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ABSTRACT
Chemobehavioural phenotypic analysis using small aquatic model organisms is becom-
ing an important toolbox in aquatic ecotoxicology and neuroactive drug discovery.
The analysis of the organisms’ behavior is usually performed by combining digital
video recording with animal tracking software. This software detects the organisms in
the video frames, and reconstructs their movement trajectory using image processing
algorithms. In this work we investigated the impact of video file characteristics, video
optimization techniques and differences in animal tracking algorithms on the accuracy
of quantitative neurobehavioural endpoints. We employed larval stages of a free-
swimming euryhaline crustacean Artemia franciscana,commonly used for marine eco-
toxicity testing, as a proxy modelto assess the effects of video analytics on quantitative
behavioural parameters. We evaluated parameters such as data processing speed,
tracking precision, capability to perform high-throughput batch processing of video
files. Using a model toxicant the software algorithms were also finally benchmarked
against one another. Our data indicates that variability in video file parameters; such
as resolution, frame rate, file containers types, codecs and compression levels, can be
a source of experimental biases in behavioural analysis. Similarly, the variability in
data outputs between different tracking algorithms should be taken into account when
designing standardized behavioral experiments and conducting chemobehavioural
phenotyping.

Subjects Animal Behavior, Zoology, Ecotoxicology
Keywords Animal, Behaviour, Tracking, Video, Toxicity, Phenomics

INTRODUCTION
The acquisition of organism-wide high-dimensional phenotypic data (phenomics) has
undergone an evolution to existing molecular omics paradigms over the last decade (Houle,
Govindaraju & Omholt, 2010). This evolution is leading to advances in environmental
toxicology and neoclassical phenotypic drug discovery techniques (Faimali et al., 2006;
Hellou, 2011; Kokel & Peterson, 2008; Zhang et al., 2019). Behaviour is one of the sub-lethal
endpoints that can change temporally and relative to acute and chronic exposure to chemical
agents (Chapman, 2007; Gerhardt, 2007; Hellou, 2011). Chemobehavioural phenotyping
embraces the complexity of multicellular organisms thus reflecting integrated functional
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changes at highest levels of organismal organization (Zhang et al., 2019). Manifestations
of behavioural phenotypes can transcend multiple levels of biological structure and
function; providing causative links between genetic, subcellular and physiological processes
(Chapman, 2007; Gerhardt, 2007; Hellou, 2011). This can deliver an overarching strategy
to identify functional effects of chemicals with particular biological and/or ecological
effects (Faimali et al., 2017; Zhang et al., 2019). The analysis of diverse behavioural
endpoints such as locomotory activity, non-directional and directional responses to
chemical stimuli, predator-prey interactions, feeding rate, mating rituals and 3D spatial
orientation have been reported in behavioural ecotoxicology (Bownik, 2017; Chapman,
2007; Gerhardt, 2007; Hellou, 2011; Pyle & Ford, 2017). It is also postulated that high-
throughput chemobehavioural phenomics using simplified digital fingerprints of behaviors
can become an important toolbox for discovery of novel neuroactive medicines, screening
for neurotoxic effects as well as identify specific nerve poisons and their antidotes (Bruni,
Lakhani & Kokel, 2014; Kokel & Peterson, 2008).

Behavioral parameters are predominately analyzed using video recording and video
processing techniques with a dedicated animal tracking software suite (Green et al.,
2012; Noldus, Spink & Tegelenbosch, 2001; Rodriguez et al., 2017). Analog video tracking
technologies were introduced in the late 1980s and provided significant advantages in terms
of speed of data acquisition and accuracy over the previous manual counting methods and
non-imaging analytical devices (Green et al., 2012; Noldus, Spink & Tegelenbosch, 2001). In
the 21st century, many disciplines of bioscience have been utilizing low-cost digital video
recording to conduct behavioural studies (Bownik, 2017; Huang, Campana & Wlodkowic,
2017; Huang et al., 2016). Chemobehavioural phenotypic analysis has been rejuvenated
with an increase in user-friendly automated acquisition systems and animal tracking suites
to measure behavioural endpoints (Franco-Restrepo, Forero & Vargas, 2019; Green et al.,
2012; Noldus, Spink & Tegelenbosch, 2001; Rodriguez et al., 2018).

Digital video-based tracking of animal behavior involves deconvolution of pattern
analysis in a grid of pixels on individual frames of video file. Software algorithms analyze
each frame of the video file to distinguish the tracked animals from the background
(Franco-Restrepo, Forero & Vargas, 2019; Noldus, Spink & Tegelenbosch, 2001; Rodriguez
et al., 2018). This is performed on the basis of semi-automated adjustment of a pixel
intensity threshold and color saturation values. Each detected object is then assigned a
mathematical center of gravity (centroid) that is derived from the average surface area
(Franco-Restrepo, Forero & Vargas, 2019; Noldus, Spink & Tegelenbosch, 2001; Rodriguez et
al., 2018). Automatic frame-by-frame tracking leads to time-stamped x-y coordinate pairs
assigned to centroids of each detected objects and provides the foundation to reconstruct
animal trajectories and estimate occupancy heatmaps (Noldus, Spink & Tegelenbosch,
2001).

