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ABSTRACT
Background: Aphids (Hemiptera: Aphididae) are insects with one of the highest
potentials for invasion. Several aphid species are present globally due to introduction
events; they represent important pests of agroecosystems. The bird cherry-oat aphid
Rhopalosiphum padi (Linnaeus) is a major pest of cereals and pasture grasses
worldwide. Here, we report the genetic features of populations of R. padi that
colonize different cereal crops in central Chile.
Methods: Rhopalosiphum padi individuals were collected in central Chile and
genotyped at six microsatellite loci. The most frequent multilocus genotype (MLG)
was then studied further to assess its reproductive performance across cereal hosts
under laboratory conditions.
Results: Populations of R. padi in Chile are characterized by a low clonal diversity
(G/N = 62/377 = 0.16) and the overrepresentation of a few widely distributed MLGs.
One of the MLGs constituted roughly half of the sample and was observed in all
sampled populations at high frequencies. Furthermore, this putative aphid
“superclone” exhibited variations in its reproductive performance on cereals most
commonly cultivated in Chile. The sampled populations also exhibited weak signs
of genetic differentiation among hosts and localities. Our findings suggest that
(1) obligate parthenogenesis is the primary reproductive mode of R. padi in Chile in
the sampled range and (2) its introduction involved the arrival of a few genotypes
that multiplied asexually.

Subjects Agricultural Science, Ecology, Entomology, Genetics
Keywords Multilocus genotypes, Superclone, Genetic diversity, Population, Pest aphids,
Genetic diversity, Cereals, Biological invasion

INTRODUCTION
Worldwide, roughly 30% of crops are lost due to pests and pathogens. Worryingly,
these yield losses are expected to increase due to global warming, particularly for major
grain crops (e.g., wheat, rice, and maize) in temperate regions (Riegler, 2018). Insect pests
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are projected to cause an additional 10–25% of grain yield losses for each degree of
global mean surface warming (Deutsch et al., 2018). This trend arises because insect pests
feed more in warmer climates and rapidly multiply. As a result, biological control is
less effective, and invasion events are more likely (Colinet et al., 2015; Selvaraj &
Ganeshamoorthi, 2013; Bebber, 2015).

Aphids (Hemiptera: Aphididae) are insects with one of the highest potentials for invasion.
Several pest aphids are present globally due to introduction events, and they accordingly
represent important pests in agroecosystems worldwide. The biological features that
explain the aggressiveness and invasiveness of aphids include: (i) parthenogenetic
reproduction that enables rapid growth of the population, (ii) the global availability of
cultivated and wild hosts, and (iii) their ample phenotypic plasticity in response to
changing environments (Figueroa et al., 2018).

The bird cherry-oat aphid Rhopalosiphum padi (Linnaeus) is a major pest of cereal
crops worldwide (Van Emden & Harrington, 2017). Given that R. padi aphids mostly
reproduce via female-only asexual reproduction during the spring, asexual lineages can
rapidly multiply and spread by alate forms colonizing different host plants. This situation
results in what has been called “genetic inflation” (Loxdale et al., 2017). This aphid
transmits the most damaging strains of the barley yellow dwarf virus, resulting in
significant losses to wheat yields (up to 40% in some primary wheat-production areas)
(Girvin et al., 2017). It is projected that densities of R. padi will increase in warmer
climates, which favor aphid dispersal and virus transmission (Ryalls & Harrington, 2016;
Claflin, Power & Thaler, 2017). In addition, R. padi has evolved both metabolic and
target-site mechanisms of resistance to several synthetic insecticides used for its control
(e.g., organophosphates, carbamates, and neonicotinoids), particularly in important areas
of wheat production in Asia where this aphid has rapidly become the most frequent
cereal pest (Chen et al., 2007; Wang et al., 2018a, 2018c). Therefore, R. padi represents a
serious present and future threat to food security.

Depending on the availability of their primary host, three main types of life-cycles can
be displayed by R. padi (Simon, Blackman & Le Gallic, 1991): (1) cyclic parthenogenesis,
also referred to as holocyclic, with several parthenogenetic generations on Poaceae
(e.g., cereals and pastures) alternated by a single sexual generation on Prunus padus and
P. virginiana during the autumn, (2) obligate parthenogenesis, with only asexual
lineages produced all year on Poacea, and (3) androcyclic, with several parthenogenetic
generations on Poacea followed by the production of only sexual males in the autumn.
As described for several pest aphids, the predominance of a certain reproductive mode in
R. padi relies on geographic and climatic factors (Halkett et al., 2004; Gilabert et al., 2009;
Rispe et al., 1998). For example, a positive correlation between the number of sexual
individuals produced by R. padi and winter severity has been found (Halkett et al., 2004).
While cyclic parthenogenesis is the preferred reproduction mode for aphid populations
living in regions with cold winters, populations of pest aphids in temperate regions
are mostly composed of obligate parthenogenesis lineages (Simon & Peccoud, 2018).

