

1128 In vivo experiments showed that methane formation in cattle could be reduced by 20% when 

1129 0.6% of biochar was added to the ordinary compound feed (Leng, Preston & Inthapanya, 2013). 

1130 When the same amount of biochar was combined with 6% potassium nitrate, methane emissions 

1131 decreased by as much as 40%. In addition to reducing methane emissions, highly significant 

1132 bovine weight gain (+ 25%) was observed in the experiment as compared to the control, 

1133 suggesting an increase in feed efficiency and/or reduced energy conversion losses. The biochar 

1134 in this and the earlier in vitro trial was produced at high temperatures (HTT = 900°C) from 

1135 silicon-rich rice husks, which suggests a high electrical conductivity and electron buffering 

1136 capacity (Yu et al., 2015; Sun et al., 2017) which may lead to greater efficiency of fodder-

1137 decomposing redox reactions. Leng et al. (2013b) have further shown that different biochars 

1138 have different effects on methane emissions. A likely reason for this are differences in electrical 

1139 conductivity and in electron buffering (Sun et al., 2017) depending on the biomass and pyrolysis 

1140 temperature, which determine the biochar's properties of transmitting electrons between different 

1141 bacterial species. 

1142 Leng and colleagues also examined the rumen fluid of cattle previously fed with and without 

1143 biochar. They found that rumen fluid from cows that had been fed biochar produced less 

1144 methane than rumen fluid from non-biochar-fed cattle. This suggests that the animals fed biochar 

1145 may have had a different microbial community in the rumen (Leng, Inthapanya & Preston, 

1146 2012). Phanthavong et al. (2015) also found a significant decrease in methane emissions over a 

1147 24-hour period in in vitro tests with 1% biochar added to a manioc root feed mix, but only by 

1148 about 7%.

1149 In 2012, a Danish team of researchers led by Hanne Hansen published the results of an in vitro 

1150 study with large doses of various, but poorly characterized biochars and their effects on methane 

1151 production of rumen fluids (Hansen, Storm & Sell, 2012). All tested biochars (made from wood 

1152 or straw with slow pyrolysis or gasification) tended (p=0.09) to reduce methane emissions from 

1153 11% to 17%, with an activated biochar showing the highest reduction rate. However, the 

1154 enormously high addition of 9% cannot be considered as viable as this would surely impact feed 
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1155 digestibility on the long term. Winders et al. (2019) did not detect any significant reductions on 

1156 methane emissions in steers over a 23 h period when using the more realistic biochar supplement 

1157 rates of 0.8 and 3%.

1158 Four biochars (from pine wood chips and corn stover, each pyrolysed at 350°C and 550°C) were 

1159 co-fermented at rates of 0.5, 1, 2, and 5% in ryegrass silage and used as feed substrates in an in 

1160 vitro trial with rumen liquid (Calvelo Pereira et al., 2014). None of the biochar treatments 

1161 revealed any effect on methane production as compared to the control. 

1162 Due to the promising results of Leng and colleagues, several other research groups have carried 

1163 out in vitro experiments though without obtaining significant results which, therefore, where not 

1164 published (personal communications from Belgium, USA and Germany). Until today, only the 

1165 research group of Ron Leng were able to produce and reproduce high reduction rates of methane 

1166 production both in vitro and in vivo. It is impossible yet to identify a convincing reason or 

1167 mechanism to explain the strong divergence of the results. It might be due to the particular 900° 

1168 gasifier rice-husk biochar or to the non-common feed used in their trials (tannin rich cassava 

1169 roots and foliage that may provide terminal electron acceptors) or the particular rumen 

1170 microbiota of the South-East Asian cattle that may contain higher rates of DAMO bacteria. The 

1171 experiments from Europe, New Zealand, and America with conventional cattle fodder and 

1172 standard biochar prudently suggested, that biochar alone (i.e. without nitrate as oxygen source or 

1173 terminal electron acceptor) may not live up to the expectations to reduce enteric methane 

1174 emission of cattle (table 2). 