The time-stamped x-y coordinates assigned to centroids of each detected object are used
for calculations of quantitative behavioural data sets such as; average speed of locomotion,
average distance travelled of an animal or the distance between several individually
identified animals (Franco-Restrepo, Forero & Vargas, 2019; Noldus, Spink & Tegelenbosch,
2001; Rodriguez et al., 2018).
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Despite the increasing number of reports using digital video analytics in chemobehavioral
studies there is a paucity of data on how video file characteristics and various animal-
tracking algorithms affect accuracy and reproducibility of neurobehavioural endpoints
(Wang et al., 2017a). For instance, it is unknown if outcomes of behavioural analysis
will differ when the source data are acquired using different digital camera settings and/or
analyzed using different algorithms. In this regardmany researchers utilizingmodern digital
camera recorders are not entirely familiar with a surprisingly large number of variables
that need to be considered. Video files are not only characterized by their resolution
(number of pixels per area of frame), but are in fact a series of still frames recorded in
a unit of time (Bernas, 2005; Boudier & Shotton, 1999; Cerina, Iozzia & Mainardi, 2019;
Wallace et al., 2018; Wang et al., 2017a). As such, each video file can be recorded at a
different frame rate usually denoted in frames per second (fps). Since a sequence of
high-resolution frames is usually memory intensive, video data is often compressed
using a range of available software codecs (Cerina, Iozzia & Mainardi, 2019; Rapczynski,
Werner & Al-Hamadi, 2019). The compressed data streams can conform to very different
standards and codec selection and their chosen settings can impact the process of animal
tracking (Boudier & Shotton, 1999). This is because video codecs vary significantly in
their level of data preservation. For instance, heavy compression can generate small
video files that are easier to store and compute but at a cost of significant amount of
data being artificially interpolated (Boudier & Shotton, 1999; Cerina, Iozzia & Mainardi,
2019; Rapczynski, Werner & Al-Hamadi, 2019). Consequences of the above on quantitative
behavioural end-points have not been extensively explored. Furthermore, little data
exists on comparative analysis of video file optimization strategies, such as background
subtraction techniques, on the performance and accuracy of animal tracking algorithms
(Wang et al., 2017a; Wang et al., 2017b). Since the contrast-based detection of animals
heavily depends on distinguishing them from the background, the use of background
subtraction techniques can greatly accelerate semi-automated thresholding and increase
overall accuracy of analysis (Rodriguez et al., 2017; Rodriguez et al., 2018). Lastly, there
is relatively little experimental benchmarking data on the capability of animal tracking
software to enable high-throughput parallel analysis of multiple samples and/or automated
batch processing of video files (Green et al., 2012; McCarroll et al., 2016).

Artemia franciscana was used as a proxy model for chemobehavioral analysis because
of their small size and relatively fast, continuous locomotory activities. Such behavioural
characteristics parameters are challenging for the video-based animal tracking algorithms
especially when large number of animals are to be tracked simultaneously. Additional
reasoning for the selection of this species was that larval stages of brine shrimp are
commonly used and broadly accepted models in marine ecotoxicology. A considerable
number of behavioural toxicity studies have been performed using Artemia sp. nauplii in
recent years. However, so far none of the published studies considered a high-throughput
behavioural chemophenotypic screening strategies.

The main motivation of this work was to investigate the impact of video file
characteristics, video optimization techniques and inherent differences in animal tracking
algorithms on the accuracy of quantitative neurobehavioural data. We also wanted

Henry et al. (2019), PeerJ, DOI 10.7717/peerj.7367 3/22

https://peerj.com
http://dx.doi.org/10.7717/peerj.7367


to demonstrate a capacity to perform high-throughput automated data analysis of
quantitative behavioural data in aquatic toxicology. In this regard we demonstrated rapid
and inexpensive methods to improve the process of thresholding during contrast-based
animal detection and tracking as well different data processing pipelines. Two existing
mainstreams commercial as well as one open source software packages were evaluated with
higher-throughput toxicological phenotyping to benchmark their associated algorithms.
The secondary goal of this work was to guide the scientists in the variability of parameters
that need to be considered when undertaking chemobehavioural studies.

MATERIALS AND METHODS
Test organisms and exposures
Eggs of themarine crustaceanArtemia franciscana (Southern Biological Pty Ltd,Melbourne,
Australia) were hatched according to a standard operating protocol as described before
(Huang et al., 2016). Briefly approximately 100 eggs were placed in an 85 mm Petri
dish filled with approximately 35 mL of filtered sea water (pH 8.0 ± 0.5). The vessels
were incubated at 25 ◦C and illuminated at 3000–4000 lux for 24 hours to induce
hatching. Upon hatching, viable larval stages were manually sorted to achieve uniform
developmental staging at first instar and moved to a fresh medium at 22 hours. Up to
four naupli were manually aspirated and randomly loaded into each test chamber. The
model toxicant organophosphate, Chlorpyrifos, tested was dissolved directly in sea water
as it has good water solubility. Toxicity testing protocol adhered to international ‘‘OECD
Guidelines for the Testing of Chemicals’’ (http://www.oecd.org/chemicalsafety/testing/
oecdguidelinesforthetestingofchemicals.htm).

Test chamber design and fabrication
All test chambers were designed using CorelDraw X3 (Corel Corporation, Ottawa, Ontario,
Canada) CAD package as described before (Huang, Campana & Wlodkowic, 2017). The
initial stages of testing for comparison of video setup utilised a test chamber with a diameter
of 15.6 mm, a depth of three mm and a nominal volume of 574 µL. The validation stages
of testing with toxicants involved reducing the test chamber to a diameter of 11 mm with a
nominal volume of 285 µL. All vessels were fabricated in a fully biocompatible polymethyl
methacrylate (PMMA) transparent thermoplastic using a non-contact 30W infrared laser
machining system (Universal Laser Systems, Scottsdale, AZ, USA) as described before
(Huang et al., 2016).

