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ABSTRACT
Background: Rattus rattus is a widely distributed, invasive species that presents
an important role in disease transmission, either directly or through vector
arthropods such as fleas. These black rats can transmit a wide variety of pathogens,
including bacteria of the genus Bartonella, which can cause diseases in humans
and animals. In Chile, no data are available identifying fleas from synanthropic
rodents as Bartonella vectors. The aim of this study was to investigate the prevalence
of Bartonella spp. in the fleas of R. rattus in areas with different climate conditions
and featuring different human population densities.
Methods: In all, 174 fleas collected from 261 R. rattus captured from 30 localities with
different human densities (cities, villages, and wild areas) across five hydrographic
zones of Chile (hyper-arid, arid, semi-arid, sub-humid, and hyper-humid) were
examined. Bartonella spp. presence was determined through polymerase chain
reaction, using gltA and rpoB genes, which were concatenated to perform a similarity
analysis with BLAST and phylogenetic analysis.
Results: Overall, 15 fleas species were identified; Bartonella gltA and rpoB fragments
were detected in 21.2% (37/174) and 19.5% (34/174) of fleas, respectively. A total
of 10 of the 15 fleas species found were positive for Bartonella DNA. Leptopsylla
segnis was the most commonly collected flea species (n = 55), and it also presented a
high prevalence of Bartonella DNA (P% = 34.5%). The highest numbers of fleas of
this species were collected in villages of the arid zone. There were no seasonal
differences in the prevalence of Bartonella DNA. The presence of Bartonella DNA in
fleas was recorded in all hydrographic areas, and the arid zone presented the highest
prevalence of this species. Regarding areas with different human densities, the
highest prevalence was noted in the villages (34.8% gltA and 31.8% rpoB), followed by
cities (14.8% gltA and 11.1% rpoB) and wild areas (7.4% gltA and 14.8% rpoB).
The BLAST analysis showed a high similitude (>96%) with four uncharacterized
Bartonella genotypes and with two species with zoonotic potential: B. mastomydis
and B. tribocorum. The phylogenetic analysis showed a close relationship with
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B. elizabethae and B. tribocorum. This is the first study to provide evidence of the
presence of Bartonella in fleas of R. rattus in Chile, indicating that the villages and
arid zone correspond to areas with higher infection risk.

Subjects Parasitology, Veterinary Medicine, Epidemiology, Infectious Diseases, Public Health
Keywords Infection, Infectious diseases, Molecular epidemiology, Fleas, Rodent, Chile,
Anthropogenic effect, Public health, Diseases, Ectoparasites

INTRODUCTION
Bartonella spp. are vector-borne bacteria that have been identified in a wide range of
mammals (Breitschwerdt, 2017). Among these, rodents are described as important
reservoirs of Bartonella (Ying et al., 2002; Favacho et al., 2015; Gonçalves et al., 2016).
Of the 45 species named to date, 35 have been registered in rodents and/or fleas, of
which 13 have been identified as potentially pathogenic to humans (Chomel et al., 2009;
Jiyipong et al., 2014; Alsarraf et al., 2017), and five have been implicated in different
infections in humans (Daly et al., 1993; Kosoy et al., 2003; Serratrice et al., 2003;
Fenollar, Sire & Raoult, 2005; Buffet, Kosoy & Vayssier-Taussat, 2013).

Although reports of human transmission are not frequent, some recent studies support
the possibility that rodent-associated Bartonella species may be responsible for human
infections, especially in areas where humans and rats are in close contact; these infections
are most prevalent in homeless people and are more likely to be contracted while engaging
in outdoor activities (Kosoy et al., 2008, 2010; Ying et al., 2012). In several of these
infection cases, fleas were recognized as the vectors or potential vectors of these bacteria
(Chomel et al., 2009); as such, fleas are believed to play a key role in maintaining the
Bartonella species in rodents (Buffet, Kosoy & Vayssier-Taussat, 2013; Billeter et al., 2014),
although the role they could play in human infections is unknown.

Rattus rattus (black rat) has been identified as a Bartonella reservoir in different areas of
the world (Ellis et al., 1999; Hsieh et al., 2010; Pangjai et al., 2014; Bai et al., 2009;
Gonçalves et al., 2016; Peterson et al., 2017). Rattus rattus is widely distributed in most
areas of the world due to human movement (Krystufek et al., 2016) and it has been
cataloged as the most harmful invasive species in the world, as it has caused the extinction
and displacement of several species of birds and mammals; it is also considered one of
the main disease vectors for humans and wild animals (Banks & Hughes, 2012; Harris,
2009; Towns, Atkinson & Daugherty, 2006). The latter fact is due to the rat’s close contact
with humans, as they live in cities and rural areas, and have been able to colonize wild
environments, interacting with native species (Lobos, Ferres & Palma, 2005). Thus,
the Bartonella species in R. rattus may be the result of a host switching between native
species (Ellis et al., 1999).

In Chile, only five Bartonella species have been described in domestic animals and
humans: B. rochalimae in the human flea Pulex irritans (Pérez-Martínez et al., 2009),
B. koehlerae, B. clarridgeiae, and B. henselae in cat blood (Ferrés et al., 2005; Zaror et al.,
2002; Müller et al., 2017); these last two species have also been detected in cat fleas
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(Pérez-Martínez et al., 2009), and no species have been detected in rodents and/or the fleas
associated with them. In humans, there are reports of a high prevalence of B. henselae
in children, veterinarians, and zookeepers (Ferrés et al., 2005; Troncoso et al., 2016), and
reports of infection-related diseases with B. henselae and B. quintana in people (Uribe
et al., 2012; Sandoval et al., 2014; Zepeda et al., 2016; Arce, González & Madrid, 2017).

Chile presents a contrasting diversity of climates due to its long extension
(between -35.675148 and -71.5429688), with regions ranging from deserts to rainforests
(CONAMA, 2008). Rattus rattus has been able to colonize many of these environments
(Lobos, Ferres & Palma, 2005; Iriarte, 2007), which present seasonal changes that can
affect the presence and density of hosts and vectors, and can impact the prevalence
of Bartonella (Telfer et al., 2007; Friggens et al., 2010). Due to the close contact that
black rats maintain with humans and wild species; the high number of flea species
described for rats in Chile (12 species; Beaucournu, Moreno & González-Acuña, 2014),
and how the fleas that parasitize them can act as potential Bartonella vectors; as well as
the scarce knowledge that exists about Bartonella in Chile associated with human
synanthropic rodents, we investigated the prevalence of Bartonella spp. in R. rattus fleas
in areas characterized by different human population densities throughout the different
hydrographic zones and seasons in Chile.

MATERIALS AND METHODS
Sample localities and rodent-trapping procedure
This study surveyed rodents and fleas in 30 localities (cities, n = 10; village, n = 10; wild
areas, n = 10) of five hydrographic zones (hyper-arid, arid, semi-arid, sub-humid, and
hyper-humid, between -20.2167 and -53.1667 lat.; Fig. 1) of Chile from December 2015 to
January 2018. This study took place during austral summer (December to February)
and austral winter (July and September), except in the hyper-arid and hyper-humid
hydrographic zones, which were visited only in the winter and summer, respectively.
The sample localities were chosen based on the following demographic characteristics:
(1) City: an urban entity with more than 5,000 inhabitants; (2) Village: an urban entity
with a population ranging from 2,001 to 5,000 inhabitants or between 1,001 and
2,000 people and met the economic activity requirement (INE, 2005); and (3) wild area:
a protected area without human settlement; for the latter, permission was requested from
the Corporación Nacional Forestal (CONAF N�018-2015).

The rodents were captured using live cage traps baited with oats. Each locality was
sampled for two consecutive nights. In each sampling locality, the traps were placed in
four parallel lines (approximately 100 m from each other) and each line was equipped with
50 traps (with a distance of 10 m between each other), with a total sampling effort of
12,000 traps per night. The rodents were removed from the traps according to standard
techniques (Mills et al., 1995). Each animal was identified using the description by
Iriarte (2007), anesthetized with ketamine:xylazine (1:1), and euthanized by cervical
dislocation (American Veterinary Medical Association, 2013). The carcasses were placed
in individual bags with 95% alcohol and transported to the laboratory. Animal use was
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conducted in accordance with the protocols for field and laboratory rodent studies
(Herbreteau et al., 2011), and the protocols were approved by the Comité de Ética de la
Vicerrectoría de Investigación y Desarrollo de la Universidad de Concepción.

Figure 1 Map of Chile indicating the location of the study sites. Each data point indicates sample
locality. Gray circle: locality featuring rats without fleas; circle with a cross: locality featuring rats with
fleas; black triangle: locality featuring fleas that tested positive for Bartonella DNA; white circle: locality
without rats. Full-size DOI: 10.7717/peerj.7371/fig-1
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Fleas: sample collection
Each rodent was placed on a white plastic basin and the fleas were collected immediately in
the field. The rodents’ fur was thoroughly brushed with a toothbrush and the fleas
were collected by hand or with forceps, and stored individually in sterile cryovials with
95% ethanol. Later, in the laboratory, the carcasses were checked to verify that all fleas
had been collected. For each rodent, the total number of fleas extracted was recorded
(abundance) and with this data, the mean intensity of infection (the number of
fleas collected from all species/number of infested hosts), the mean abundance (MA)
of infection (the number of collected fleas from all species/total number of hosts),
and prevalence (the number of infected hosts) were calculated.

DNA extraction
For DNA extraction, every flea was washed and cut between the third and fourth
abdominal tergites with a sterile scalpel. The material used to handle the fleas was sterilized
between each sample. DNA was extracted using a commercial kit (Qiagen�, Hilden,
Germany) according to the manufacturer’s instructions. The incubation time was 5 h,
after which point a final elution step was performed using 200 mL of AE buffer and stored
at -20 �C.

Following the DNA extraction, the fleas’ exoskeletons were recovered and stored in
96% ethanol; there were subsequently mounted for fleas’ species identification.
DNA contamination was monitored by an extraction control using distilled water,
every 10 samples.

PCR amplification of gltA and rpoB genes
The presence of Bartonella was screened using the citrate synthase (gltA) and RNA
polymerase beta-subunit (rpoB) genes. The primers used for DNA amplification and
sequencing in this study were designed from a partial gltA and rpoB gene sequence of
B. tribocorum (GenBank code: AM260525.1; Table 1).

For the amplification of the gltA gene fragment, the polymerase chain reaction (PCR)
program was modified with an initial denaturation for 5 min at 95 �C, followed by
40 cycles (95 �C for 30 s, 56.2 �C for 30 s, and 72 �C for 30 s), and a final extension step at
72 �C for 5 min. For the rpoB gene, the PCR was started by denaturation for 5 min in
95 �C, followed by 40 cycles (95 �C for 30 s, 56.6 �C for 30 s, and 72 �C for 30 s), and a
final extension step at 72 �C for 5 min. Reactions were performed in 26 mL of mixture

Table 1 Primer sequences used for PCR amplifications.

Name Primer Product length (bp)

BaGlta_F TCTACGGTACGTCTTGCTGGATCA 201

BaGlta_R GCCCATAAGGCGGAAAGGATCATT 201

BaRpoB_F CGCGCGATCATGTTGATTTGATGG 159

BaRpoB_R ATGGTGCTTCAGCACGTACAAGAG 159

Note:
F, forward; R, reverse.
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containing GoTaq� Green Master Mix (Promega Corporation, Madison, WI, USA)
2� 12.5 mL + 5.5 mL of free ultrapure water nuclease + two mL of forward primer (10 mM) +
two mL of reverse primer (10 mM) + four mL of DNA sample. Negative controls for
the PCR consisted of a blank DNA extraction and distilled water was added to the PCR
mix instead of DNA. Positive control was the genomic DNA of Bartonella henselae
(Vircell Microbiologist, Granada, Spain). PCR products were subjected to electrophoresis
on 1% agarose gel at a voltage of 100 V. Then, the PCR products from positive samples
were sequenced by Macrogen Company (Seoul, South Korea).