1175 This conclusion is confirmed by a recent and perhaps the most systematic and complete in vitro 

1176 study to date, at the University of Edinburgh (Cabeza et al., 2018). The authors investigated the 

1177 effects on in vitro rumen gas production and fermentation characteristics of two different rates of 

1178 biochar (10 and 100 g biochar/kg substrate, i.e. 1% and 10%) made at two different temperatures 

1179 (HTT 550°C or 700°C) and from five different biomass sources (miscanthus straw, oil seed rape 

1180 straw, rice husk, soft wood pellets, and wheat straw). The methane production was reduced by all 

1181 biochar treatments and at both concentrations levels by about 5% compared to the control 

1182 without biochar. There was no significant difference between the different types and amounts of 

1183 biochar. The absence of significant differences between those very different biochars is puzzling 

1184 though an important milestone towards the understanding of biochar’s mechanisms in animal 

1185 digestions because there has to be a common cause leading to the same effect between all these 

1186 different biochars.

1187 A new perspective on the subject was recently put forth by Saleem et al. (2018) who used an 

1188 artificial semi-continuous rumen system to test the effect of a high temperature biochar that was 

1189 post-pyrolytically treated to acidify the biochar to a pH of 4.8. For a high-forage based diet, 0.5, 

1190 1, and 2% of this acidic biochar reduced methane production by 34, 16, and 22%, respectively. 

1191 All other biochars in all of the experiments reviewed here were alkaline (pH between 8 and 

1192 11.5). The acidification of biochar not only oxidizes the carbonaceous surfaces and makes the 

1193 biochar hydrophilic, it also modifies the redox behavior and thus its “affinity” for microbial 

1194 interaction. As this is, to our knowledge, the first and only experiment to demonstrate a reduction 
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1195 of methane emissions using acidified biochar and as there are no systematic investigations about 

1196 the acidification effect yet, it is too early to draw a definitive conclusion. However, it is an 

1197 indication that post-pyrolytic treatment of biochar has the potential to design and optimize the 

1198 biochar effects in animal digestion, and, notably, to reduce enteric methane emissions.   

1199 The promising results of Ron Leng and colleagues when feeding biochar in combination with 

1200 nitrate call for systematic investigations of (1) pyrolytic and post pyrolytic treatments (e.g. 

1201 pyrolysis temperature, activation, acidification), (2) feed blending with terminal electron 

1202 acceptors (e.g. nitrate, urea, and humic substances (Md Shaiful Islam et al., 2005)), (3) co-

1203 feeding with oxygen sources for anaerobic methane oxidation (nitrate), and (4) inoculation with 

1204 Methylomirabilis oxyfera-like bacteria to oxidize methane.

1205

1206 6. Possible side effects of biochar

1207 Based on the literature compiled in the present review, none of the activated and non-activated 

1208 biochars used as feed additive or veterinary treatment had toxic or negative effects on animals or 

1209 the environment. No negative side effects were reported either in short-term or long-term 

1210 administration trials. 

1211 There are a growing number of farmers that have been feeding their livestock with biochar 

1212 additives on a daily basis for several years without noticing negative side-effects (Kammann et 

1213 al., 2017b & personal communications). However, there are only very few if any long term 

1214 biochar feeding trials with clinical follow-up (Struhsaker, Cooney & Siex, 1997; Joseph et al., 

1215 2015b). In the absence of clinical long-term feeding trials with biochar, long-term experiments 

1216 with oral administration of activated carbon to humans seem to indicate rather low risks. The 

1217 administration of 20 to 50 g activated biochar daily in uremia patients for 4 to 20 months did not 

1218 produce significant side effects (Yatzidis, 1972). Olkkola and Neuvonen (1989) maintained 

1219 dosages of 10 to 20 g administered three times a day over a period of several months in human 

1220 patients without negative side effects.

1221

1222 The main risks of long-term biochar feeding may arise (1) from shifting microbial species 

1223 composition in the digestion system (microbiome) and (2) from the potential adsorption of 

1224 essential feed compounds and/or drugs. Only a few scattered studies have addressed both points.