Digital video recording
Behavioral data was acquired using a custom build digital video imaging system. The
entire neurobehavioural analysis system was installed in a temperature-stabilized room
(25 ± 0.5 ◦C) and consisted of a cold LED (5500 K, 820Lux) backlit illumination stage and
a digital video camera mounted on a vibration-less photographic column (Polaroid M3,
Polaroid Inc, USA). The digital imaging was realized by a Canon EOS 7D Mk2 system,
equipped with a CMOS APS-C type sensor (22.4 × 15.0 mm, 20.20 Megapixel resolution,
and individual pixel size of 4.1 µm). The camera was paired with a true 1:1 Macro lens with
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a focal length of 90 mm (Tamron Corp, Commack, NY, USA). The setup of the system
enabled simultanous imaging of a large area consisting of up to 28 test chambers, thus
eliminating any need for a motorized stage and potentially disruptive manipulations of the
test specimens. For simplicity of data analysis a scaled down array of four test chambers
was used for the majority of the software comparisons as a multitude of video files could
be post-processed to represent further replicates. The video recording specifications were
modified as required by the testing for each technical recording.

Native videos of 55 seconds in duration were recorded with a resolution of 1,920× 1,080
pixels (1080 p) and a framerate of 24 fps. The final toxicity tests were filmed in a custom
array of chambers (7 by 4 matrix) with three organisms loaded per test chamber. This
setup was recorded every 6 h for up to 24 h. All video files were acquired using an external
High-Definition Multimedia Interface (HDMI) recorder (Atomos Shogun, Melbourne,
Australia) equiped with a programmable time-resolved video acquisition functionality.
Native files were saved in .mov digital containers and encoded with a ProRes 422 HQ codec
that provided no temporal compression artefacts (Inter frame-only encoding) and variable
bitrate.

Computational workstation
All video data processing and animal tracking was performed on a Dell Precision 7810 PC
workstation designed for parallel video processing tasks. The latter had two six-core Intel
Xeon processors (CPU E5−2620 V3 2.40GHz) with hyper-threading technology providing
a total of 24 logic processors, 32 GB random access memory (RAM) and an AMD FirePro
W5100 graphics card. The operating system was a 64 bit Windows 10 Pro.

Video file transcoding
Native files were ingested into a DaVinci Resolve 15 (Blackmagic Design, Australia)
video-editing software suite used for transcoding and file optimization. To compare the
impact of different compression levels. The native sets of video files were transcoded
using Uncompressed RGB 10-bit (low compression), Uncompressed YUV 10-bit (medium
compression) and GoProCineForm YUV 10-bit (high compression) codecs to common
.avi-type containers to allow for comparison between the different software suites. The
selection of codecs was based on their compatibility with all the animal tracking software
packages (see below) and the ability to achieve different levels of compression as shown
in Table 1. To obtain identical video files of different resolution for comparative analysis,
the native 1080 p files were transcoded using the GoPro Cineform YUV codec to obtain a
down sampled range of resolutions such as 1,280× 720 pixels (720 p) and 640× 480 pixels
(480 p). Similarly to obtain to obtain identical videos files with different frame rates the
sets of native files recorded at 60 fps were transcoded using GoPro Cineform YUV codec
to obtain files with 24, 30 and 50 fps.

Video file optimization for animal tracking
Native video files were post-processed using a combination of Adobe Photoshop CC
2017 (Adobe, USA) and DaVinci Resolve 15 (Blackmagic Design, Australia) video
editing software. The optimization techniques included digital cropping, sharpening
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Table 1 Characteristics of compression-decompression software (codec) used for transcoding of video
files to obtain different levels of video data compression.

Compression

File parameter Low Medium High

Codec Uncompressed
RGB 10-bit

Uncompressed
YUV 10-bit

GoPro CineForm
YUV 10-bit

Resolution 1080 p 1080 p 1080 p
Framerate 24 fps 24 fps 24 fps
Container .avi .avi .avi
File Size 10200 mb 6810 mb 213 mb

and background subtraction. The latter involved initially creating a digital background
mask in Adobe Photoshop across the test wells. The digital mask could be completely white
or black for positive or negative background subtraction respectively. Digital masks were
automatically exported as a .png file types for every video file.

The native video files were imported into DaVinci Resolve 15 video editing suite along
with the respective digital background masks. For each video file, a single freeze frame was
initially generated and subtracted from the entire time period of the video along with the
associate digital mask using the inspector composite mode feature. This technique resulted
in a video with perfectly black or white background in direct contrast to the organism, all
manipulations describe above were performed using DaVinci Resolve automated batch
processing capabilities in a high throughput fashion.

Video file analytics
For comparative analysis identical video file sets were analysed with three behavioural
analysis software packages: Ethovision XT ver. 14 (Noldus Information Technology, The
Netherlands) (Marechal et al., 2004;Noldus, Spink & Tegelenbosch, 2001; Spink et al., 2001),
ToxTrac ver 2.83 (open source software freely available at sourceforge.net/projects/toxtrac)
(Rodriguez et al., 2017; Rodriguez et al., 2018), and LoliTrack ver. 4 (Loligo

R©
Systems,

Viborg, Denmark) (Table 2). All software suites selected for this study employed a principle
of contrast detection to identify subjects on video files. For this to occur any test animal
to be tracked must be placed against a contrasting background. Software employed in this
study were also capable of creating unique virtual zones of interests on video files where the
proportion of time spent by the animals in those regions as well as behavioral parameters
can also be analyzed (Table 2).