Sequencing, BLAST, and phylogenetic analysis
The DNA sequences used in this study and the known Bartonella species retrieved from
GenBank were aligned using Codon Code Aligner (Codon Code Corporation; Files S1 and
S2). The sequencing data of gltA and rpoB were concatenated and compared with the
sequences of Bartonella available in GenBank using the nucleotide–nucleotide BLAST
(blastn) program (see http://www.ncbi.nlm.nih.gov/BLAST/). A substitution saturation
test with DAMBE (Xia, 2017) was performed, showing that the sequences were not
saturated (Xia et al., 2003; Xia & Lemey, 2009). We used MEGA7 (Kumar, Stecher &
Tamura, 2016) to calculate the genetic distances between sequences. A tree with Bayesian
probabilities was computed using MrBayes 3.2 (Ronquist et al., 2012) based on
concatenated gltA (142 bp) and rpoB (95 bp) gene fragments, using Brucella abortus as an
outgroup (Accession number, gltA: LIUE01000001.1; rpoB: CP023241.1). The GTR
substitution model was used to reconstruct the tree and perform 10,000,000 bootstrap
trials. Haplotype diversity (Hd), segregating sites (S), and nucleotide diversity (π) were
calculated using DNAsp 6. The accession numbers of the GenBank sequences used to
reconstruct the tree are detailed in Fig. 2.

Mounting fleas
Fleas were mounted on glass slides using conventional procedures (Hastriter & Whiting,
2003). Fleas were identified at the species level using the taxonomic keys and the
descriptions of Hopkins & Rothschild (1956, 1962, 1966), Smit (1987), Schramm (1987),
Beaucournu, Torres Mura & Gallabdo (1988), Beaucournu&Gallardo (1988), Beaucournu &
Kelt (1990), Beaucournu, Moreno & González-Acuña (2011), Sánchez et al. (2012),
and Sánchez & Lareschi (2014). Voucher specimens of each flea species were deposited in the
specimen repository of the Museo de Zoología, Universidad de Concepcion, Concepción,
Chile (MZU-CCCC-46329–46336).

Data analysis
The prevalence (P%), MA, and mean infestation intensity (MI) of fleas was calculated
according to Rózsa, Reiczigel & Majoros (2000) and were compared between seasons,
hydrographic zones, and areas with different population densities using chi-squared and
Fisher’s exact tests to compare prevalence, while a Bootstrap t-test with 2,000 replications
was used to compare MA and MI. The Clopper–Pearson test was used to calculate the
confidence interval (CI) for prevalence, and a Bootstrap test was used to calculate the CI for
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MI and MA. Bartonella prevalence (percentage of infected fleas) was calculated based on
the PCR results. The associations between Bartonella infection and hydrographic zone,
human density, and season were evaluated using the chi-squared test, and for small
sample sizes, F-Fisher was used. A P-value less than 0.05 was considered to be statistically
significant. Statistical analyses were performed using the Quantitative Parasitology
software (QP 3.0; Rózsa, Reiczigel & Majoros, 2000).

Nucleotide sequence accession numbers
The sequences of Bartonella gene fragments generated in this study were deposited in
the NCBI GenBank database under the following accession numbers: gltA: MK720786–
MK720800, and rpoB: MK720801–MK720815.

RESULTS
A total of 261 R. rattus (summer: n = 139; winter: n = 122) were collected in 21 of the
30 localities (city: n = 149; village: n = 53; wild area: n = 59) and 31% (n = 81) of the black

Figure 2 Phylogenetic tree of Bartonella, as based on concatenated gltA and rpoB genes using a GTR
substitution model. The phylogenetic tree was constructed using a Bayesian method. Brucella abortus
was included as an outgroup. Bootstrap values were calculated with 10,000,000 replicates. The corre-
sponding accession number for each genotype is indicated below each species of Bartonella. The flea
species from which Bartonella DNA was detected is indicated, and the locality and the location from
where it was collected is noted in parentheses. Full-size DOI: 10.7717/peerj.7371/fig-2
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rats were positive for fleas. A total of 174 fleas were collected (winter: n = 99; summer:
n = 75), representing 15 species from 10 different genera and seven families (Table 2).
Ctenoparia jordani Smit, 1955; Neotyphloceras chilensis (Jordan, 1936); Neothphloceras
pardinasi Sánchez & Lareschi, 2014; Delostichus smiti Jameson & Fulk, 1977; Tetrapsyllus
rhombus Smit, 1955; Plocopsylla wolffsohni (Rothschild, 1909); and Sphinctopsylla ares
(Rothschild, 1911) are new records for R. rattus in Chile. The MI was 2.18 (range: 1–15)
fleas per black rat. In nine cities, between one and five species of fleas were collected,
in eight villages between one and four, and in three wild areas between three and four
species of fleas. The hydrographic zones (i.e., hyper-arid and hyper-humid zones)
demonstrated the lowest richness of flea species, with one and three species, respectively,
while the semi-arid and sub-humid zones presented eight species each. The flea species
L. segnis (Schönherr, 1811) (n = 55) and Nosopsyllus fasciatus (Bosc d’Antic, 1800)
(n = 45) were the most abundant species in villages and cities, respectively, and were
not found in wild area. Two species of fleas were found only in wild areas: D. coxalis
(Rothschild, 1909) and C. jordani. Hectopsylla sp. and Neotyphloceras chilensis were
collected only in villages. Ctenoparia inopinata Rothschild, 1909, D. smiti, and Xenopsylla
cheopis Glinkiewicz, 1907 were exclusive to cities. Neotyphloceras pardinasi and S. ares
were found in cities, villages, and wild areas (Table 2).

Although the number of captured rodents (n = 149) and collected fleas (n = 111) was
higher in cities than in villages (rodents: n = 53; fleas: n = 96) and wild areas (rodents:
n = 59; fleas: n = 38), the prevalence of fleas was significantly higher in the villages
(45.3%, chi-squared = 6.679, df = 2, P = 0.035), while wild areas (30.5%) and cities (26.2%)

Table 2 Detection of Bartonella DNA from fleas collected on Rattus rattus from different seasons and locality types.

Family Specie of flea Total of fleas analyzed
by seasons

Total of fleas analyzed
by type of locality

Number of fleas positive
for gene fragment

Summer Winter City Village Reserve gltA rpoB

Pulicidae Xenopsylla cheopis 0 11 11 0 0 7 (63.6) 5 (45.5)

Leptopsyllidae Leptopsylla segnis 22 33 19 36 0 19 (34.5) 15 (27.3)

Ceratophyllidae Nosopsyllus fasciatus 19 26 33 12 0 4 (8.9) 4 (8.9)

Hectopsyllidae Hectopsylla sp. 3 0 0 3 0 3 (100) 2 (66.7)

Hystrichopsyllidae Ctenoparia inopinata 1 0 1 0 0 0 0

Ctenoparia jordani 0 1 0 0 1 0 0

Neotyphloceras sp. 4 0 1 3 0 0 1 (25.0)

Neotyphloceras chilensis 2 0 0 2 0 1 (50.0) 1 (50.0)

Neotyphloceras pardinasi 14 9 9 6 8 1 (4.3) 3 (13.0)

Rhopalopsyllidae Delostichus coxalis 6 0 0 0 6 0 1 (16.7)

Delostichus smiti 0 1 1 0 0 0 0

Tetrapsyllus rhombus 1 2 0 1 2 1 (33.3) 0

Stephanocircidae Plocopsylla sp. 0 2 1 0 1 0 0

Plocopsylla wolffsohni 0 1 0 1 0 0 0

Sphinctopsylla ares 3 13 5 2 9 1 (6.2) 2 (12.5)

Total 75 99 81 66 27 37 (21.2) 34 (19.5)
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did not show significant differences (chi-squared = 0.399, df = 1, P = 0.528). The MI was
higher in villages (MI = 2.83), than in cities (MI = 2.26) and wild areas (MI = 1.89),
but no statistically significant differences were found (Bootstrap P-value (two-sided) >
0.05). The MA was also higher in villages (MA = 1.28) than in the wild area (MA = 0.57)
and cities (MA = 0.40; Bootstrap t-test P < 0.05), but there were no significant differences
between cities and wild areas (Bootstrap t-test P = 0.9360; Table 3).

Seasonally, the prevalence, MA, and MI of fleas were higher in winter (P% = 34.4%,
MA = 0.90, MI = 2.62) than in summer (P% = 28.1%, MA = 0.57, MI = 2.05), but no
statistically significant differences were found between seasons (P%: chi-squared statistic =
1.231, df = 1, P = 0.267; MA: Bootstrap t-test P = 0.0870; MI: Bootstrap t-test P = 0.1340;
Table 4). In winter, only prevalence was significantly higher in the villages (P% =
57.89%, MA = 1.789, MI = 3.091) than in the cities (P% = 28.8%, MA = 0.881, MI = 3.059;
P%: chi-squared statistic = 5.282, df = 1, P = 0.022; AM: Bootstrap t-test P = 0.0755; MI:
Bootstrap t-test P = 0.9660) and wild areas (P% = 31.8%, MA = 0.545, MI = 1.714;
P%: chi-squared statistic = 3.77, df = 1, P = 0.052; MA: Bootstrap t-test P = 0.0155;

Table 3 Prevalence, mean abundance, and mean intensity of fleas, as well as the prevalence of Bartonella DNA from black rats captured from
five hydrographic zones and 21 localities in Chile.

Hydrographic
zone

Locality Number
rodent

% Prevalence of
fleas [95% CI]

Abundance
mean of fleas
[95% CI]

Intensity
mean of fleas
[95% CI]

Number
of fleas
analyzed

Number of
fleas positive
to gltA (%)

Number of
fleas positive
rpoB (%)

Hyper-arid IquiqueC 2 50.0 [0.01–0.99] 5.5 [0.00–5.50] 11.0* 11 7 (63.6) 5 (71.4)

N.P. Pampa del
TamarugalW

10 0.0 0.0 – 0 0 (0.0) 0 (0.0)

Arid IllapelC 17 76.5 [0.50–0.93] 3.2 [1.53–4.00] 4.2 [2.15–5.00] 33 2 (6.1) 1 (3.0)

Monte PatriaC 14 42.9 [0.13–0.65] 0.9 [0.14–1.14] 2.0 [1.00–2.20] 7 1 (14.3) 1 (14.3)

El MoraiV 8 25.0 [0.03–0.65] 0.5 [0.00–1.50] 2.0 [1.00–2.00] 4 0 (0.0) 0 (0.0)

Canela BajaV 6 50.0 [0.12–0.88] 1.8 [0.17–4.67] 3.7 [1.00–5.67] 8 2 (25.0) 7 (87.5)

SotaquíV 14 85.7 [0.57–0.98] 4.8 [2.57–7.21] 5.6 [3.25–8.17] 40 21 (52.5) 13 (32.5)

Semi-arid Til TilC 3 33.3 [0.01–0.91] 0.3 [0.00–0.67] 1.0* 1 0 (0.0) 0 (0.0)

Santa CruzC 5 20.0 [0.01–0.72] 0.2 [0.00–0.40] 1.0* 0 0 (0.0) 0 (0.0)

Huertos FamiliaresV 2 0.0 0.0 – 0 0 (0.0) 0 (0.0)

LololV 1 100.0 [0.25–1.00] 4.0* 4.0* 4 0 (0.0) 1 (25.0)

N.P. La CampanaW 22 22.7 [0.08–0.45] 0.6 [0.18–1.14] 2.6* 13 1 (7.7) 1 (7.7)

N.R. Laguna TorcaW 2 50.0 [0.01–0.99] 2.5 [0.00–2.50] 5.0* 5 0 (0.0) 2 (40.0)

Sub-humid QuirihueC 77 13.0 [0.06–0.22] 0.2 [0.09–0.40] 1.6 [1.10–2.40] 15 0 (0.0) 0 (0.0)

ConcepciónC 22 22.7 [0.08–0.45] 0.4 [0.09–0.77] 1.6 [1.00–2.20] 8 0 (0.0) 0 (0.0)

CobquecuraV 1 100.0 [0.02–1.00] 2.0* 2.0* 2 0 (0.0) 0 (0.0)

FloridaV 18 22.2 [0.64–0.48] 0.3 [0.06–0.78] 1.5 [1.00–2.00] 6 0 (0.0) 0 (0.0)