1225 With regard to the microbiome, the adsorptive capacity of activated biochar for the beneficial 

1226 bacterial flora in the digestive tract of dairy cows was examined using gram-positive 

1227 Enterococcus faecium, Bifidobacterium thermophilum, and Lactobacillus acidophilus (Naka et 

1228 al., 2001). Although activated biochar certainly adsorbs strains of the normal, healthy bacterial 

1229 flora too, adsorption of these bacterial strains was significantly lower than the adsorption of the 

1230 dangerous E. coli O157: H7 strain, which is gram-negative. Biochar appeared to positively affect 

1231 the ratio of (certain) beneficial bacterial flora to (certain) pathogenic flora. However, it must be 

1232 systematically investigated and mechanistically understood for a much larger number of 

1233 digestive and pathogenic microorganisms, before a more general conclusion can be drawn. Our 

1234 review suggests that the impact of biochar on microorganisms depends on the cell envelope, i.e. 
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1235 the gram-stain with gram-positive (plasma membrane plus 20-80 nm of peptidoglycan) not being 

1236 or being less well sorbed to biochar, while gram-negative bacteria (plasma membrane plus10 nm 

1237 peptidoglycan plus outer membrane) are better sorbed. However, the structure of the cell 

1238 envelope and the fact of being gram-positive or negative does not, on its own, indicate whether a 

1239 bacteria is a pathogen or not. 

1240 The potentially selective action of biochars on various bacterial genera opens up the possibility 

1241 of inoculating the biochar as a carrier matrix with beneficial bacteria, e.g. to administer gram-

1242 positive Lactobacilli. to positively influence the intestinal flora (Naka et al., 2001). Different 

1243 groups of authors have found that pathogens are generally bound more strongly than the native 

1244 intestinal flora to biochar in the digestive tract (Naka et al., 2001; Watarai, Tana & Koiwa, 2008; 

1245 Choi et al., 2009; Chu et al., 2013a). The hypotheses put forward indicate a possible correlation 

1246 with more favorable pore size distribution for the adsorption of pathogens, as well as the 

1247 observation of the (nonspecific) promotion of beneficial microorganisms such as Lactobacilli. 

1248 This combination could positively target the digestive milieu and suppress pathogens.

1249 With regard to sorption, biochar can work against human poisoning and drug overdose (Park, 

1250 1986), but thus could also counteract intended benefits of drugs. Based on our review, the same 

1251 can be proclaimed regarding pharmaceuticals used to treat livestock. It is evident that acute, 

1252 temporary treatment and continuous addition to feed over years do not underlie the same risk 

1253 assessment. Hiroyuki Fujita and colleagues conducted a comprehensive study in 2011, where 

1254 they examined the influence of biochar feeding on hens' health and egg quality. 

1255 Histopathological studies showed no changes in the digestive tract or in the liver. Examination of 

1256 the egg yolk showed that fat-soluble vitamins A and D3 did not show a statistically significant 

1257 trend towards lower concentrations, but that the vitamin E content in the eggs was reduced by 

1258 about 40% when hens were fed daily with 0.5% biochar (Fujita et al., 2012). Although all other 

1259 quality parameters such as fatty acids, oxidative stability and mineral content in the eggs were 

1260 not affected by biochar feeding, it was the first evidence that a beneficial compound like a 

1261 vitamin can be significantly reduced by co-feeding biochar. The above mentioned  reduction of 

1262 carotenoids in egg yolks indicated by changes in yolk color (Prasai et al., 2018a) further supports 

1263 the conclusion that systematic research with well-defined biochars and a focus on liposoluble 

1264 feed ingredients like vitamin E and carotenoids is needed before industrial scale-up of long-term 

1265 biochar co-feeding can be safely recommended. However, compared to a large spectrum of other 

1266 feed additives and ubiquitous pesticide and mycotoxin contamination of animal feed, risks of 

1267 quality-controlled biochar feed can be considered low, even when supplemented on a regular 

1268 basis. 