The data generated by analysis of each individual video was varied between software
suites. Toxtrac provided averaged endpoint data for combined from all subjects in an arena
for the duration of the video. Ethovision and LoliTrack provided averaged endpoint data
for individual subjects in an arena for the duration of the video.

Statistical analysis
Replicate data from different experiments was pooled. The behavioral data was averaged
out as an average per unit of time (minute). Cumulative distance travelled by animals
was measured by summing the incremental distance moved by each animal between
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Table 2 Features of animal tracking software suites used in the comparative benchmarking.

Software Suite Ethovision Toxtrac Lolitrack

Data processing time
Native video Medium Slow Slow
Positive background subtraction Fast Fast Medium
Negative background subtraction Fast Fast Medium

Perceived user interface experience
File import Medium Fast Slow
Arena definition Fast Medium Medium
Subject detection Fast Medium Slow
Subject tracking Fast Fast Slow
Data acquisition Fast Fast Slow
Batch processing Fast Medium N/A
Data export Fast Medium Slow

Quantitative data outputs
Pixel-to-distance calibration Yes Yes Yes
Numerical data outputs Yes Yes Yes
Zone analysis Yes Yes Yes
Population averages No Yes No

Graphical data outputs
Trajectory reconstruction Yes Yes Yes
Exploration heatmaps Yes Yes No

frames of video files. Data was then averaged between individual animals kept in the
same chamber. Statistical analysis and data presentation was performed in both Prism
8 (GraphPad Software Inc, San Diego, CA, USA) and RStudio V1.1.463 (RStudio Team,
2018) as before (Huang et al., 2018). Data sets were tested for normality of distribution,
a one-way ANOVA was then used to test for significance. When significant exposure
effects were found, a post-hoc Tukey’s test were performed to identify significance between
treatment-related effects and time point with independently run control tests. Significance
was set at p< 0.05.

RESULTS AND DISCUSSION
Impact of video file compression on accuracy of animal tracking
For all tested animal-tracking algorithms the computing time was proportionally smaller
with an increased digital compression levels (Fig. 1A, Table 1). The highest compression
settings used generated files that were five times smaller than native ones and the processing
time of the latter was also at least five times faster in Ethovision and ToxTrac (Fig. 1A).
Lolitrack did not exhibit the same increase in speed of processing time despite the file
size change. Interestingly accuracy of quantitative behavioral endpoints demonstrated
here as computed average animal distance moved and average animal velocity showed
negligible levels of variability between different levels of digital compression (Fig. 1B and
Fig. 1C). Significant differences were, however, observed for processing time and accuracy
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Figure 1 Impact of digital video data stream compression on (A) processing time of animal tracking,
(B) computed average animal distance moved and (C) computed average animal velocity. To obtain
low, medium and high compression ratios the identical sets of native video files were processed using Un-
compressed RGB, Uncompressed YUV and GoPro CineForm YUV codecs, respectively.

Full-size DOI: 10.7717/peerj.7367/fig-1

of data between the algorithms employed. In this regard the LoliTrack software was at least
nine times slower at high compression and up to three times slower at low and medium
compression in computing the subject tracking. The end point quantitative data differed
by up to approximately 30% as compared to Ethovision XT and ToxTrac (Fig. 1).

The data demonstrated that compression and thus size of video file plays an integral
role in the high throughput neurobehavioural pipeline. Transcoding of native video files
into a different codec can drastically reduce the processing time while maintaining the
precision of the endpoint data. The results highlight also an inherent variability between
the tracking algorithms. Of note, the .avi file format used here is at present considered to be
an obsolete standard, disadvantaged by very large file sizes and limited selection of modern
codecs. However, the selection of .avi codecs was necessitated by their compatibility with
the all animal tracking software packages used in this study (Table 1). In this regard, the
LoliTrack is the only software suite that limits the user to .avi files.

Impact of video file resolution on accuracy of animal tracking
The down sampling of video file resolution resulted in proportionally faster computing
times for all tested animal tracking software. The smallest tested resolution of 480 p returned
computing time on average four times faster than the native resolution of 1080 p (Fig. 2A).
The accuracy of quantitative the behavioral endpoints average animal distance travelled
and average velocity showed negligible levels of variability between different levels of tested
resolutions (Figs. 2B and 2C). However, LoliTrack software was again characterized by at
least fifteen times slower computing time while its quantitative data outputs differed by at
least approximately 40% as compared to Ethovision XT and ToxTrac (Fig. 2).

The resolution of a video file is integral when taking into account the small size of
the tracked object. The measured pixel distance (calibrated to a nominal output in mm)
for the movement of each organism in a well is only as accurate as the amount of pixels
the organism can be thresholded (or measured) to move across. Thus the higher the
resolution, the higher the accuracy of distance travelled and as a derivative also velocity and
acceleration. When looking into the future one can expect automated higher throughput
data acquisition system capable of simultaneously filming multiple test chambers. In such
situations resolution of the camera sensor becomes a key factor requiring implementation
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Figure 2 Impact of digital video file resolution on (A) processing time (B) computed average ani-
mal distance moved, (C) computed average animal velocity and (D) reconstruction of animal trajec-
tories. To obtain 720p and 480p resolution the identical sets of native video files recorded at 1080p were
transcoded using GoPro CineForm YUV codec. For simplicity of data presentation, the reconstructed tra-
jectories were generated using ToxTrack ver 2.83. Note that the right axis represents data for Lolitrack
software.