N.R. NonguénW 25 48.0 [0.28–0.69] 0.8 [0.44–1.36] 1.7 [1.17–2.58] 9 1 (11.1) 1 (11.1)

Hiper-humid Puerto AysénC 4 25.0 [0.01–0.80] 1.5 [0.0–3.0] 6.0* 5 2 (40.0) 2 (40.0)

Punta ArenasC 5 20.0 [0.01–0.72] 0.2 [0.0–0.4] 1.0* 1 0 (0.0) 0 (0.0)

Puerto ChacabucoV 3 33.3 [0.01–0.91] 0.7 [0.0–1.33] 2.0* 2 0 (0.0) 0 (0.0)

Notes:
C, city; V, village; W, wild area; N.P., national park; N.R., national reserve.
* One specimen of R. rattus was captured or only one individual was positive to fleas, the confidentiality intervals could not be determined.
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MI: Bootstrap t-test P = 0.0360). Regarding the hydrographic zones, in winter, the highest
prevalence, mean intensity, and MA were found in the arid zone (P% = 64.3%, MA = 2.79,
MI = 4.33), and these values were significantly different from those of the sub-humid
zone (P% = 27.7%, MA = 2.78, MI = 1.78; P%: chi-squared statistic = 11.045, df = 1,
P = 0.001; MA: Bootstrap t-test P = 0.011; MI: Bootstrap t-test P = 0.038), while with the
semi-arid zone, the prevalence and MA differed significantly (P%: chi-squared statistic =
5.841, df = 1, P = 0.016; MA: Bootstrap t-test P = 0.0235), but this was not the case
for mean intensity (Bootstrap t-test P = 0.22). There was no significant difference between
the sub-humid (P% = 27.7%, MA = 0.492, MI = 1.78) and semi-arid zones (P% = 27.8%,
MA = 0.788, MI = 2.8; P%: Fisher’s exact test P = 1.00; MA: Bootstrap t-test P = 0.467,
MA: Bootstrap t-test P = 0.254).

In the summer, there were no significant differences in the prevalence (chi-squared
statistic = 2.341, df = 2, P = 0.310), MA (Bootstrap t-test P = 0.077), and MI (Bootstrap
t-test P = 0.089) of fleas between cities, villages, and wild areas (Table 4). The arid
zone showed a higher prevalence, MA, and MI (P% = 54.8%, MA = 1.645, MI = 3.00)
than the semi-arid (P% = 23.5%, MA = 0.588, MI = 2.51) and sub-humid zones (P% =
17.9%, MA = 0.256, MI = 1.43), although it only differed significantly in terms of
prevalence with the semi-arid zone (P%: chi-squared statistic = 4.373, df = 1, P = 0.037;
MA: Bootstrap t-test P = 0.045, MI: Bootstrap t-test P = 0.5635), and in terms of prevalence
and MA with the sub-humid zone (P%: chi-squared statistic = 14.833, df = 1, P = 0.000;
MA: Bootstrap t-test P = 0.0280, MI: Bootstrap t-test P = 0.0605). No significant
differences were observed in these parameters between the semi-arid and sub-humid
zones (P%: Fisher’s exact test P = 0.733, MA: Bootstrap t-test P = 0.2545, MI: Bootstrap t-test
P = 0.2275).

The Bartonella gltA and rpoB fragment was detected in 21.26% (37/174) and 19.54%
(34/174) of the fleas, respectively, collected from 22 different R. rattus individuals.
Although a higher prevalence of Bartonella was detected using the gltA fragment, this
finding was not statistically significant (chi-squared statistic = 0.159, df = 1, P = 0.690).
A total of 10 of the 15 flea species found were positive for Bartonella. We observed
the highest prevalence in Hectopsylla sp. (100%) and X. cheopis (63%), although the

Table 4 Prevalence of the Bartonella species in fleas collected from different localities and seasons in Chile.

Season Type of
locality

Number
rodent
collected

% Prevalence of
fleas [95% Cl]

Intensity mean
[95% Cl]

Number
fleas analyzed

Number of
fleas positive
to gltA (%)

Number of
fleas positive
rpoB (%)

Winter City 59 28.81 [0.18–0.42] 3.06 [2.12–4.13] 49 9 (18.36) 6 (12.24)

Village 19 57.89 [0.33–0.80] 3.09 [2.27–3.91] 33 15 (45.45) 6 (18.18)

Wild area 44 31.80 [0.19–0.47] 1.77 [1.00–2.57] 17 2 (11.76) 3 (17.65)

Total 122 34.43 [0.26–0.43] 2.62 [2.10–3.31] 99 26 (26.26) 15 (15.15)

Summer City 90 24.44 [0.16–0.35] 1.64 [1.27–2.23] 32 3 (9.37) 3 (9.37)

Village 34 38.20 [0.22–0.56] 2.62 [1.77–3.62] 33 8 (24.24) 15 (44.45)

Wild area 15 26.67 [0.08–0.55] 2.50 [1.00–3.00] 10 0 1 (10)

Total 139 28.06 [0.21–0.36] 2.05 [1.64–2.49] 75 11 (14.67) 19 (25.33)
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number of flea samples collected from these species was low (Table 2). While L. segnis was
the most commonly collected flea (n = 55), it also presented a high prevalence of Bartonella
DNA (gltA = 34.54% and rpoB = 27.3%); the highest numbers of fleas of this species
were collected in villages in the arid zone (Table 2).

The presence of BartonellaDNA in fleas was recorded in all hydrographic areas, but not
in all localities. Of the hydrographic zones with more than 20 fleas analyzed, the arid
zone had a greater prevalence of Bartonella DNA (26.1% gltA and 28.3% rpoB) than in the
sub-humid zone (2.5% gltA and rpoB) for both genes (gltA: chi-squared = 10.103, df = 1,
P = 0.001; rpoB: chi-squared = 11.371, df = 1, P = 0.001), whereas with the semi-arid
area, the only difference was found in the prevalence with the gltA gene (4.3% gltA:
chi-squared = 5.111, df = 1, P = 0.024; 17.4% rpoB: chi-squared: 1.127, df = 1, P = 0.288).
The prevalence of Bartonella DNA in the semi-arid and sub-humid zones did not differ
significantly (gltA: Fisher’s exact test P = 1.00; rpoB: Fisher’s exact test P = 0.055).
The highest prevalence was noted in the villages (34.8% gltA and 31.8% rpoB), which
differed significantly from that in the city (14.81%; chi-squared = 6.039, df = 1, P = 0.014)
and the in the wild area (7.41%; chi-squared = 7.34, df = 1, P = 0.007) for the gltA
gene, whereas for the rpoB gene, only the villages (31.82%) and cities (11.11%) were
significantly different (chi-squared = 9.6, df = 1, P = 0.002). No significant differences were
observed between the cities and wild areas (Fisher’s exact test P = 0.733), and between
the wild areas and villages (chi-squared = 2.82, df = 1, P = 0.093). In all, 22 rodents carried
fleas that were positive for Bartonella. The fleas positive for Bartonella were extracted from
13 village rodents, five city rodents, and four wild-area rodents.

No statistically significant differences (gltA: chi-squared = 3.427, df = 1, P = 0.064;
rpoB: chi-squared = 2.814, df = 1, P = 0.093) were observed in the prevalence of Bartonella
DNA in fleas between the winter (gltA: 26.26%; rpoB: 15.15%) and summer (gltA: 14.67%;
rpoB: 25.33%; Table 4).

The BLAST analyses showed similar findings for eight Bartonella spp. (Table 5).
The genetic distances between the findings from GenBank and the sequences obtained in
this study are shown in File S3. The phylogenetic analysis showed that concatenated gltA

Table 5 Bartonella species detected with BLAST using concatenated gltA and rpoB genes, in the identified flea species collected in Chile.

Flea species Bartonella species isolated BLAST Sequence
similarity (%)

GenBank accession
number

Locality/hydrographic
zone

Xenopsylla cheopis Bartonella sp. B28297 100 KM233489.1 Iquique/Hyper-arid

Bartonella mastomydis 100 KY555066.1 Iquique/Hyper-arid

Leptopsylla segnis Bartonella sp. 16/40 97 AY584859.1 Sotaquí/Arid

Nosopsyllus fasciatus Bartonella sp. 16/40 97 AY584859.1 Sotaquí/Arid

Bartonella tribocorum 100 HG969192.1 Puerto Aysén/Hyper-humid

Hectopsylla sp. Bartonella sp. 16/40 96 AY584859.1 Sotaquí/Arid

Neotyphloceras chilensis Bartonella sp. (strain C1phy) 99 Z70022.1 Canela Baja/Arid

Neotyphloceras pardinasi Bartonella sp. (strain C1phy) 99 Z70022.1 Canela Baja/Arid

Sphinctopsylla ares Uncultured Bartonella sp.
clone LBCE 10781

95 KX270236.1 Nonguén/Sub-humid
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and rpoB sequences could be related to a known Bartonella species (Fig. 2). It was found
that Bartonella present in the flea species (Hectopsylla sp. and L. segnis) collected from
cities and villages in arid zones are closely related to B. coopersplainsensis. Bartonella DNA
detected in X. cheopis collected only in a city from a hyper-arid zone was closely related
to B. mastomydis and B. queenslandensis. Bartonella DNA in Nosopsyllus fasciatus
was closely related to B. tribocorum. Finally, Bartonella detected in Neotyphloceas
pardinasi was related to B. mayotimonensis, while that detected in S. ares was related to
B. doshiae. Eight haplotypes were found (Hd = 0.838, S = 60, π = 0.095).

DISCUSSION
The presence of Bartonella DNA in R. rattus fleas has not been previously reported
in Chile; therefore, this is the first study to report on and document the prevalence of this
bacteria in fleas over a large spatial scale (-20� to -53� lat.) covering five hydrographic
zones with differences in human density. To our knowledge, this is the first report of the
detection of Bartonella spp. in several flea species: Neotyphloceras chilensis, Neotyphloceas
pardinasi, Neotyphloceras sp., D. coxalis, T. rhombus, S. ares, and Hectopsylla sp., all
of which parasitize native rodents of Chile. This indicates that R. rattus is in contact with
wild-rodent populations and can act as a reservoir for and facilitator in the dispersion
of these fleas—and in the Bartonella species detected. While the presence of Bartonella in
X. cheopis, L. segnis, and Nosopsyllus fasciatus confirms the findings made by other authors
in other parts of the world (Parola et al., 2003; Winoto et al., 2005; Loftis et al., 2006;
Reeves et al., 2007; Li et al., 2007; Tsai et al., 2010; Hornok et al., 2015), the Bartonella
reported in these three flea species is also new to Chile. Although it cannot be stated
that these flea species are competent vectors of Bartonella, as they may have consumed
Bartonella-infected blood from a host with bacteremia, their role as vectors of these
bacteria cannot be ruled out; as such, future laboratory tests to verify their competence
are necessary (Billeter et al., 2008).