1269

1270 7. Administration of biochar feed and biochar quality control

1271 Biochar should not be fed without complete biochar analysis and control of all relevant 

1272 parameters of current feed regulations such as provided by the European Biochar Feed 

1273 Certificate (EBC, 2018). The analysis should be carried out by an accredited laboratory 

1274 specialized in biochar and feed analytics. In addition, as required by the EBC, biochar should 
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1275 always be processed and administered moist to avoid the formation of dust (EBC, 2012). If this 

1276 is respected, biochar can be added to all common feed mixes and is usually mixable with all 

1277 common feeds. Feed quality biochar may also be added to animal drinking water and, in the case 

1278 of acute intoxication, activated biochar should be administered in aqueous suspension (Neuvonen 

1279 & Olkkola, 1988). Depending on livestock species, the biochar may also be provided in freely 

1280 accessible troughs on the pasture or in the stable, without previous mixing into daily feed. Often, 

1281 the biochar is mixed with popular supplements such as molasses (Joseph et al., 2015b) or 

1282 flavoring such as saccharin, sucrose, and the like (Cooney and Roach, 1979). Some German and 

1283 Swiss farmers inject 1% (vol) of biochar into silage towers or silage bales via automated 

1284 equipment (O'Toole et al., 2016). 

1285 In many of the experiments cited here, biochar was not administered alone, but in admixture with 

1286 other functional feed supplements such as humic acid, wood vinegar, sauerkraut juice, eubiotic 

1287 liquids, stevia, nitrate or tannins, the effect of the mixture often being greater than with separate 

1288 feeding of the individual components. Those combinations of biochar with various other feed 

1289 supplements open a huge scope for further research and the reasonable expectation that suitable 

1290 feed mixtures can be developed for specific purposes and animal species. 

1291

1292 The adsorption capacity of biochar depends in particular on the specific surface area, surface 

1293 charge and the pore size distribution. Activation of biochar significantly increases the specific 

1294 surface area (from approx. 300 m2 to >900 m2), but the increase in surface area is mainly due to 

1295 the opening of micropores (<2 nm). These micropores are mostly too small for the higher 

1296 molecular weight substances or bacterial pathogens relevant for animal digestion. Galvano et al., 

1297 (1996b) found that biochar with dominating micro porosity (<2 nm) had lower adsorption 

1298 capacities for mycotoxins due to slow diffusion of these toxins into the pore-system. This was 

1299 also the case for other investigated toxic compounds such as pesticides, PCBs, dioxins or 

1300 pathogens, as was demonstrated by Edrington et al. (1997) when highly activated biochar did not 

1301 reduce the toxic effects of aflatoxin in chickens more strongly than non-activated biochar. 

1302 Therefore, the activation of biochar may not significantly increase the specific adsorption 

1303 capacity for certain target substances or organisms. To produce a biochar with a particularly high 

1304 content of accessible meso and macro pores, downstream activation is not necessary and can be 

1305 achieved merely by adjusting the pyrolysis parameters. Generally speaking, a higher meso-

1306 porosity is achieved at pyrolysis temperatures above 600 °C (Brewer et al., 2014).

1307 Depending on the activation method, biochar activation and acidification can greatly modify the 

1308 electron (and proton) mediating capacity (Chen and McCreery, 1996), however, to date no 

1309 systematic research has been done with such modified biochars in animal feeding. Currently, 

1310 only pyrolysis temperature was identified as main driver for the redox behavior, revealing 

1311 temperatures between 600 and 800°C as optimal (Sun et al., 2017). 

1312 To minimize condensate deposition on biochar surfaces and to ensure that PAH contents stay 

1313 below common thresholds (EBC, 2012) sufficient active degassing of the cooling biochar at the 
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1314 end of the pyrolysis process is mandatory, for example by using inert gas or by sufficient counter 

1315 flow ventilation during discharge (Bucheli, Hilber & Schmidt, 2015).

1316 Biochars used in the various studies were mainly derived from wood, but also from coconut 

1317 shells (Jiya et al., 2013), rice husk (Leng, Preston & Inthapanya, 2013), shea butter stocks 

1318 (Ayanwale, Lanko & Kudu, 2006), bamboo (Van, 2006; Chu et al., 2013a), corn stover (Calvelo 

1319 Pereira et al., 2014), corncob (Kana et al., 2011), straw (Cabeza et al., 2018) and many other 

1320 types of biomass. According to current publications, there is no scientific basis to prefer one 

1321 source of biomass over another to produce feed-grade biochar. As long as important guidelines  

1322 for the H/Corg ratio (= degree of carbonization), carbon and heavy metal contents, PAHs and 

1323 other organic pollutants are met, biochar from woody as well as non-woody precursors may 

1324 safely be used for co-feeding purposes. 