Understanding the genetic features of pest populations can help inform decisions about
appropriate pest-management strategies. By using high-resolution molecular markers
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(e.g., microsatellite loci), it is possible to determine basic aspects of pest biology and
anticipate their evolutionary responses (Simon & Peccoud, 2018). Species and clone
identifications of aphids are provided by these markers, as well as the genetic structure of
pest populations, which inform about the strength of forces driving the microevolutionary
process of aphid populations such as founder effects, bottlenecks and migratory event
(Loxdale et al., 2017). One special feature of most introduced pest aphids worldwide
is that their populations are dominated by a few obligate parthenogenetic genotypes
and characterized by low genetic and genotypic diversities (Figueroa et al., 2018).
Agroecosystems are quite homogeneous in space and time due to similar agricultural
practices, the availability of cultivated and wild hosts, and the cultivation of certain crops
under similar climates, among others (Van Emden & Williams, 1974). Therefore,
introduced aphids are not faced with strong environmental variations, which may explain
why obligate parthenogenetic genotypes that invade similar agroecosystems worldwide
(e.g., wheat fields) may exhibit similar phenotypes and rapidly multiply until they become
superclones.

Here, we studied genetic diversity in populations of R. padi in the primary cereal-growing
region of Chile. By sampling R. padi individuals from main cereals and genotyping
with six microsatellite loci, we showed that these populations are characterized by
low genetic diversity, strong indications of the presence of obligate parthenogenetic as a
unique reproductive mode, and the dominance of one single genotype with features
of a superclone. We also investigated this single genotype in the laboratory to determine
whether this genotype, collected from different locations and host plants, exhibited
phenotypic plasticity in reproduction across different cereal hosts. Our results may facilitate
effective implementation of pest-management strategies of invasive pests, particularly
those with predominant clonal reproduction.

MATERIALS AND METHODS
Aphid collection and laboratory rearing
Rhopalosiphum padi individuals were collected from 17 different cereal fields located
in central Chile (Table 1). Sampling were carried out during early spring-early summer
2013–2014, early spring-early summer 2014–2015, and early spring 2015. Mid and late
summer samples were no taken to avoid the effect of clonal selection or drift possibly
causing shifts in the relative frequencies of clones throughout the season (Vorburger,
2006). The sampling was conducted through a latitudinal transect of ca 230 km from 33�S
to 38�S, an area characterized by a dry Mediterranean climate. During the first sampling
campaign (early spring of 2013) randomly selected private fields containing cereal
crops, where sampling was allowed, were monitored for R. padi. During the following
years, the same sets of fields were revisited and sampled in case of finding the same crop.
Sampled hosts included those most commonly cultivated in the area: wheat (Triticum
turgidum L. subsp. durum), barley (Hordeum vulgare), oat (Avena sativa), and maize
(Zea mays). Aphids were collected from colonies growing on a single host plant (one single
leaf per plant). Samples were separated by at least 10 m from the next sampled plant,
thus limiting the chance of taking individuals from the same parthenogenetic colony.
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Samples were gently taken with a paintbrush and stored in tubes of 1.7 mL filled with
absolute ethanol. They all were identified under a binocular microscope following
taxonomic keys in the laboratory (Blackman & Eastop, 2000; Dixon & Glen, 1971). This
was necessary in order to exclude the corn aphid R. maidis in further analyses. Thus, a
total of 377 colonies of R. padi were sampled (Table 1). Only one apterous individual per
colony was used for further determination and DNA isolation. In addition, live individuals
were collected on each sample site were established in the laboratory as clonal lines for
aphid performance assessment (see below). Therefore, between one to 10 individuals per
sampled colony were taken to the laboratory and reared on barley (H. vulgare cv.
Sebastián). All aphid colonies were reared in a system composed by potted plants enclosed
in a plastic-transparent cylinder covered with mesh cloth fabric on top that facilitate
air circulation and avoid aphid from escaping. Each lineage was maintained in triplicated
in these plastic cylinders inside closed acrylic cages (50 � 40 � 30 cm). Aphids were
then left to multiply by parthenogenesis, as they were reared under conditions that ensure
their asexual reproduction. These units were maintained under controlled environmental
conditions in a 4.0 � 5.0 m growth chambers (20 ± 2 �C, 80% humidity, 36.8 mmol/m2/s
PAR as measured with LI-190R Quantum Sensor and 16 light:8 dark photoperiod).
Standard fluorescent tubes combined with 600W high pressure sodium lamp were used
to ensure constant radiation. For the study of the performance of the most common
genotype (see below), clonal lineages of these genotype were maintained separately in the
laboratory according to the samples site, generating different clonal lineages of the

Table 1 Information of Rhopalosiphum padi sampling on cereal crops in central Chile. The number of correctly determined aphids per sampling
site and growing season is shown. These samples were further used for microsatellite genotyping. Dates with effective sampling are recorded.