The prevalence of Bartonella in the rodent fleas in our study is within the ranges
documented by other authors (2.1–40.5%), values that vary with respect to the
geographical area and flea species analyzed (Loftis et al., 2006; Marie et al., 2006; Li et al.,
2007; Bitam et al., 2012; Billeter et al., 2014; Dieme et al., 2015; Lipatova et al., 2015).
Bartonella DNA was found in several flea species with variations observed in the infection
prevalence of Bartonella detected between flea species (4.2–100%). In five flea species
collected from R. rattus, Bartonella DNA was not detected, which could be due to the
low number of fleas analyzed in these species (between one and four individuals).
However, Bartonella DNA prevalence was high in other species that were not abundant
in the sample, such as Hectopsylla sp., X. cheopis, and T. rhombus. Each flea species was
collected from a single rodent, which could be infected with Bartonella, which would
explain the high prevalence. It is unlikely that finding Bartonella DNA in Hectopsylla sp.
would pose a risk to human health, because these fleas are neosomatic and females are
semipenetrating (Linardi & De Avelar, 2014), they stay attached to the host for long
periods of time, representing little chance that it will infect humans. The high prevalence of
Bartonella DNA reported in this study for X. cheopis (63.6%) would be within the ranges
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reported for other parts of the world (Billeter et al., 2011: 95%; Leulmi et al., 2014: 34.7%;
Klangthong et al., 2015: 25.8%; Billeter et al., 2013: 59.1%; Dieme et al., 2015: 6.7%).
Xenopsylla cheopis is the most frequently occurring and abundant species to isolate
from R. rattus (Loftis et al., 2006; Christou et al., 2010; Guernier et al., 2014), and is
associated with the transmission of several pathogens to humans (e.g., the plague, endemic
murine typhus, helminth parasites; Farhang-Azad, Traub & Baqar, 1985; Bitam et al.,
2006; Gárate et al., 2011). Several species of Bartonella have been detected in X. cheopis
(B. elizabethae, B. grahamii, B. tribocorum, B. rochalimae, B. rattimassiliensis, B.
queenslandensis, and Bartonella sp. 1.1C; Billeter et al., 2008, 2011; Tsai et al., 2010; Dieme
et al., 2015), although its competence as a vector has only been determined experimentally
for B. elizabethae, which would be eliminated through the feces (McKee et al., 2018).
Tetrapsyllus rhombus was another very rare species, but which had a high prevalence of
Bartonella DNA; there is no known history of pathogens that this flea species transmits.
However, the finding in R. rattus provides evidence of the exchange of fleas between
wild and introduced species. Tetrapsyllus rhombus is widely distributed in central and
southern Chile, parasitizing 13 species of wild rodents of the families Cricetidae,
Octodontidae, and Ctenomyidae (Beaucournu, Moreno & González-Acuña, 2014).

Conversely, fleas that were abundant in R. rattus, such as L. segnis and Nosopsyllus
fasciatus, presented significant differences in the prevalence of Bartonella DNA.
Few studies have detected Bartonella in L. segnis, with prevalence rates of 0% (0/174),
3% (1/37), and 10% (1/10; Loftis et al., 2006; Li et al., 2007,Hornok et al., 2015). Leptopsylla
segnis is widely distributed, attributed to the dispersal of its hosts (rats and mice), as a
result of human activity. This species is distributed in temperate zones, although in our
study, it was distributed from the arid zone to the hyper-humid zone, with the greatest
abundance observed in the arid zone. In our study, we did not find the species in wild
areas, while there are records in Chile that indicate a high prevalence in wild species
(68–82% in Octodon degus; Burger et al., 2012). The finding of Bartonella DNA in this flea
species is important because it is an abundant species. Although this flea has rarely
been reported to feed on humans (Li & Xio, 1993), it has the potential to transmit
Bartonella through the skin via contamination of infected feces, as with other Bartonellae.
Nosopsyllus fasciatus presents an abundance and geographical distribution similar to
L. segnis; however, the prevalence of Bartonella DNA in this species was lower, with only
8% of fleas testing positive for the bacteria, although this value is within the ranges
recorded by other authors (Parola et al., 2003: 3% (1/26); Zurita, 2018: from 4% to 13%).
Nosopsyllus fasciatus and L. segnis exhibit a cosmopolitan distribution and live in
temperate environments; in our study, these species were distributed in all zones, except in
the hyper-arid zone, presenting with a greater abundance in the arid zone. Nosopsyllus
fasciatus spends more time in the nest of its hosts than actually on them (Bitam et al., 2010)
and it is fed fewer times per day (two to three times) compared to L. segnis (three to
five times; Kunitskaya et al., 1965). This feature may decrease the likelihood with which
these fleas acquire bacteria, as the feeding frequency and mobility of the fleas are important
factors that influence pathogen transmission (Laudisoit et al., 2014). Although the
prevalence of this flea was low and its transmission potential is unknown, it could be acting
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as a Bartonella reservoir. In addition, it is considered an important flea in public health
because it occasionally infects other mammals, including humans (Pratt & Wiseman,
1962). On the other hand, Neotyphloceas pardinasi was another abundant species in this
study; this species was described in Argentina as parasites of Sigmodontinae rodents
(Sánchez & Lareschi, 2014). Although the prevalence of Bartonella was low in this species,
this is the first report of Bartonella DNA in Neotyphloceas pardinasi, and the first record
of this flea species in R. rattus in Chile. The differences in prevalence found among the
flea species analyzed may be due to the specificity of Bartonella, although more studies are
needed to test this hypothesis.

Although the prevalence of Bartonella in fleas detected with the gltA gene was higher
than in fleas with rpoB, this finding was not statistically significant. These genes were
shown to have high discriminatory power inter-species; however, to be able to validate this
species, long fragments are needed. La Scola et al. (2003) propose that newly encountered
Bartonella isolates should be considered a new species if a 327-bp gltA fragment shares
<96.0% sequence similarity with those of validated species, and if an 825-bp rpoB fragment
shares <95.4% sequence similarity with those of validated species. Fragments shorter
than those recommended by La Scola et al. were obtained (gltA = 142 bp and rpoB = 95 bp);
therefore, we could not determine with certainty if Bartonella corresponds to a new
species. Although the gltA and rpoB segments used for this analysis were short, these
represent a reliable taxonomic tool for distinguishing between differences among closely
related organisms (Birtles & Raoult, 1996).

Phylogenetic analysis based on the concatenated gltA and rpoB gene sequences
identified groups close to well-known rat-associated Bartonellae: B. coopersplainsensis,
B. mastomydis, B. tribocorum, B. mayotimonensis, and B. doshiae. BLAST analysis of
concatenated sequences obtained from X. cheopis revealed 100% similarity with B.
mastomydis and Bartonella sp. B28297. Both Bartonella species are found within the
B. elizabethae complex (Halliday et al., 2015), but it is unknown whether they are
pathogenic for humans. Nosopsyllus fasciatus from the hyper-humid zone harbored a
bacterium that was 100% identical to B. tribocorum and the phylogenetic analysis also
showed a close relationship with this bacterium. Although this bacterium is associated with
rodents and their ectoparasites, it has recently been described as a bacterium with
pathogenic potential for humans, since it was isolated in human patients from Thailand
(Kosoy et al., 2010) and France, causing acute febrile illnesses and nonspecific symptoms
(Vayssier-Taussat et al., 2016). Hectopsylla sp., L. segnis, and Nosopsyllus fasciatus
presented between 96% and 97% similarity with Bartonella sp. 16/40 detected in the rodent
Apodemus peninsulae in Russia by Mediannikov et al. (2005), although these authors
indicated that this species could be new, as it is in an independent and well-isolated clade.
In our study, the species was forming a well-differentiated clade, but it was related to
B. coopersplainsensis (Fig. 2). Bartonella DNA detected in Neotyphloceras chilensis and
Neotyphloceas pardinasi showed 99% similarity with Bartonella sp. C1phy detected in the
blood of Phyllotis sp. in Peru. Similar results were found by Cicuttin et al. (2019), who
detected Bartonella in Neotyphloceras crackensis Sánchez & Lareschi 2014 in the province
of Santa Cruz, Argentina, and which shared 100% similarity with Bartonella C1phy. In the
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phylogenetic analysis, this Bartonella constitutes a clade with B. mayotimonensis. This
bacterium has been recognized as a pathogen for humans and was isolated from the
resected aortic valve tissue of a person with infective endocarditis in the US (Lin et al.,
2010). S. ares showed a 95% similarity with uncultured Bartonella sp. clone LBCE 10781
detected in Oxymycterus dasytrichus in Brazil (Rozental et al., 2017), and was found to
form a monophyletic clade with B. doshiae. This species holds pathogenic potential in
humans, since it has been detected in human patients in France who had a history of being
bitten by ticks (Vayssier-Taussat et al., 2016).

It is important to know the distribution of pathogens among the different biotic
communities, since it implies that certain areas pose a higher risk of infection for humans
(Mills & Childs, 1998). In our study, 10 of the 30 sampled locations (four cities, four
villages, two wild areas), had fleas that were positive for Bartonella DNA; it was found that
villages had a higher prevalence than cities and wild areas, which coincides with the greater
MA and prevalence of fleas registered in villages, in addition to the differences in the
dominant flea species in the different areas studied. For example, L. segnis, which had the
highest prevalence of Bartonella DNA, was present in cities and villages but not in wild
areas, and its MA and prevalence was greater in villages. According to our results, this
species would constitute an important potential vector of Bartonella, as it is abundant
in R. rattus and has a wide distribution in Chile, concentrating its greater abundance
in cities and villages of the arid zone. In addition, parasitizing native rodent species were
found (Beaucournu, Moreno & González-Acuña, 2014; Burger et al., 2012). Although the
prevalence of Bartonella DNA was lower in wild areas, and only parasitic flea species
of native Chilean rodents were collected, this result is important because it means that
R. rattus could disperse Bartonella species present in fleas from wild areas to rural areas.
It also highlights the presence of Bartonella in wild areas, which are used as recreational
spaces for people, who may then become exposed to Bartonella infection. These
findings suggest that the probability of coming into contact with fleas infected with
Bartonella is higher in rural areas than in cities and wild areas.

Our study shows variations in the prevalence of Bartonella in the different hydrographic
zones analyzed, and the differences could be associated to both the distribution of flea
species and environmental factors. A study conducted on fleas of domestic animals from
Tunisia (Zouari et al., 2017) found a higher prevalence of Bartonella in fleas from
humid areas, followed by semi-arid, sub-humid, and arid regions; this bacterium was not
found in the dry zone, contrary to what was found in our study. During our investigation,
we found a higher prevalence of the bacterium in arid, semi-arid, and sub-humid
zones. These differences could be explained by the differences in humidity and
temperature in these areas, which determine the presence of certain flea species in some
areas, affecting the dynamics of the vectors and their survival (Chinga-Alayo et al., 2004).
Although in the hyper-arid zone the prevalence of fleas in rodents was low, we
found only one species (X. cheopis), and noted that the prevalence of Bartonella DNA
was high (6/11; 54%). On the other hand, in our study, a significantly higher prevalence
of Bartonella DNA observed in the arid zone, as compared with the other zones,
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could be linked with the higher prevalence of L. segnis and may also be responsible for
the transmission of this pathogen.

Bartonella prevalence did not change between seasons. Although other studies have
found seasonal differences in the prevalence of Bartonella in fleas, the authors attributed
these differences to changes in the population dynamics of different flea species,
as well as to changes in community composition, where the dominant species changes
(Telfer et al., 2007). In our study, we did not find significant changes in the composition
of flea species, abundance, or prevalence among the seasons analyzed, where the most
abundant and prevalent species (L. segnis and Nosopsyllus fasciatus) remained stable.
We highlight the high richness of flea species detected in our study compared to other
studies (one to five species; Loftis et al., 2006;Marie et al., 2006; Li et al., 2007; Reeves et al.,
2007; Tsai et al., 2010), which could be explained due to the wide geographical range
considered in our study (20�–53� lat.) and also to the inclusion of wild areas, in contrast to
other studies that only include rural areas or cities.

CONCLUSIONS
This is the first report on Bartonella DNA among a large number of flea species in rodents
that explored a gradient of urbanization across a wide geographic distribution in Chile.
This paper adds seven new species to the list of fleas already reported to carry Bartonella.
Although the prevalence of BartonellaDNA detected in this study was low, it is important to
note that the villages and arid zone were the areas with the highest prevalence. In addition,
the flea species that showed the highest Bartonella infection (L. segnis and X. cheopis) are
fleas that have a wide distribution worldwide and are abundant in R. rattus. The other flea
species collected in R. rattus corresponded to fleas that parasitize native rodents, which
would indicate the degree of contact that these synanthropic rodents have with wild rodents,
either directly or indirectly through the use of burrows, as they transmit parasites. This
indicates that there are several species of Bartonella circulating in wild species. This finding is
relevant, as parasite transmission could amplify bacterial infection among wild rodents,
also increasing the probability with which infected fleas come into contact with humans in
rural and wild areas. The results suggest the need to conduct further studies to verify whether
these fleas might be transmitted to humans and cause disease.

ACKNOWLEDGEMENTS
We thank to Nicole Inostroza, Elaine Monalize, and Maria Ignacia Najgle for their
collaboration in collecting fleas. English-language editing of this manuscript was provided
by Journal Prep Services.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This work was supported by the National Fund for Scientific and Technological
Development (FONDECYT) N� 11150875. The funders had no role in study design, data
collection and analysis, decision to publish, or preparation of the manuscript.