1325 The European Biochar Certificate (EBC), a voluntary industry standard, has been controlling and 

1326 certifying the quality of biochar for use in animal feed since January 2016 (EBC, 2012). To date, 

1327 six biochar producing companies have obtained the EBC-feed certificate (EBC website, 2019). 

1328 The EBC Feed Certificate guarantees compliance with all feed limits prescribed by the EU 

1329 regulations and, moreover, certifies sustainable, climate friendly production (EBC, 2018). 

1330

1331 Conclusions

1332 The use of biochar as a feed additive has the potential to improve animal health, feed efficiency 

1333 and livestock productivity, to reduce nutrient losses and greenhouse gas emissions, and to 

1334 increase manure quality and thus soil fertility. In combination with other good farmer practices, 

1335 biochar could improve the overall sustainability of animal husbandry. The analysis of 112 

1336 scientific papers on biochar feed supplements has shown that in most studies and for all farm 

1337 animal species, positive effects on different parameters such as growth, digestion, feed 

1338 efficiency, toxin adsorption, blood levels, meat quality and/or emissions could be found. 

1339 However, a relevant part of the studies obtained results that were not statistically significant. 

1340 Most importantly, no significant negative effects on animal health were found in any of the 

1341 reviewed publications.

1342 It is undeniable that, despite the large number of scientific publications, further research is 

1343 urgently needed to unravel the mechanisms underlying the observed results and to optimize 

1344 biochar-based feed products. This applies in particular to the characterization of the biochar 

1345 itself, which in the majority of studies was insufficiently analyzed. The electrochemical 

1346 interaction of biochar and organic systems is extremely complex and needs considerable more 

1347 fundamental research and systematic in vivo trials. Moreover, if biochar’s role within animal 

1348 digestion is mainly to act as a mediator and carrier substance, the combination with other feed 

1349 additives and inoculants may be mandatory to achieve the full functionality of biochar for its 

1350 beneficial use in animal digestion and animal health. 

1351 Based on the scientific literature published so far, it can be concluded that (1) a general efficacy 

1352 of biochar as feed supplement can be observed and (2) biochar feeding can be considered safe at 

1353 least for feeding periods of several months. Despite this positive assessment, regular feeding of 
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1354 biochar should never induce livestock farmers to compromise on the quality of feed and animal 

1355 welfare standards.

1356
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Table 1(on next page)

Overview of published studies on biochar feeding.

The table indicates the percentage weight increase of various livestock depending on the
ingested biochar type and daily feed intake. 61% of the 28 data set delivered weight
increases while the remaining trials did not result in significant increases.
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Animal daily BC intake feedstock HTT in °C activation blend

weight 

increase in 

%

duration in 

days
other results and remarks source

Cattle 0.6 % of  feed DM rice hull 700 no  25 98 reduced enteric methane emissions Leng et al., 2013b

Bull 2% of feed DM wood > 600 no vitamin A n.s.   Kim & Kim, 2005

Cattle 1% of feed DM rice husk > 600 no  15 56 15% feed conversion rate increase

Phongphanith & Preston, 

2018

Goat 1 % of body weight bamboo  no  20 84

DM, OM, CP digestibility and N retention 

increased Van, 2006

Goat 1% of feed DM   no  27 90

DM, OM, CP digestibility and N retention 

increased (Silivong & Preston, 2016

Pig 0.3 % of feed DM bamboo >600 yes (900) bamboo vinegar 17.5 42 improved the quality of marketable meat Chu et al., 2013c)

Pig 0.3% of feed DM wood  no stevia 11  higher meat quality and storage capacity Choi et al., 2012

Pig 1, 3 and 5% of feed DM wood 450°C no 25% wood vinegar n.s. 30 increased duodenal villus height Mekbungwan et al. 2004

Pig 1 % of DM feed wood > 600 no lactofermented n.s. 28  Kupper et al. (2015)

Pig 1 % of DM feed  > 500   20.1 90 20.6% increased feed conversion rate Sivilai et al., 2018