Full-size DOI: 10.7717/peerj.7367/fig-2

of high definition or even ultra-high definition (4K and 8K) sensors. This is because with the
larger the overall acquisition area the fewer of the pixels representing each test chamber will
have assigned to threshold the organism against. To enable accurate thresholding ToxTrac
recommends the subject size of an animal to be at least 50 pixels. Ethovision has stated
that thresholding of subjects is possible with arena pixel quantity being 200 times larger
than that of the target animal. The balancing of resolution to arena and organism ratio will
be a key factor in future ultra-high throughput video recording systems. Unfortunately
none of the animal tracking software available at present is capable of handling ultra-high
definition video files. The results shown in Fig. 2 exhibit a consistency of results across
the three tested resolutions. This provides key insights into the ratio described above. The
quality and detail in the graphical data outputs of the trajectory and occupancy maps
also improved in quality in ToxTrac with increase in resolution. Another key point to
factor into this equation is the user time taken to correctly threshold the organism against
the background in each software suite. When there is a high number of pixels per arena
(high resolution), the user time taken to threshold the organism against the background is
qualitatively reduced by 90%when comparing 1080 p to 480 p; this makes batch processing
particularly easy. Overall both ToxTrac and Ethovision demonstrated a high precision in
quantitative outputs in all resolutions.
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Impact of video frame rate on accuracy of animal tracking
At first we evaluated impact of digital transcoding of native files recorded at 60 fps to lower
frame rates that had a proportional impact on reduction of processing time (Fig. 3A).
Accordingly, it took Ethovision XT algorithms approximately 80 and 30 s to compute
animal tracking on a 55 s video clip at 60 fps vs. 24 fps, respectively (Fig. 3A). The impact
of transcoded frame rates on accuracy of behavioral endpoints was however substantial.
Transcoding of 60 fps to a 24 fps video led to on average 50% of the computed values for
average animal velocity (Figs. 3B and 3C). The reconstruction of animal trajectories on
transcoded files clearly demonstrates the loss of data during file processing to lower frame
rate (Fig. 3C).

The analysis of video files at native frame rates (recorded in camera and not transcoded
in video post-processing pipeline) depicted that lower fps values resulted in proportionally
faster computing times for both tested animal tracking software (Fig. 3D). The accuracy
of quantitative behavioral endpoints such as computed average velocity showed negligible
levels of variability between 24, 30 and 60 fps for Ethovision XT (Fig. 3E). Interestingly,
quantitative data outputs computed by the ToxTrac diverged from Ethovision at 24 and
30 fps by approximately 20% (Fig. 3E).

The above data demonstrate that frame rate of video file can have a major impact on
both performance and accuracy of animal tracking algorithms. The results highlight that if
the framerate is artificially downgraded in the post-processing pipeline to obtain a small file
size, although no visual distortion can be seen, the tracking algorithms cannot interpolate
the data lost during a transcoding process. This phenomenon can be easily visualised with
the graphical trajectory reconstruction (Fig. 3C). The transcoding process lead to frames
being completely removed from the video file, which results in data gaps that cannot be
interpolated. Interestingly, it was found that using different native framerates pre-set at
the data acquisition stage had negligible impact on the precision of the data output. It is
important to note, however, that Ethovision is the only software capable of batch processing
60 fps video files. ToxTrac can only process one 60 fps video file at a time.

Video file optimization techniques for improved animal tracking
The contrast-based detection and tracking of objects on video files heavily relies on accurate
distinguishing of them from the background. The potentially complex test chambers as
well as uneven lighting conditions during experiments can introduce significant obstacles
for reproducible video-based animal tracking. Therefore, efficient video file optimization
strategies, such as background subtraction techniques that can be performed in high-
throughput, aid in rapid thresholding. Figure 4A demonstrates a rapid optimization
strategy utilizing both negative and positive background subtraction method applied in a
freely available video editing software. The LoliTrack software was qualitatively considered
the most difficult to perform effective thresholding of the objects and was thus used to
benchmark the necessity for background subtraction techniques. The quantitative data
outputs demonstrate consistent accuracy between the optimized and non-optimized video
files (Figs. 4B–4D). However, again the user time required to set optimum threshold levels
was qualitatively twice as fast when using optimized files; of high benefit to the batch
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Figure 3 Impact of transcoded and native video file frame rates on average processing time of animal
tracking (A, D) and computed parameter of average animal distance moved (B, E). Graphical represen-
tation of reconstructed animal trajectories (C) demonstrates significant loss of data when video files
with transcoded frame rates are employed for animal tracking. To obtain transcoded files with 24, 30
and 60 fps the identical sets of native video files recorded at 60 fps were transcoded using GoPro Cine-
Form YUV codec. For simplicity of data presentation the reconstructed trajectories presented in (C) were
generated using only Ethovision XT ver. 14.

Full-size DOI: 10.7717/peerj.7367/fig-3

processing pipeline. An additional process is included and therefore additional time taken
in post-processing the video files to allow for this ease of thresholding; however as both
softwares are capable of batch processing a large quantity of files this time is easily made up.
Furthermore, as depicted in Fig. 4D, the accuracy of graphical trajectory reconstructions
benefited from optimization techniques. Namely, despite substantial user time spent in
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Figure 4 Impact of background subtraction techniques on accuracy of animal tracking and quantita-
tive behavioural endpoints. (A) Demonstration of negative and positive background subtraction to im-
prove accuracy and speed of thresholding and object detection. Background subtraction techniques do
not significantly affect computed parameters of average animal distance moved (B), animal velocity (C)
or graphical reconstructed of animal trajectories (D). For simplicity of data presentation the reconstructed
trajectories presented in (D) were generated using only Lolitrack ver. 4. Note the minor discrepancies due
to thresholding difficulties in processing the native video.