Moreno Salas et al. (2019), PeerJ, DOI 10.7717/peerj.7371 16/25

http://dx.doi.org/10.7717/peerj.7371
https://peerj.com/


Grant Disclosure
The following grant information was disclosed by the authors:
National Fund for Scientific and Technological Development (FONDECYT): 11150875.

Competing Interests
The authors declare that they have no competing interests.

Author Contributions
� Lucila Moreno Salas conceived and designed the experiments, performed the
experiments, analyzed the data, prepared figures and/or tables, approved the final draft.

� Mario Espinoza-Carniglia performed the experiments, analyzed the data, prepared
figures and/or tables, approved the final draft.

� Nicol Lizama Schmeisser performed the experiments, approved the final draft.
� L. Gonzalo Torres contributed reagents/materials/analysis tools, approved the final draft,
field work.

� María Carolina Silva-de la Fuente contributed reagents/materials/analysis tools,
approved the final draft.

� Marcela Lareschi contributed reagents/materials/analysis tools, authored or reviewed
drafts of the paper, approved the final draft.

� Daniel González-Acuña contributed reagents/materials/analysis tools, authored or
reviewed drafts of the paper, approved the final draft.

Animal Ethics
The following information was supplied relating to ethical approvals (i.e., approving body
and any reference numbers):

The Comité de Ética de la Vicerrectoría de Investigación y Desarrollo de la Universidad
de Concepción provided full approval for this research.

Field Study Permissions
The following information was supplied relating to field study approvals (i.e., approving
body and any reference numbers):

Field experiments were approved by Corporación Nacional Forestal
(CONAF N�018-2015).

DNA Deposition
The following information was supplied regarding the deposition of DNA sequences:

The sequences described here are available at GenBank: MK720786–MK720815.
The sequences are also available as a Supplemental File.

Data Availability
The following information was supplied regarding data availability:

Voucher specimens of each new association flea-host were deposited in the specimen
repository of the Museo de Zoología, Universidad de Concepcion, Concepción,
Chile (accession numbers: MZU-CCCC-46329–46336).

Moreno Salas et al. (2019), PeerJ, DOI 10.7717/peerj.7371 17/25

https://www.ncbi.nlm.nih.gov/nuccore/MK720786
https://www.ncbi.nlm.nih.gov/nuccore/MK720815
http://dx.doi.org/10.7717/peerj.7371#supplemental-information
http://dx.doi.org/10.7717/peerj.7371
https://peerj.com/


Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.7371#supplemental-information.

REFERENCES
Alsarraf M, Mohallal E, Mierzejewska E, Behnke-Borowczyk J, Welc-Falęciak R, Bednarska M,

Dziewit L, Zalat S, Gilbert F, Behnke J, Bajer A. 2017. Description of Candidatus Bartonella
fadhilae n. sp. and Candidatus Bartonella sanaae n. sp. (Bartonellaceae) from Dipodillus
dasyurus and Sekeetamys calurus (Gerbillinae) from the Sinai Massif (Egypt). Vector-Borne
and Zoonotic Diseases 17(7):483–494 DOI 10.1089/vbz.2016.2093.

American Veterinary Medical Association. 2013.AVMA guidelines for the Euthanasia of animals:
2013 Editions. Available at https://www.avma.org/KB/Policies/Documents/euthanasia.pdf.

Arce N, González E, Madrid V. 2017. Neurorretinitis asociada a infección por Bartonella henselae:
reporte de un caso clínico y revisión de la literatura. Revista Hospital Clínico Universidad de
Chile 28:12–17.

Bai Y, Kosoy MY, Lerdthusnee K, Peruski LF, Richardson JH. 2009. Prevalence and genetic
heterogeneity of Bartonella strains cultured from rodents from 17 provinces in Thailand.American
Journal of Tropical Medicine and Hygiene 81(5):811–816 DOI 10.4269/ajtmh.2009.09-0294.

Banks PB, Hughes NK. 2012. A review of the evidence for potential impacts of black rats
(Rattus rattus) on wildlife and humans in Australia. Wildlife Research 39(1):78
DOI 10.1071/WR11086.

Beaucournu J-C, Torres Mura JC, Gallabdo MN. 1988. Description de la femelle de Ctenoparia
topali Smit, 1963 et clef dichotomique du genre Ctenoparia Rothschild, 1909 (Siphonaptera,
Hystrichopsyllidae). Annales de Parasitologie Humaine et Comparée 63(5):380–383
DOI 10.1051/parasite/1988635380.

Beaucournu J-C, Gallardo MN. 1988. Puces nouvelles d’Argentine (Insecta, Siphonaptera).
Revue suisse de Zoologie 95(1):99–112 DOI 10.5962/bhl.part.79641.

Beaucournu JC, Kelt DA. 1990. Contribution à la faune du Chili: puces nouvelles ou peu
connues de la partie sud (Insecta, Siphonaptera). Revue suisse de Zoologie 97(3):647–668
DOI 10.5962/bhl.part.79755.

Beaucournu J-C, Moreno L, González-Acuña D. 2011. Deux espèces nouvelles de puces
(Siphonaptera: Ctenophthalmidae & Rhopalopsyllidae) du Chili. Parasite 18(3):241–246
DOI 10.1051/parasite/2011183241.

Beaucournu J-C, Moreno L, González-Acuña D. 2014. Fleas (Insecta Siphonaptera) of Chile:
a review. Zootaxa 3900(2):151–203 DOI 10.11646/zootaxa.3900.2.1.

Billeter SA, Borchert JN, Atiku LA, Mpanga JT, Gage KL, Kosoy MY. 2014. Bartonella species
in invasive rats and indigenous rodents from Uganda. Vector-Borne and Zoonotic Diseases
14(3):182–188 DOI 10.1089/vbz.2013.1375.

Billeter SA, Colton L, Sangmaneedet S, Suksawat F, Evans BP, Kosoy MY. 2013. Short report:
molecular detection and identification of Bartonella species in rat fleas from Northeastern
Thailand. American Journal of Tropical Medicine and Hygiene 89(3):462–465
DOI 10.4269/ajtmh.12-0483.

Billeter SA, Gundi VAKB, Rood MP, Kosoy MY. 2011. Molecular detection and identification
of Bartonella species in Xenopsylla cheopis fleas (Siphonaptera: Pulicidae) collected from Rattus
norvegicus rats in Los Angeles. Applied and Environmental Microbiology 77(21):7850–7852
DOI 10.1128/AEM.06012-11.

Moreno Salas et al. (2019), PeerJ, DOI 10.7717/peerj.7371 18/25

http://dx.doi.org/10.7717/peerj.7371#supplemental-information
http://dx.doi.org/10.7717/peerj.7371#supplemental-information
http://dx.doi.org/10.1089/vbz.2016.2093
https://www.avma.org/KB/Policies/Documents/euthanasia.pdf
http://dx.doi.org/10.4269/ajtmh.2009.09-0294
http://dx.doi.org/10.1071/WR11086
http://dx.doi.org/10.1051/parasite/1988635380
http://dx.doi.org/10.5962/bhl.part.79641
http://dx.doi.org/10.5962/bhl.part.79755
http://dx.doi.org/10.1051/parasite/2011183241
http://dx.doi.org/10.11646/zootaxa.3900.2.1
http://dx.doi.org/10.1089/vbz.2013.1375
http://dx.doi.org/10.4269/ajtmh.12-0483
http://dx.doi.org/10.1128/AEM.06012-11
http://dx.doi.org/10.7717/peerj.7371
https://peerj.com/


Billeter SA, Levy MG, Chomel BB, Breitschwerdt EB. 2008. Vector transmission of Bartonella
species with emphasis on the potential for tick transmission.Medical and Veterinary Entomology
22(1):1–15 DOI 10.1111/j.1365-2915.2008.00713.x.

Birtles RJ, Raoult D. 1996. Comparison of partial citrate synthase gene (gltA) sequences for
phylogenetic analysis of Bartonella species. International Journal of Systematic Bacteriology
46(4):891–897 DOI 10.1099/00207713-46-4-891.

Bitam I, Baziz B, Rolain J-M, Belkaid M, Raoult D. 2006. Zoonotic focus of Plague, Algeria.
Emerging Infectious Diseases 12(12):1975–1977 DOI 10.3201/eid1212.060522.

Bitam I, Dittmar K, Parola P, Whiting MF, Raoult D. 2010. Fleas and flea-borne diseases.
International Journal of Infectious Diseases 14(8):e667–e676 DOI 10.1016/j.ijid.2009.11.011.

Bitam I, Rolain JM, Nicolas V, Tsai Y-L, Parola P, Gundi VAKB, Raoult D. 2012. A multi-gene
analysis of diversity of Bartonella detected in fleas from Algeria. Comparative Immunology,
Microbiology and Infectious Diseases 35(1):71–76 DOI 10.1016/j.cimid.2011.11.002.

Bosc d’Antic LAG. 1800. Description d’une nouvelle espéce de puce (Pulex fasciatus). Bulletín des
scíences, par la Société Philomatique, Paris 2:156.

Breitschwerdt EB. 2017. Bartonellosis, one health and all creatures great and small. Veterinary
Dermatology 28(1):96-e21 DOI 10.1111/vde.12413.

Buffet J-P, Kosoy M, Vayssier-Taussat M. 2013. Natural history of Bartonella-infecting rodents
in light of new knowledge on genomics, diversity and evolution. Future Microbiology
8(9):1117–1128 DOI 10.2217/fmb.13.77.

Burger JR, Chesh AS, Muñoz P, Fredes F, Ebensperger LA, Hayes LD. 2012. Sociality, exotic
ectoparasites, and fitness in the plural breeding rodent Octodon degus. Behavioral Ecology and
Sociobiology 66(1):57–66 DOI 10.1007/s00265-011-1252-9.

Chinga-Alayo E, Huarcaya E, Nasarre C, Del Aguila R, Llanos-Cuentas A. 2004. The influence
of climate on the epidemiology of bartonellosis in Ancash, Peru. Transactions of the
Royal Society of Tropical Medicine and Hygiene 98(2):116–124
DOI 10.1016/S0035-9203(03)00017-8.

Chomel BB, Kasten RW, Williams C, Wey AC, Henn JB, Maggi R, Carrasco S, Mazet J,
Boulouis HJ, Maillard R, Breitschwerdt EB. 2009. Bartonella endocarditis: a pathology shared
by animal reservoirs and patients. Annals of the New York Academy of Science 1166(1):120–126
DOI 10.1111/j.1749-6632.2009.04523.x.

Christou C, Chochlakis D, Toumazos P, Mazeris A, Antoniou M, Ioannou I, Tselentis Y,
Psaroulaki A. 2010. Rickettsia typhi and Rickettsia felis in Xenopsylla cheopis and Leptopsylla
segnis parasitizing rats in Cyprus. American Journal of Tropical Medicine and Hygiene
83(6):1301–1304 DOI 10.4269/ajtmh.2010.10-0118.

Cicuttin G, De Salvo MN, Sanchez J, Cañón C, Lareschi M. 2019. Molecular detection of
Bartonella in fleas (Hexapoda, Siphonaptera) collected from wild rodents (Cricetidae,
Sigmodontinae) from Argentina. Medical and Veterinary Entomology 8:1117
DOI 10.1111/mve.12370.

CONAMA. 2008. Biodiversidad de Chile, Patrimonio y desafíos. Comisión Nacional del Medio
Ambiente, Ocho Libros editors, Santiago de Chile.

Daly JS, Worthington MG, Brenner DJ, Moss CW, Hollis DG, Weyant RS, Steigerwalt AG,
Weaver RE, Daneshvar MI, O’Connor SP. 1993. Rochalimaea elizabethae sp. nov. isolated
from a patient with endocarditis. Journal of Clinical Microbiology 31(4):872–881.