Poultry 0.2 % of DM feed wood  no  17 49  Kana et al., 2010

Poultry 0.2 % of DM feed maize cob  no  6 49 improved carcass traits Kana et al., 2010

Poultry 2, 4, 8 % of feed DM citrus wood  no  0 42 heavier abdomen fat Bakr (2007)

Poultry 2.5, 5, 10% of feed DM wood  no  0 42

weight increase up to 28 days but not after 49 

days Kutlu et al. (2001)

Poultry 0.3 % of feed DM wood  no  3.9 140 reduced mortality by 4% Majewska et al., 2009, 2002

Duck 1 % of DM feed bamboo >650 no bamboo vinegar n.s. 49 intestinal villus height increased Ruttanavut et al. (2009) 

Duck 1 % of DM feed wood  no kelp n.s. 21 feed conversion rate increased Islam et al. (2014) 
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1

Poultry 4% of DM feed

woody green 

waste 550 no  n.s. 161

egg weight increased by 5%; feed conversion 

ratio by 12% Prasai et al. (2016)

Poultry 1 % of DM feed rice husk >550 no  n.s.  reduced pathogenes in feces Hien et al., 2018

Poultry 0.7 % of DM feed wood >650 no lactofermented n.s. 36  Kupper et al., 2015

Poultry 1 % of DM feed wood >650 no lactofermented 5 37

reduced foot pat and hook lesions by 92% and 

74% Albiker & Zweifel, 2019)

Flounder 0.5 % of DM feed bamboo  no  18 50 feed & protein conversion rate increased Thu et al., 2010

Flounder 1.5% of DM feed wood  no 20% wood vinegar 11 56

highest feed efficiency increase of 10% at 0.5% 

BC Yoo et al., 2007

Stripfish 1 % of DM feed rice husk > 600 no  36 90 significantly improved water quality Lan et al., 2018

Stripfish 1 % of DM feed wood  no  44 90 significantly improved water quality Lan et al., 2018

Carp 0.5, 1, 2, 4% of DM feed bamboo  no  n.s. 63 improved serum indicators Mabe et al., 2018

Stripfish 2% of feed DM bamboo  no high VOC biochar 27 50 survival rate increase by 9% Quaiyum et al., 2014

     mean 9.9    
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Table 2(on next page)

Overview of published studies about biochar effects on enteric methane emissions.

The table indicates the reductions of enteric methane emissions of cattle due to biochar feed
supplements or additions to rumen liquids summarizing biochar dosages, pyrolysis feedstock
and temperature, and post-pyrolytic treatments.
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daily BC intake / content of rumen liquid type of trial feedstock HTT in °C activation blend
CH4-

reduction
source

0.5 % to ruminal liquid in vitro rice husk 900 no 2% urea 10% Leng, Inthapanya & Preston,

1 % to ruminal liquid in vitro rice husk 900 no 2% urea 12.7 % Leng, Inthapanya & Preston,

1 % to ruminal liquid in vitro rice husk 900 no 6% KNO3 49 % Leng, Inthapanya & Preston,

0.6 % of feed DM in vivo rice husk 900 no  20% Leng, Preston & Inthapanya,

0.6 % of feed DM in vivo rice husk 900 no 6% KNO3 40% Leng, Preston & Inthapanya,

1 % of feed DM in vivo rice husk 900 no manioc root feed 7% Phanthavong et al. (2015)

9 % to ruminal liquid in vitro wood / straw  partly  
n.s. (11 - 17 

%)
Hansen, Storm & Sell, 2012

1 % of DM feed in vivo wood > 600   n.s. Winders et al. (2019)

0.5 / 1 / 2 / 5 % of rumen incubation in vitro wood / corn stover 350 / 550 ensiled
mixed to ryegrass before 

ensiling
n.s. Calvelo Pereira et al., 2014

1 % / 10 % of DM feed in vitro

miscanthus straw / oil seed 

rape straw / rice husk / soft 

wood pellets / wheat straw

550 / 700 no  5% Cabeza et al., 2018)

0.5 / 1 / 2 % of DM feed in vitro pine 400 - 600
acidification 

to pH 4.8
 

34 / 16 / 22 

%
Saleem et al. (2018)

1
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