Full-size DOI: 10.7717/peerj.7367/fig-4

correctly thresholding the native video files, small errors can still occur and potentially
influence the output data (Fig. 4D).

We conclude that when analyzing hundreds of samples the manual optimization
of threshold levels for every video file introduces unnecessary analytical bottlenecks.
We postulate that to improve efficiency of analytical pipelines in behavioral studied the
positive and/or negative background subtraction techniques can effectively be performed
in freely available software suites that support automatically batch processing for increased
throughput.
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High-throughput behavioural phenotyping–simultaneous tracking of
multiple specimens
One of the approaches to achieve higher throughput analysis in behavioral phenomics is
simultaneous recording of multiple organisms in a single arena. The subsequent analysis
of multiple objects can be challenging, as it requires continuous and reliable identification
of all individual animals simultaneously. This means that although the software doesn’t
necessarily lose track of a specific organism, the animal has the potential to cross paths
close enough to another subject causing the two to switch identities in the eyes of the
software (Rodriguez et al., 2017; Rodriguez et al., 2018). This is particularly important when
quantitating the cognitive responses of an organism in a directional choice maze. To avoid
this identity error Ethovision recommends keeping the number of organisms per arena
to be less than 16 and ToxTrac between 10 and 20. This identity error was qualitatively
observed in ToxTrac at more than 16 organisms per arena and as such this was the
maximum organisms per arena that was tested for precision comparison. To assess this
we first evaluated impact of animal density in a single chamber on computing time as
well as accuracy of tracking. Interestingly the increase in number of animals per chamber
from 1 to 16 had only minor impact on computing time denoted by approximately 30%
or no difference for Ethovision and ToxTrac, respectively (Fig. 5A). Furthermore, the
quantitative endpoint such as calculated average animal velocity was not significantly
affected by an increased number of tracked objects (Fig. 5B).

Next we sought to assess impact of simultaneous recording of multiple test chambers
using a single camera. A constant of one organism per arena was tracked with increasing
arena quantity to ensure any changes in precision were due to the change in arena quantity.
As discussed in regards to resolution, the ToxTrac suite recommends the subject size per
arena should be more than 50 pixels to enable for accurate thresholding and consistent
results. At 18 arenas, the arena size is less than 60 pixels; beyond the recommended limit
for thresholding in ToxTrac. Ethovision’s multiple arena module is advertised to be able to
easily threshold and track up to 100 arenas at once, with the arena pixel quantity 200 times
larger than the subject pixel area to be tracked. The ease of thresholding of Ethovision in
comparison to ToxTrac was qualitatively confirmed at 18 arenas, with more than double
the time taken to threshold as the organism area pixel recommendation was approached.
The increase in number of arenas of interest from 1 to 18 had aminor impact on computing
time denoted by 5% and 20% difference for Ethovision and ToxTrac, respectively (Fig.
5C). Furthermore the quantitative endpoints such as computed average animal velocity
were not significantly affected (Fig. 5D).

The number of organisms per arena and number of arenas per video file are important
variables to be considered when designing a higher throughput behavioural experiment.
The impact of multiple arenas on accuracy of tracking is closely related to the resolution
of the camera sensor. Multiple arenas of interest on a single video file are digitally defined
in the software package. This process reduces the effective pixel quantity per area and can
become a significant limitation when employing low-resolution cameras. In this work we
employed a high definition 1080 p sensor and found that imaging even larger quantity of
chambers might require systems equipped with ultra-high definition sensors such as 4 K
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Figure 5 Impact of simultaneous tracking of multiple specimens on computing speed and accuracy of
behavioural endpoints. The effects of increasing number of specimens tracked in one arena on (A) aver-
age processing time of animal tracking and (B) accuracy denoted as computed parameter of average ani-
mal velocity (B). The effects of altering the quantity of detection arenas on (C) average processing time of
animal tracking and (D) computed endpoint parameter of average animal velocity.

Full-size DOI: 10.7717/peerj.7367/fig-5

(2160 p) and 8 K (4320 p) technologies. This higher resolution allows for more subjects to
be within the recommended pixel subject size limit of 50 for ToxTrac with a larger amount
of arenas. Unfortunately none of the animal tracking software available at present is capable
of processing ultra-high definition video files desired for a high-throughput pipeline. This
is a key limitation that software tracking systems are yet to overcome.

When tracking multiple small aquatic organisms contained in a single chamber it is
also important to consider that they move in three-dimensional space of the chamber
(Bownik, 2017). When recording objects with a single camera to achieve higher throughput
of acquisition, the tracking is performed in two dimensions (2D). This means there is
a potential for the algorithms to misinterpret data when organisms interact or overlap
each other in 3D space (Bownik, 2017; Noldus, Spink & Tegelenbosch, 2001). Therefore,
increasing the number of organisms in the test chamber can also increase the identity
error of subject tracking if this benchmark is not observed. The data in Fig. 5 indicate that
by employing a high definition camera and careful optimization it is possible to obtain
consistent and precise results even with 16 small aquatic organisms in a single arena; with
up to 18 simultaneous arenas.
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High-throughput behavioural phenotyping—batch processing
The capability to performed animal tracking using batch processing of large sets of video
files is another fundamental key enabler for high-throughput behavioral phenomics. In this
study only ToxTrac and Ethovision suites had a capability for batch processing of videos,
however both packages differed in the implementation of this analytical feature.