Dieme C, Pagès F, Lagadec E, Raoult D, Tortosa P, Balleydier E, Guernier V, Socolovschi C,
Dellagi K, Parola P, Le Minter G. 2015. Rickettsia and Bartonella species in fleas from

Moreno Salas et al. (2019), PeerJ, DOI 10.7717/peerj.7371 19/25

http://dx.doi.org/10.1111/j.1365-2915.2008.00713.x
http://dx.doi.org/10.1099/00207713-46-4-891
http://dx.doi.org/10.3201/eid1212.060522
http://dx.doi.org/10.1016/j.ijid.2009.11.011
http://dx.doi.org/10.1016/j.cimid.2011.11.002
http://dx.doi.org/10.1111/vde.12413
http://dx.doi.org/10.2217/fmb.13.77
http://dx.doi.org/10.1007/s00265-011-1252-9
http://dx.doi.org/10.1016/S0035-9203(03)00017-8
http://dx.doi.org/10.1111/j.1749-6632.2009.04523.x
http://dx.doi.org/10.4269/ajtmh.2010.10-0118
http://dx.doi.org/10.1111/mve.12370
http://dx.doi.org/10.7717/peerj.7371
https://peerj.com/


Reunion Island. American Journal of Tropical Medicine and Hygiene 92(3):617–619
DOI 10.4269/ajtmh.14-0424.

Ellis BA, Regnery RL, Beati L, Bacellar F, Rood M, Glass GG, Marston E, Ksiazek TG, Jones D,
Childs JE. 1999. Rats of the genus Rattus are reservoir hosts for pathogenic Bartonella species:
an old world origin for a new world disease? Journal of Infectious Diseases 180(1):220–224
DOI 10.1086/314824.

Farhang-Azad A, Traub R, Baqar S. 1985. Transovarial transmission of murine
typhus rickettsiae in Xenopsylla cheopis fleas. Science 227(4686):543–545
DOI 10.1126/science.3966162.

Favacho AR, Andrade MN, De Oliveira RC, Bonvicino CR, D’Andrea PS, De Lemos ER. 2015.
Zoonotic Bartonella species in wild rodents in the state of Mato Grosso do Sul. Brazil Microbes
and Infection 17(11–12):889–892 DOI 10.1016/j.micinf.2015.08.014.

Fenollar F, Sire S, Raoult D. 2005. Bartonella vinsonii subsp. arupensis as an agent of blood
culture-negative endocarditis in a human. Journal of Clinical Microbiology 43(2):945–947
DOI 10.1128/JCM.43.2.945-947.2005.

Ferrés M, Abarca K, Godoy P, García P, Palavecino E, Méndez G, Valdés A, Ernst S, Thibaut J,
Koberg J, Chanqueo L, Vial P. 2005. Presencia de Bartonella henselae en gatos:
cuantificación del reservorio natural y riesgo de exposición humana de esta zoonosis en Chile.
Revista Médica de Chile 133(12):1465–1471 DOI 10.4067/S0034-98872005001200008.

Friggens MM, Parmenter RR, Boyden M, Ford PL, Gage K, Keim P. 2010. Flea abundance,
diversity, and plague in gunnison’s prairie dogs (Cynomys gunnisoni) and their burrows
in montane grasslands in northern New Mexico. Journal of Wildlife Diseases 46(2):356–367
DOI 10.7589/0090-3558-46.2.356.

Gárate I, Jiménez P, Flores K, Espinoza B. 2011. Registro de Xenopsylla cheopis como hospedero
intermediario natural de Hymenolepis diminuta en Lima, Perú. Revista Peruana de Biología
18(2):249–252.

Gonçalves LR, Favacho ARM, Roque ALR, Mendes NS, Junior OLF, Benevenute JL,
Herrera EM, D’Andrea PS, De Lemos ERS, Machado RZ, André MR. 2016. Association of
Bartonella species with wild and synanthropic rodents in different brazilian biomes. Applied and
Environmental Microbiology 82(24):7154–7164 DOI 10.1128/AEM.02447-16.

Guernier V, Lagadec E, LeMinter G, Licciardi S, Balleydier E, Pagès F, Laudisoit A, Dellagi K,
Tortosa P. 2014. Fleas of small mammals on reunion island: diversity, distribution and
epidemiological consequences. PLOS Neglected Tropical Diseases 8(9):e3129
DOI 10.1371/journal.pntd.0003129.

Halliday JEB, Knobel DL, Agwanda B, Bai Y, Breiman RF, Cleaveland S, Kariuki Njenga M,
Kosoy M. 2015. Prevalence and diversity of small mammal associated Bartonella species in rural
and urban Kenya. PLoS Neglected Tropical Diseases 9(3):e0003608
DOI 10.1371/journal.pntd.0003608.

Harris DB. 2009. Review of negative effects of introduced rodents on small mammals on islands.
Biological Invasions 11(7):1611–1630 DOI 10.1007/s10530-008-9393-0.

Hastriter MW, Whiting MF. 2003. Siphonaptera (fleas). In: Resh VH, Carde R, eds. Encyclopedia
of Insects. Orlando: Elsevier Science, 1039–1045.

Herbreteau V, Jittapalapong S, Rerkamnuaychoke W, Chaval Y, Cosson J-F, Morand S. eds.
2011. Protocols for field and laboratory rodent studies. CERoPath project. Available at
http://www.ceropath.org/FichiersComplementaires/Herbreteau_Rodents_protocols_2011.pdf.

Hopkins G, Rothschild M. 1956. An illustrated catalogue of the Rothschild collection of fleas
(Siphonaptera) in the British Museum (Natural History). Vol II, Coptopsyllidae, Vermipsyllidea,

Moreno Salas et al. (2019), PeerJ, DOI 10.7717/peerj.7371 20/25

http://dx.doi.org/10.4269/ajtmh.14-0424
http://dx.doi.org/10.1086/314824
http://dx.doi.org/10.1126/science.3966162
http://dx.doi.org/10.1016/j.micinf.2015.08.014
http://dx.doi.org/10.1128/JCM.43.2.945-947.2005
http://dx.doi.org/10.4067/S0034-98872005001200008
http://dx.doi.org/10.7589/0090-3558-46.2.356
http://dx.doi.org/10.1128/AEM.02447-16
http://dx.doi.org/10.1371/journal.pntd.0003129
http://dx.doi.org/10.1371/journal.pntd.0003608
http://dx.doi.org/10.1007/s10530-008-9393-0
http://www.ceropath.org/FichiersComplementaires/Herbreteau_Rodents_protocols_2011.pdf
http://dx.doi.org/10.7717/peerj.7371
https://peerj.com/


Stephanocircidae, Ischnopsyllidae, Hypsophthalmidae and Xiphiopsyllidae. London: British
Museum (Natural History).

Hopkins G, Rothschild M. 1962. An illustrated catalogue of the Rothschild collection of fleas
(Siphonaptera) in the British Museum (Natural History). Vol III, Hystrichopsyllidae
(Acedestiinae, Anomiosyllinae, Hystrichopsyllinae, Neopsyllinae, Rhadinopsyllinae and
Stenoponiinae). London: British Museum (Natural History).

Hopkins G, Rothschild M. 1966. An illustrated catalogue of the Rothschild collection of fleas
(Siphonaptera) in the British Museum (Natural History). Vol IV, Hystrichopsyllidae
(Ctenophthalminae, Dinopsyllinae, Doratopsyllinae and Listropsyllinae). London: British
Museum (Natural History).

Hornok S, Földvári G, Rigó K, Meli ML, Gönczi E, Répási A, Farkas R, Papp I, Kontschán J,
Hofmann-Lehmann R. 2015. Synanthropic rodents and their ectoparasites as carriers of a novel
haemoplasma and vector-borne, zoonotic pathogens indoors. Parasites & Vectors 8(1):27
DOI 10.1186/s13071-014-0630-3.

Hsieh J-W, Tung K-C, Chen W-C, Lin J-W, Chien L-J, Hsu Y-M, Wang H-C, Chomel BB,
Chang C-C. 2010. Epidemiology of Bartonella infection in rodents and shrews in Taiwan.
Zoonoses and Public Health 57(6):439–446 DOI 10.1111/j.1863-2378.2009.01234.x.

INE. 2005. Chile: Ciudades, Pueblos, Aldeas y Caserios. Chile: Instituto Nacional de Estadísticas.

Iriarte A. 2007. Mamíferos de Chile. Santiago: Lynx edicions.

Jiyipong T, Jittapalapong S, Morand S, Rolain J-M. 2014. Bartonella species in small mammals
and their potential vectors in Asia. Asian Pacific Journal of Tropical Biomedicine 4(10):757–767
DOI 10.12980/APJTB.4.2014C742.

Jordan K. 1936. Some Siphonaptera from South America. Novitates Zoologicae 39:305–310.

Klangthong K, Promsthaporn S, Leepitakrat S, Schuster AL, McCardle PW, Kosoy M,
Takhampunya R. 2015. The distribution and diversity of Bartonella species in rodents
and their ectoparasites across Thailand. PLOS ONE 10(10):e0140856
DOI 10.1371/journal.pone.0140856.

Kosoy M, Morway C, Sheff KW, Bai Y, Colborn J, Chalcraft L, Dowell SF, Peruski LF,
Maloney SA, Baggett H, Sutthirattana S, Sidhirat A, Maruyama S, Kabeya H, Chomel BB,
Kasten R, Popov V, Robinson J, Kruglov A, Petersen LR. 2008. Bartonella tamiae sp. nov.,
a newly recognized pathogen isolated from three human patients from Thailand. Journal of
Clinical Microbiology 46(2):772–775 DOI 10.1128/JCM.02120-07.

Kosoy M, Murray M, Gilmore RD, Bai Y, Gage KL. 2003. Bartonella strains from ground
squirrels are identical to Bartonella washoensis isolated from a human patient. Journal of Clinical
Microbiology 41(2):645–650 DOI 10.1128/JCM.41.2.645-650.2003.

Kosoy M, Peruski LF, Maloney SA, Boonmar S, Sitdhirasdr A, Lerdthusnee K, Baggett H,
Morway C, Bai Y, Sheff K, Dowell SF, Bhengsri S, Richardson J. 2010. Identification of
Bartonella infections in febrile human patients from Thailand and their potential animal
reservoirs. American Journal of Tropical Medicine and Hygiene 82(6):1140–1145
DOI 10.4269/ajtmh.2010.09-0778.

Krystufek B, Palomo L, Hutterer R, Mitsain G, Yigit N. 2016. Rattus rattus (errata version
published in 2017). The IUCN Red List of Threatened Species 2016: e.T19360A115148682,
DOI 10.2305/IUCN.UK.2016-3.RLTS.T19360A15137085.en. Available at https://www.iucnredlist.
org/species/19360/115148682 (accessed 13 March 2018).

Kumar S, Stecher G, Tamura K. 2016. MEGA7: molecular evolutionary genetics analysis
Version 7.0 for bigger datasets. Molecular Biology and Evolution 33(7):1870–1874
DOI 10.1093/molbev/msw054.

Moreno Salas et al. (2019), PeerJ, DOI 10.7717/peerj.7371 21/25

http://dx.doi.org/10.1186/s13071-014-0630-3
http://dx.doi.org/10.1111/j.1863-2378.2009.01234.x
http://dx.doi.org/10.12980/APJTB.4.2014C742
http://dx.doi.org/10.1371/journal.pone.0140856
http://dx.doi.org/10.1128/JCM.02120-07
http://dx.doi.org/10.1128/JCM.41.2.645-650.2003
http://dx.doi.org/10.4269/ajtmh.2010.09-0778
https://www.iucnredlist.org/species/19360/115148682
https://www.iucnredlist.org/species/19360/115148682
http://dx.doi.org/10.1093/molbev/msw054
http://dx.doi.org/10.7717/peerj.7371
https://peerj.com/


Kunitskaya NT, Gauzshtein DM, Kunitsky VN, Rodionov IA, Filimonov VI. 1965. Feeding
activity of fleas parasitic on the great gerbil in experiments. In: Anonymous, ed. Proceedings of
the 4th Scientific Conference on Natural Focality and Prophylaxis of Plague. Alma-Ata, USSR:
Kainar, 135–137.

La Scola B, Zeaiter Z, Khamis A, Raoult D. 2003. Gene-sequence-based criteria for species
definition in bacteriology: the Bartonella paradigm. Trends in Microbiology 11(7):318–321
DOI 10.1016/S0966-842X(03)00143-4.