Sampling locality Acronym GPS coordinates
(Lat./Long.)

Sampling date Host plant Number
of colonies

María Pinto MP 33�30′07″/71�07′34″ November 2013 T. turgidum 30

Melipilla ME 33�56′09″/71�24′32″ November 2014 T. turgidum 21

San Vicente SV 34�02′53″/71�22′48″ November 2014 T. turgidum 25

Lago Rapel LR 34�14′09″/71�23′36″ November 2014 T. turgidum 25

Las Cabras LC 34�13′49″/71�18′08″ November 2014 T. turgidum 21

Santa Cruz SCR 34�38′18″/71�22′57″ October 2013 T. turgidum 30

Rauco RA 34�57′01″/71 20′27″ January 2014 Z. mays 12

Licantén LI 35�01′58″/72�07′12″ November 2013/September 2014 T. turgidum 53

Limavida LIM 35�01′01′/71�46′60″ August 2015 T. turgidum 4

Docamavida DO 35�00′00′/71�57′00″ August 2015 H. vulgare 4

Curepto CU 35�02′32″/72�04′15″ October 2013 T. turgidum 10

Villa Prat VP 35�06′17″/71�37′02″ October 2013/September 2014 T. turgidum 67

Pelarco PE 35�22′48″/71�34′08″ October 2013/November 2014 T. turgidum 46

San Clemente SCL 35�33′38″/71�27′26″ September 2013 T. turgidum 16

Queri QE 35�35′52″/71�24′47″ August 2013 A. sativa 7

Villa Alegre VA 35�44′15″/71�42′31″ August 2015 T. turgidum 3

Cato CA 37�38′75″/72�35′30″ August 2014 T. turgidum 3
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same genotype, which were compared in terms of the reproductive performed across
different cereal hosts.

Microsatellite genotyping
Genomic DNA was extracted from each individual aphid using the “salting-out”
method (Sunnucks & Hales, 1996). Extracted DNA was quantified using NanoDrop
spectrophotometer (EEUU; Thermo Scientific, Waltham, MA, USA). Species-specific
microsatellite loci isolated by Simon et al. (2001) were selected for genotyping because
they were reported to amplify successfully in previous studies (Delmotte et al., 2002;
Wilson et al., 2004; Valenzuela et al., 2010; Gilabert et al., 2009; Duan et al., 2017). Loci
R1.35, R5.10, R2.73, R5.29b, R6.3, R3.171, R5.138, and R5.50 were tested (see primer
in Table S1). Primers for R1.35 and R6.3 loci failed to show amplification. Afterward, a
fluorescent labeling polymerase chain reaction (PCR) protocol was set-up according to
Schuelke (2000). PCR reactions were carried out in 15 mL reaction volume containing
0.3 mL of forward primer, 0.9 mL of reverse primer, and 0.9 mL of M13 primer labeled
with a FAM or VIC fluorescent dye, 100 mM of dNTPs, 1� Mg++ free reaction buffer,
50 mM of MgCl2, 0.5 U of Platinum Taq DNA Polymerase (Invitrogen, Carlsbad,
CA, USA) five U/mL, and three to six ng/mL of DNA. Dyes were assigned to each locus in
a way that allowed us to amplify all six loci in only three multiplex PCRs (multiplex 1:
R5.50 (FAM) and R5.138 (VIC); multiplex 2: R5.10 (FAM) and R5.29b (VIC);
multiplex 3: R3.171 (FAM) and R2.73 (VIC). The thermal cycling conditions consisted of
2 min of initial denaturation at 94 �C followed by 32 cycles of 20 s at 94 �C, 20 s at 58 �C,
and 20 s at 72 �C, with additional eight cycles of 30 s at 94 �C, 30 s at 53 �C, and
45 s at 72 �C, and a final elongation step of 2 min at 72 �C (Simon et al., 2001). All PCR
reactions were run in a Viriti Thermal Cycler (Applied Biosystems, Foster City, CA,
USA). The size of the amplicons was analyzed in Macrogen Inc. (Seoul, Korea) by the
capillary sequencer (ABI 3130xl; Applied Biosystems, Foster City, CA, USA). To avoid
cross-contamination among samples during shipping, 96-well plates containing PCR
products were sealed with microtube caps and negative control with no DNA were also
included. Electropherograms were analyzed using the GeneMaker software (Softgenetics,
State College, PA, USA) (Hulce, Li & Snyder-Leiby, 2011), with GeneScan-500 LIZ
internal standards for allele sizing. Null alleles (An) were checked using MICRO-CHECKER
version 2.2.3 software (Van Oosterhout et al., 2004).