The major feature of ToxTrac package was that an entire library of multiple video files
could be batch imported into the software simply through sequential annotation of file
names. The software had also an integrated module enabling automated pixel-to-distance
calibration of all videos thus completely removing variations in calibration due to a manual
user input. The disadvantages of ToxTrac in regards to batch processing were that arena
and subject thresholding definitions can only be defined once. A time consuming manual
review of output data was often required to ensure each subject was detected properly
during the duration of each recording. Any changes required in thresholding would
result in re-acquisition of the video file. Moreover, the significant spreadsheet output
file providing a rather complex ensemble of numerical data was difficult to process and
highlights a further need to improve analytical tools suitable for automated presentation
and rapid mining of data. Because this suite is open source, it can potentially lend itself to
a greater potential for customized module developments.

Compared to ToxTrac, the proprietary Ethovision XT package provides some distinct
advantages. Although the import of multiple videos is not user friendly and requires
significant amount of time consuming manual tasks, Ethovision features a very flexible
arena definition and dynamic subject thresholding tool that can be customized to individual
videos. This dynamic thresholding involves the video playing in real time as values for
thresholding are changed; invisible subject tracking time and interpolated (estimated)
subject tracking time are updated in real-time. This allows for accurately locking the
subject pixel area in comparison to the background prior to acquisition of the entire video
tracking data; thus drastically reducing the user time required to correctly identify subjects.
Interestingly, this proprietary package does not have an automated pixel-to-distance
calibration capability creating a potential for user error especially when dealing with large
video libraries. The data analytics and graphical outputs available from Ethovision allow,
on the other hand to very easily manipulate and export large data sets in a distinctly usable
way. These data sets can be viewed graphically; not only with trajectory diagrams and
heat maps but instantaneous movement graphs of organisms in respect to time; integral
when manipulating data from sensorimotor response assays. There are additional modules
available from Ethovision that allow for organism tracking to be completed in real-time
with the data outputs potentially able to integrate into an organism stimulus control system.
This module could open up avenues in high throughput cognitive behavioural assays.

Benchmarking of high-throughput behavioral phenotyping in aquatic
toxicology
Lastly we sought to answer if analysis of identical digital video data sets performed in by
different animal tracking software will have a significant impact on chemobehavioural
phenotyping in aquatic toxicology. For this purpose we performed a high-throughput
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behavioral experiment utilizing organophosphate acetylcholine esterase inhibitor (OP;
Chlorpyrifos 0 –6 mg/L) as a model aquatic toxicant. The data were analyzed in a batch-
processing pipeline described above. Figure 6 demonstrates the bi-phasic responses in
spontaneous locomotory activities (kinesis) of Artemia sp. nauplii exposed to OP as a
function of time and concentration. Behavioural data revealed significant hyperactivity
of nauplii upon exposure to sub-lethal concentrations of OP (Figs. 6A–6B). As described
before the hyperactivity can be hypothesized as a rapid reaction to chemical stress that
causes the animals attempting to escape the affected area (Faimali et al., 2017; Huang et
al., 2016). The agitation of nauplii was followed by a progressive inhibition of swimming
activity (hypoactivity) upon longer exposures as well as during exposures to higher
concentrations of OP (Figs. 6 and 7). Overall, chemobehavioural data presented in matrix
heatmaps demonstrate that analysis of identical data sets using both Ethovision XT and
ToxTrac result in similar trends although certain differences can be distinguished (Fig. 6).
Compared to conventional methods of summarizing behavioural data, heatmap barcodes
provide one of the most convenient ways to rapidly compare results from high-throughput
biometric experiments (Figs. 6 and 7). However, as shown upon statistical analysis there
is a significant difference between the identical data sets analysed using both software
algorithms (Figs. 6 and 7). The latter stems most likely from the inherent differences
between compound errors in thresholding when implemented in automatic pipeline by
different algorithms.

Experiment design considerations for high-throughput
neurobehavioral phenotyping
Neurobehavioral biometric data are sensitive and multiparameter endpoints of high
physiological relevance, applicable to a plethora of toxicological and pharmacological
studies. Themain reservations against behavioral toxicity studies have origins in historically
low reproducibility and significant heterogeneity of behavioral experiments. In this
work we demonstrated that by employing careful controls as well as high-throughput
behavioural analysis paradigms one can achieve robust biometric data sets. Furthermore,
high-throughput behavioural analysis provides a straightforward capability to create
time-resolved neurobehavioral assays with simultaneous replicates across multiple
concentrations and time points.

When designing high-throughput neurobehavioural experiments using video-based
tracking as the main analytical technique, it is important to anticipate all key biometric
outputs that can be generated as well as any potential biasing factors. All components of
the experiment design including chamber geometries and sizes, illumination sources as
well as any physical stimuli (if required for e.g., sensori-motor or cognitive analysis) need
to be taken into account and validated prior to the chemobehavioral assays to establish an
unbiased control baseline. Furthermore, due to relatively large heterogeneity of behavioral
responses among most species, all experiments run even on the same day should have
their own independent sets of negative as well as validated positive controls. A particular
consideration should be given to the appropriate video-recording facilities. Ideally, they
should isolate the specimens from the surrounding environments to reduce any impact of
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Figure 6 Benchmarking of animal tracking algorithms for behavioral phenotyping in toxicology. Be-
havioural barcoding of time-resolved data upon exposure to increasing concentrations of Chlorpyrifos as
analysed by (A) Ethovision XT ver. 14 and (B) ToxTrack ver. 2.83 software suites. Left panels depict ex-
ample reconstructions of graphical trajectories and occupancy map at 24 hrs and 0.4 mg/L. Right pan-
els demonstrate a matrix heatmap analysis of a high-throughput time-resolved behavioural phenotyping
screening test. All data sets were normalized to controls in each respective time-point.