Laudisoit A, Van Houtte N, De Bellocq JG, Akaibe D, Wilschut L, Verheyen E, Amundala N,
Socolovschi C, Falay D, Raoult D, Parola P, Breno M. 2014. High prevalence of
Rickettsia typhi and Bartonella species in rats and fleas, Kisangani, Democratic Republic of
the Congo. American Journal of Tropical Medicine and Hygiene 90(3):463–468
DOI 10.4269/ajtmh.13-0216.

Leulmi H, Socolovschi C, Laudisoit A, Houemenou G, Davoust B, Bitam I, Raoult D, Parola P.
2014. Detection of Rickettsia felis, Rickettsia typhi, Bartonella species and Yersinia pestis in
Fleas (Siphonaptera) from Africa. PLOS Neglected Tropical Diseases 8(10):e3152
DOI 10.1371/journal.pntd.0003152.

Li DM, Liu QY, Yu DZ, Zhang JZ, Gong ZD, Song XP. 2007. Phylogenetic analysis of bartonella
detected in Rodent fleas in Yunnan, China. Journal of Wildlife Diseases 43(4):609–617
DOI 10.7589/0090-3558-43.4.609.

Li Z-L, Xio B-L. 1993. Observations on the breeding and biological characteristics of Leptopsylla
segnis. Endemic Disease Bulletin 8:26–28.

Lin EY, Tsigrelis C, Baddour LM, Lepidi H, Rolain JM, Patel R, Roult D. 2010. Candidatus
Bartonella mayotimonensis and endocarditis. Emerging Infectious Diseases 16(3):500–503
DOI 10.3201/eid1603.081673.

Linardi PM, De Avelar DM. 2014. Neosomes of tungid fleas on wild and domestic animals.
Parasitology Research 113(10):3517–3533 DOI 10.1007/s00436-014-4081-8.

Lipatova I, Paulauskas A, Puraite I, Radzijevskaja J, Balciauskas L, Gedminas V. 2015.
Bartonella infection in small mammals and their ectoparasites in Lithuania. Microbes and
Infection 17(11–12):884–888 DOI 10.1016/j.micinf.2015.08.013.

Lobos G, Ferres M, Palma R. 2005. Presencia de los géneros invasores Mus y Rattus en áreas
naturales de Chile: un riesgo ambiental y epidemiológico. Revista Chilena de Historia Natural
78(1):113–124 DOI 10.4067/S0716-078X2005000100008.

Loftis AD, Reeves WK, Szumlas DE, Abbassy MM, Helmy IM, Moriarity JR, Dasch GA. 2006.
Surveillance of Egyptian fleas for agents of public health significance: Anaplasma, Bartonella,
Coxiella, Ehrlichia, Rickettsia, and Yersinia pestis. American Journal of Tropical Medicine
and Hygiene 75(1):41–48 DOI 10.4269/ajtmh.2006.75.41.

Marie J-L, Fournier P-E, Rolain J-M, Briolant S, Davoust B, Raoult D. 2006.Molecular detection
of Bartonella quintana, B. elizabethae, B. koehlerae, B. doshiae, B. taylorii, and Rickettsia felis
in rodent fleas collected in Kabul, Afghanistan. American Journal of Tropical Medicine and
Hygiene 74(3):436–439 DOI 10.4269/ajtmh.2006.74.436.

McKee CD, Osikowicz LM, Schwedhelm TR, Maes SE, Enscore RE, Gage KL, Kosoy MY. 2018.
Acquisition of Bartonella elizabethae by experimentally exposed oriental rat fleas (Xenopsylla
cheopis; Siphonaptera, Pulicidae) and excretion of Bartonella DNA in flea feces. Journal of
Medical Entomology 55(5):1292–1298 DOI 10.1093/jme/tjy085.

Mediannikov O, Ivanov L, Zdanovskaya N, Vysochina N, Fournier PE, Tarasevich I,
Raoult D. 2005. Molecular screening of Bartonella species in rodents from the Russian

Moreno Salas et al. (2019), PeerJ, DOI 10.7717/peerj.7371 22/25

http://dx.doi.org/10.1016/S0966-842X(03)00143-4
http://dx.doi.org/10.4269/ajtmh.13-0216
http://dx.doi.org/10.1371/journal.pntd.0003152
http://dx.doi.org/10.7589/0090-3558-43.4.609
http://dx.doi.org/10.3201/eid1603.081673
http://dx.doi.org/10.1007/s00436-014-4081-8
http://dx.doi.org/10.1016/j.micinf.2015.08.013
http://dx.doi.org/10.4067/S0716-078X2005000100008
http://dx.doi.org/10.4269/ajtmh.2006.75.41
http://dx.doi.org/10.4269/ajtmh.2006.74.436
http://dx.doi.org/10.1093/jme/tjy085
http://dx.doi.org/10.7717/peerj.7371
https://peerj.com/


Far East. Annals of the New York Academy of Sciences 1063(1):308–311
DOI 10.1196/annals.1355.049.

Mills JN, Childs JE. 1998. Ecologic studies of rodent reservoirs: their relevance for human health.
Emerging Infectious Diseases 4(4):529–537 DOI 10.3201/eid0404.980403.

Mills JN, Yates TL, Childs JE, Parmenter RR, Ksiazek TG, Rollin PE, Peters CJ. 1995.Guidelines
for working with rodents potentially infected with Hantavirus. Journal of Mammalogy
76(3):716–722 DOI 10.2307/1382742.

Müller A, Walker R, Bittencourt P, Machado RZ, Benevenute JL, DO Amaral RB,
Gonçalves LR, André MR. 2017. Prevalence, hematological findings and genetic diversity of
Bartonella spp. in domestic cats from Valdivia, Southern Chile. Parasitology 144(6):773–782
DOI 10.1017/S003118201600247X.

Pangjai D, Maruyama S, Boonmar S, Kabeya H, Sato S, Nimsuphan B, Petkanchanapong W,
Wootta W, Wangroongsarb P, Boonyareth M, Preedakoon P, Saisongkorh W,
Sawanpanyalert P. 2014. Prevalence of zoonotic Bartonella species among rodents and
shrews in Thailand. Comparative Immunology, Microbiology and Infectious Diseases
37(2):109–114 DOI 10.1016/j.cimid.2013.12.001.

Parola P, Sanogo OY, Lerdthusnee K, Zeaiter Z, Chauvancy G, Gonzalez JP, Miller RS,
Telford SR III, Wongsrichanalai C, Raoult D. 2003. Identification of Rickettsia spp. and
Bartonella spp. in from the Thai-Myanmar border. Annals of the New York Academy of Sciences
990(1):173–181 DOI 10.1111/j.1749-6632.2003.tb07359.x.

Peterson AC, Ghersi BM, Alda F, Firth C, Frye MJ, Bai Y, Osikowicz LM, Riegel C, Lipkin WI,
Kosoy MY, Blum MJ. 2017. Rodent-Borne Bartonella infection varies according to host species
within and among cities. EcoHealth 14(4):771–782 DOI 10.1007/s10393-017-1291-4.

Pérez-Martínez L, Venzal JM, González-Acuña D, Portillo A, Blanco JR, Oteo JA. 2009.
Bartonella rochalimae and other Bartonella spp. in fleas, Chile. Emerging Infectious Diseases
15(7):1150–1152 DOI 10.3201/eid1507.081570.

Pratt HD, Wiseman JS. 1962. Fleas of public health importance and their control. Training
guide–Insect control series, U. S. Department of Health, Education, and Welfare Public Health
Service Communicable Disease. Center Atlanta, Georgia, PHS Publication No. 772.

Reeves WK, Rogers TE, Durden LA, Dasch GA. 2007. Association of Bartonella with the fleas
(Siphonaptera) of rodents and bats using molecular techniques. Journal of Vector Ecology
32(1):118–122 DOI 10.3376/1081-1710(2007)32[118:AOBWTF]2.0.CO;2.

Ronquist F, Teslenko M, Van Der Mark P, Ayres DL, Darling A, Höhna S, Larget B, Liu L,
Suchard M, Huelsenbeck JP. 2012. MrBayes 3.2: efficient Bayesian phylogenetic inference
and model choice across a large model space. Systematic Biology 61(3):539–542
DOI 10.1093/sysbio/sys029.

Rothschild NC. 1909. A new flea from Chili. Revista Chilena de Historia Natural 13(1):104–106.

Rothschild NC. 1911. Some new genera and species of Siphonaptera. Novitates Zoologicae
18:117–122.

Rozental T, Ferreira MS, Gutierres A, Mares-Guia MA, Teixeira BR, Goncalves J,
Bonvicino CR, D’Andrea PS, De Lemos ER. 2017. Zoonotic pathogens in Atlantic Forest
wild rodents in Brazil: Bartonella and Coxiella infections. Acta Tropica 168:64–73
DOI 10.1016/j.actatropica.2017.01.003.

Rózsa L, Reiczigel J, Majoros G. 2000. Quantifying parasites in samples of hosts. Journal of
Parasitology 86(2):228–232 DOI 10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2.

Moreno Salas et al. (2019), PeerJ, DOI 10.7717/peerj.7371 23/25

http://dx.doi.org/10.1196/annals.1355.049
http://dx.doi.org/10.3201/eid0404.980403
http://dx.doi.org/10.2307/1382742
http://dx.doi.org/10.1017/S003118201600247X
http://dx.doi.org/10.1016/j.cimid.2013.12.001
http://dx.doi.org/10.1111/j.1749-6632.2003.tb07359.x
http://dx.doi.org/10.1007/s10393-017-1291-4
http://dx.doi.org/10.3201/eid1507.081570
http://dx.doi.org/10.3376/1081-1710(2007)32[118:AOBWTF]2.0.CO;2
http://dx.doi.org/10.1093/sysbio/sys029
http://dx.doi.org/10.1016/j.actatropica.2017.01.003
http://dx.doi.org/10.1645/0022-3395(2000)086[0228:QPISOH]2.0.CO;2
http://dx.doi.org/10.7717/peerj.7371
https://peerj.com/


Sánchez J, Amor V, Bazán-León E, Vásquez R, Lareschi M. 2012. Redescription of
Neotyphloceras chilensis Jordan, new status (Siphonaptera: Ctenophthalmidae:
Neotyphloceratini). Zootaxa 3259:51–57 DOI 10.5281/zenodo.280702.

Sánchez J, Lareschi M. 2014. Two new species of Neotyphloceras (Siphonaptera:
Ctenophthalmidae) from Argentinean Patagonia. Zootaxa 3784(2):159–170
DOI 10.11646/zootaxa.3784.2.5.

Sandoval C, Pinochet C, Peña A, Rabello M, Prado A, Viviani T. 2014. Síndrome febril
prolongado: un desafío para el infectólogo pediatra. Revista Chilena de Infectología 31(1):87–91
DOI 10.4067/S0716-10182014000100013.

Schönherr CJ. 1811. Pulex segnis ny Svensk species. Svenska vetenskaps akadamien Nay
handlingar. Kongliga Series 32:98–101.

Schramm BA. 1987. A taxonomic revision of the genus Plocopsylla Jordan, 1931 (Siphonaptera:
Stephanocircidae). PhD retrospective theses and dissertations. Iowa State University, Ames,
Iowa. 8591.

Serratrice J, Rolain J-M, Granel B, Ene N, Conrath J, Avierinos J-F, Disdier P, Raoult D,
Weiller P-J. 2003. Bilateral retinal artery branch occlusions revealing Bartonella grahamii
infection. La Revue de Medecine Interne 24(9):629–630 DOI 10.1016/S0248-8663(03)00224-8.

Smit FGAM. 1987. An illustrated catalogue of the Rothschild Collection of fleas (Siphonaptera) in
the British Museum (Natural History) 7: Malacopsylloidea (Malacopsyllidae and
Rhopalopsyllidae). UK: Oxford University, 380.

Telfer S, Begon M, Bennett M, Bown KJ, Burthe S, Lambin X, Telford G, Birtle R. 2007.
Contrasting dynamics of Bartonella spp.in cyclic field vole populations: the impact of vector and
host dynamics. Parasitology 134(Pt3):413–425 DOI 10.1017/S0031182006001624.

Towns DR, Atkinson IAE, Daugherty CH. 2006. Have the harmful effects of introduced
rats on islands been exaggerated? Biological Invasions 8(4):863–891
DOI 10.1007/s10530-005-0421-z.

Troncoso I, Fischer C, Arteaga F, Espinoza C, Azócar T, Abarca K. 2016. Seroprevalencia de
Bartonella henselae en personas con riesgo ocupacional. Revista Chilena de Infectología
33(3):355–357 DOI 10.4067/S0716-10182016000300019.

Tsai YL, Chuang ST, Chang CC, Kass PH, Chomel BB. 2010. Bartonella species in small
mammals and their ectoparasites in Taiwan. American Journal of Tropical Medicine and Hygiene
83(4):917–923 DOI 10.4269/ajtmh.2010.10-0083.

Uribe P, Balcells ME, Giesen L, Cárdenas C, García P, González S. 2012. Angiomatosis
bacilar por Bartonella quintana como primera manifestación de infección por VIH:
Report of one case. Revista Médica de Chile 140(7):910–914
DOI 10.4067/S0034-98872012000700013.

Vayssier-Taussat M, Moutailler S, Féménia F, Raymond P, Croce O, La Scola B, Fournier P-E,
Raoult D. 2016. Identification of novel zoonotic activity of Bartonella spp., France. Emerging
Infectious Diseases 22(3):457–462 DOI 10.3201/eid2203.150269.

Winoto IL, Goethert H, Ibrahim IN, Yuniherlina I, Stoops C, Susanti I, Kania W, Maguire JD,
Bangs MJ, Telford SR, Wongsrichanalai C. 2005. Bartonella species in rodents and shrews in
the greater Jakarta area. Southeast Asian Journal of Tropical Medicine and Public Health
36(6):1523–1529.

Xia X. 2017. DAMBE6: new tools for microbial genomics, Phylogenetics, and molecular evolution.
Journal of Heredity 108(4):431–437 DOI 10.1093/jhered/esx033.

Moreno Salas et al. (2019), PeerJ, DOI 10.7717/peerj.7371 24/25

http://dx.doi.org/10.5281/zenodo.280702
http://dx.doi.org/10.11646/zootaxa.3784.2.5
http://dx.doi.org/10.4067/S0716-10182014000100013
http://dx.doi.org/10.1016/S0248-8663(03)00224-8
http://dx.doi.org/10.1017/S0031182006001624
http://dx.doi.org/10.1007/s10530-005-0421-z
http://dx.doi.org/10.4067/S0716-10182016000300019
http://dx.doi.org/10.4269/ajtmh.2010.10-0083
http://dx.doi.org/10.4067/S0034-98872012000700013
http://dx.doi.org/10.3201/eid2203.150269
http://dx.doi.org/10.1093/jhered/esx033
https://peerj.com/
http://dx.doi.org/10.7717/peerj.7371


Xia X, Lemey P. 2009. Assessing substitution saturation with DAMBE. In: Lemey P,
Vandamme AM, eds. The Phylogenetic Handbook: A Practical Approach to DNA and Protein
Phylogeny. Second Edition. Cambridge: Cambridge University Press, 615–630.

Xia X, Xie Z, Salemi M, Chen L, Wang Y. 2003. An index of substitution saturation
and its application. Molecular Phylogenetics and Evolution 26(1):1–7
DOI 10.1016/S1055-7903(02)00326-3.

Ying B, Kosoy MY, Diaz MH, Winchell J, Baggett H, Maloney SA, Boonmar S, Bhengsri S,
Sawatwong P, Peruski LF. 2012. Bartonella vinsonii subsp. arupensis in humans. Thailand
Emerging Infectious Diseases 18(6):989–991 DOI 10.3201/eid1806.111750.

Ying B, Kosoy MY, Maupin GO, Tsuchiya KR, Gage KL. 2002. Genetic and ecologic
characteristics of Bartonella communities in rodents in southern China. American Journal of
Tropical Medicine and Hygiene 66(5):622–627 DOI 10.4269/ajtmh.2002.66.622.

Zaror L, Ernst S, Navarrete M, Ballesteros A, Boroschek D, Ferres M, Thibaut J. 2002.Detección
serológica de Bartonella henselae en gatos en la ciudad de Valdivia, Chile. Archivos de Medicina
Veterinaria 1(1):103–110 DOI 10.4067/S0301-732X2002000100011.

Zepeda T, Jorge Morales S, Hugo Letelier A, Luis Delpiano M. 2016. Osteomielitis vertebral por
Bartonella henselae: a propósito de un caso. Revista Chilena de Pediatría 87(1):53–58
DOI 10.1016/j.rchipe.2015.08.004.

Zouari S, Khrouf F, M’ghirbi Y, Bouattour A. 2017. First molecular detection and
characterization of zoonotic Bartonella species in fleas infesting domestic animals in Tunisia.
Parasites & Vectors 10(1):436 DOI 10.1186/s13071-017-2372-5.

Zurita A. 2018. Taxonomía, filogenia y papel vectorial de especies del orden Siphonaptera.
Doctoral thesis, Universidad de Sevilla.

Moreno Salas et al. (2019), PeerJ, DOI 10.7717/peerj.7371 25/25

http://dx.doi.org/10.1016/S1055-7903(02)00326-3
http://dx.doi.org/10.3201/eid1806.111750
http://dx.doi.org/10.4269/ajtmh.2002.66.622
http://dx.doi.org/10.4067/S0301-732X2002000100011
http://dx.doi.org/10.1016/j.rchipe.2015.08.004
http://dx.doi.org/10.1186/s13071-017-2372-5
http://dx.doi.org/10.7717/peerj.7371
https://peerj.com/

	Fleas of black rats (Rattus rattus) as reservoir host of Bartonella spp. in Chile
	Introduction
	Materials and Methods
	Results
	Discussion
	Conclusions
	flink6
	References



<<
  /ASCII85EncodePages false
  /AllowTransparency false
  /AutoPositionEPSFiles true
  /AutoRotatePages /None
  /Binding /Left
  /CalGrayProfile (Dot Gain 20%)
  /CalRGBProfile (sRGB IEC61966-2.1)
  /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
  /sRGBProfile (sRGB IEC61966-2.1)
  /CannotEmbedFontPolicy /Warning
  /CompatibilityLevel 1.4
  /CompressObjects /Off
  /CompressPages true
  /ConvertImagesToIndexed true
  /PassThroughJPEGImages true
  /CreateJobTicket false
  /DefaultRenderingIntent /Default
  /DetectBlends true
  /DetectCurves 0.0000
  /ColorConversionStrategy /LeaveColorUnchanged
  /DoThumbnails false
  /EmbedAllFonts true
  /EmbedOpenType false
  /ParseICCProfilesInComments true
  /EmbedJobOptions true
  /DSCReportingLevel 0
  /EmitDSCWarnings false
  /EndPage -1
  /ImageMemory 1048576
  /LockDistillerParams false
  /MaxSubsetPct 100
  /Optimize true
  /OPM 1
  /ParseDSCComments true
  /ParseDSCCommentsForDocInfo true
  /PreserveCopyPage true
  /PreserveDICMYKValues true
  /PreserveEPSInfo true
  /PreserveFlatness true
  /PreserveHalftoneInfo false
  /PreserveOPIComments false
  /PreserveOverprintSettings true
  /StartPage 1
  /SubsetFonts true
  /TransferFunctionInfo /Apply
  /UCRandBGInfo /Preserve
  /UsePrologue false
  /ColorSettingsFile (None)
  /AlwaysEmbed [ true
  ]
  /NeverEmbed [ true
  ]
  /AntiAliasColorImages false
  /CropColorImages true
  /ColorImageMinResolution 300
  /ColorImageMinResolutionPolicy /OK
  /DownsampleColorImages false
  /ColorImageDownsampleType /Average
  /ColorImageResolution 300
  /ColorImageDepth 8
  /ColorImageMinDownsampleDepth 1
  /ColorImageDownsampleThreshold 1.50000
  /EncodeColorImages true
  /ColorImageFilter /FlateEncode
  /AutoFilterColorImages false
  /ColorImageAutoFilterStrategy /JPEG
  /ColorACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /ColorImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000ColorACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000ColorImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasGrayImages false
  /CropGrayImages true
  /GrayImageMinResolution 300
  /GrayImageMinResolutionPolicy /OK
  /DownsampleGrayImages false
  /GrayImageDownsampleType /Average
  /GrayImageResolution 300
  /GrayImageDepth 8
  /GrayImageMinDownsampleDepth 2
  /GrayImageDownsampleThreshold 1.50000
  /EncodeGrayImages true
  /GrayImageFilter /FlateEncode
  /AutoFilterGrayImages false
  /GrayImageAutoFilterStrategy /JPEG
  /GrayACSImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /GrayImageDict <<
    /QFactor 0.15
    /HSamples [1 1 1 1] /VSamples [1 1 1 1]
  >>
  /JPEG2000GrayACSImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /JPEG2000GrayImageDict <<
    /TileWidth 256
    /TileHeight 256
    /Quality 30
  >>
  /AntiAliasMonoImages false
  /CropMonoImages true
  /MonoImageMinResolution 1200
  /MonoImageMinResolutionPolicy /OK
  /DownsampleMonoImages false
  /MonoImageDownsampleType /Average
  /MonoImageResolution 1200
  /MonoImageDepth -1
  /MonoImageDownsampleThreshold 1.50000
  /EncodeMonoImages true
  /MonoImageFilter /CCITTFaxEncode
  /MonoImageDict <<
    /K -1
  >>
  /AllowPSXObjects false
  /CheckCompliance [
    /None
  ]
  /PDFX1aCheck false
  /PDFX3Check false
  /PDFXCompliantPDFOnly false
  /PDFXNoTrimBoxError true
  /PDFXTrimBoxToMediaBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXSetBleedBoxToMediaBox true
  /PDFXBleedBoxToTrimBoxOffset [
    0.00000
    0.00000
    0.00000
    0.00000
  ]
  /PDFXOutputIntentProfile (None)
  /PDFXOutputConditionIdentifier ()
  /PDFXOutputCondition ()
  /PDFXRegistryName ()
  /PDFXTrapped /False

  /CreateJDFFile false
  /Description <<
    /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
    /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
    /DAN <>
    /DEU <>
    /ESP <>
    /FRA <>
    /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
    /JPN <>
    /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
    /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
    /NOR <>
    /PTB <>
    /SUO <>
    /SVE <>
    /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers.  Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
  >>
  /Namespace [
    (Adobe)
    (Common)
    (1.0)
  ]
  /OtherNamespaces [
    <<
      /AsReaderSpreads false
      /CropImagesToFrames true
      /ErrorControl /WarnAndContinue
      /FlattenerIgnoreSpreadOverrides false
      /IncludeGuidesGrids false
      /IncludeNonPrinting false
      /IncludeSlug false
      /Namespace [
        (Adobe)
        (InDesign)
        (4.0)
      ]
      /OmitPlacedBitmaps false
      /OmitPlacedEPS false
      /OmitPlacedPDF false
      /SimulateOverprint /Legacy
    >>
    <<
      /AddBleedMarks false
      /AddColorBars false
      /AddCropMarks false
      /AddPageInfo false
      /AddRegMarks false
      /ConvertColors /NoConversion
      /DestinationProfileName ()
      /DestinationProfileSelector /NA
      /Downsample16BitImages true
      /FlattenerPreset <<
        /PresetSelector /MediumResolution
      >>
      /FormElements false
      /GenerateStructure true
      /IncludeBookmarks false
      /IncludeHyperlinks false
      /IncludeInteractive false
      /IncludeLayers false
      /IncludeProfiles true
      /MultimediaHandling /UseObjectSettings
      /Namespace [
        (Adobe)
        (CreativeSuite)
        (2.0)
      ]
      /PDFXOutputIntentProfileSelector /NA
      /PreserveEditing true
      /UntaggedCMYKHandling /LeaveUntagged
      /UntaggedRGBHandling /LeaveUntagged
      /UseDocumentBleed false
    >>
  ]
>> setdistillerparams
<<
  /HWResolution [2400 2400]
  /PageSize [612.000 792.000]
>> setpagedevice