Full-size DOI: 10.7717/peerj.7367/fig-6

external illumination, vibrations and sound-waves that can bias the behavioral biometric
outputs.

In addition the video acquisition settings such as framerate, resolution, codecs and
post-processing method need to be identical for any independent experiments to be
quantitatively comparable. Our data also indicate that caution should be applied when
comparing experiments analyzed using different animal tracking algorithms. Although
global trends of biometric outputs appear to be similar, careful statistical analysis revealed
significant difference between the identical outputs using different software algorithms
employed. As such, the variability between different tracking algorithms should be
taken into account when designing standardized behavioral experiments and conducting
chemobehavioural phenotyping.
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Figure 7 Neurobehavioural validation tests highlight hyperactivity and hypoactivity in response to
varying concentrations of Chlorpyrifos. The resultant velocity of the organism (A) indicated the be-
havioural pattern of hyperactivity with the specified concentrations at 12 h. The resultant velocity of the
organisms (B) indicated the behavioural pattern of hypoactivity with the specified concentrations at 24 h.
All data sets were tested for significance relative to respective controls.

Full-size DOI: 10.7717/peerj.7367/fig-7

CONCLUSIONS
The main goal of this work was to demonstrate the impact of digital video file parameters
and inherent differences in proprietary and open source animal tracking software
algorithms on performance and accuracy of quantitative neurobehavioural data outputs.
Due to intrinsic variability of video file parameters, such as resolution, frame rate, file
containers, codecs and compression levels we sought to benchmark if any of those
parameters can significantly affect performance and accuracy of animal tracking algorithms.
The presented data and the specific validation in toxicological chemobehavioural
phenotyping demonstrate that some video parameters and techniques, such as carefully
optimized video file compression and post-processing techniques can be beneficial for
both increasing speed of computing and accuracy of output data. On the other hand, the
transcoding of video files to lower frame rates leads to irreparable loss of data leading to
biased results.

We also demonstrated impact of digital video file optimization techniques that may aid
in thresholding during contrast-based animal detection. Post-processing a video file with
background subtraction not only increases the accuracy of the outputted data as stated
above; it also qualitatively shortens the user time in thresholding the organism against the
background by twofold.

Interestingly, we found variability in certain quantitative data outputs between different
animal tracking algorithms exists and data analysis performed with different software
packages can be a source of significant experimental biases. We postulate that caution needs
to be taken when choosing a particular animal tracking software and all data pertaining
to any projects that have to be directly compared should be performed within the same
software package. To the best of our knowledge, this work is so far the most comprehensive
side-by-side benchmarking of most popular animal tracking software suites. Although our
evaluation was performed on only one proxy biological model manifesting simple kinesis
behaviors, the data nevertheless highlights potential bias between different animal tracking
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algorithms. More studies need to be performed in different chemobehavioural assays and
more advanced functional endpoints to fully assess impact of variability in animal tracking
algorithms.

Lastly, we demonstrated that higher throughput animal tracking in conjunction with
automated behavioural data analysis is at present, largely underdeveloped. Although semi-
automated batch animal tracking in multiple video files is possible in some software suites
there is a general lack of fully integrated all-in-one solutions to perform fully automated
video file transcoding, optimization, analysis and deep data mining. In line with a growing
number of reports, we suggest that in combination with high-throughput automated data
acquisition and analysis systems, quantitative behavioural phenotyping utilizing small
model organisms can provide distinctive advantages in translational neuropharmacology,
neurotoxicology and behavioral ecotoxicology (Bownik, 2017; Faimali et al., 2017; Faimali
et al., 2006; Green et al., 2012; Kokel & Peterson, 2008; Zhang et al., 2019).

We postulate, however, that critical to unlock the full potential of behavioral phenomics
will be high-throughput, automated data analysis and data mining utilizing potential
machine learning algorithms to find trends and build predictive in silicomodels (Kokel et al.,
2012; Laggner et al., 2012; McCarroll et al., 2016). At present, analytical and bioinformatics
approaches that can perform rapid analysis and mining of multi-dimensional behavioural
data do not exist. Automated techniques that go well beyond simple analysis of video
files to reconstruct animal trajectories and obtain a set of basic behavioural parameters,
such as speed of locomotion or distance travelled, will be necessary to discover discrete
patterns of behavioral responses, generate new digitized behavioral barcodes, build
phenoclusters and even accelerate nonlinear system-level modeling to deduce mode of
action (Kokel et al., 2012; Laggner et al., 2012; McCarroll et al., 2016). However, at present
even automated software techniques that can optimize and analyze hundreds of video files
using object tracking and movement trajectory reconstruction in a user-friendly and high-
throughput manner are largely missing. We anticipate that development of system-level
multi-dimensional video analytics tools in behavioral phenomics will be paramount to
many fields of research from experimental ethology, ecotoxicology to neuroactive drug
discovery.
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