Multilocus genotypes
The multilocus genotype (MLG) for each individual aphid was obtained by combining the
alleles amplified from all six microsatellite loci. We assume that individuals carrying
the same combination of alleles (i.e., the same MLG) have inherited its genetic architecture
from a genetically identical asexual ancestor (i.e., clones); eventually, however, random
mutations may produce changes in the length of short sequence repeats at a certain locus
(i.e., changes in the size of microsatellite alleles) within asexual lineages (Loxdale, 2008).
This means that those MLGs sharing most of their alleles and which are also similar
in size, have a better chance to have evolved from the same ancestral lineage than from
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another unrelated genotype. Those assumptions need to be considered, as aphids were
reproducing exclusively by parthenogenesis at the time they were sampled (i.e., Austral
spring). This allowed us to characterize and compare the clonal diversity and genotypic
composition of R. padi within and between sampling sites. The probability that replicates
of the same MLG are products of different sexual reproductive events was calculated
using PSEX statistic as implemented in MLGsim 2.0, an updated version of MLGsim
(Stenberg, Lundmark & Saura, 2003) facilitated by Dr. Aniek Ivens.

Genetic diversity
The genetic diversity of R. padi was computed using different indices. To assess the
magnitude of the distortions that the over representation of some aphid clones can
produce on measuring the genetic diversity, data analyses were performed on both the
whole sample (i.e., including all the clonal copies) and on one single copy per MLG,
and then compared among populations. Thus, we focused on the frequency of each MLG
rather than the frequency of microsatellite alleles (Figueroa et al., 2005). The gross
genotypic diversity was estimated as Pd = G/N, where G is the number of MLGs found
and N the total number of individuals genotyped. The clonal heterogeneity indices
(D�, adapted Simpson’s index and Hill’s Simpson’s reciprocal index) and clonal evenness
index (ED�, Simpson’s evenness index) were computed using the software GENCLONE
2.0 (Arnaud-Haond & Belkhir, 2007). In order to assess the expected frequencies for
each MLG in every population, the Hardy–Weinberg equilibrium was calculated according
to Brookfield (1996) using GENEPOP package version 1.2 (Raymond & Rousset, 1995;
see http://genepop.curtin.edu.au/). The linkage disequilibrium (LD) between pairs of loci
and the inbreeding coefficient (Fis) over all loci were computed in the same software
(log likelihood ratio statistic with 10,000 dememorization number, 10,000 iterations per
batch, and 100 batches), using only one copy per MLG (Halkett et al., 2005). In addition,
we estimated the proportion of An, the mean number of alleles per locus (n) and the
mean expected (HE) and observed (HO) heterozygosity over all loci for each population
using GENALEX 6 (Peakall & Smouse, 2006; see http://biology-assets.anu.edu.au/
GenAlEx/Welcome.html). The allelic richness was calculated using FSTAT version 2.9.3.2
(Goudet, 1995; see http://www2.unil.ch/popgen/softwares/fstat.htm).

Population differentiation
Analyses of the partition of the genetic variance (AMOVA) were performed using
ARLEQUIN v 3.5.1.3 (Excoffier, Laval & Schneider, 2005) from the 17 sampling sites.
Pairwise divergences among samples were estimated using FST (Weir & Cockerham, 1984)
implemented in the same software. Hierarchical partitioning was conducted in order
to compare the molecular variation (1) among and within the 17 sampled locations and,
(2) among and within the sampled hosts (wheat, barley, oat, and maize). A Bayesian
clustering analysis was performed to determine the structuring of populations on the software
STRUCTURE version 2.3 (Pritchard, Stephens & Donnelly, 2000) using the admixture
ancestry and the correlated allele frequency models. The number of clusters (K) was set from
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1 to 10 and repeated 20 times. Each repetition consisted of a burn-in period of 100,000
iterations and 1 million Markov Chain Monte Carlo iterations. The online program
STRUCTURE HARVESTER (Earl & VonHoldt, 2012) was used to calculate the most
probable number of genetic clusters (K) using the Evanno method (Evanno, Regnaut &
Goudet, 2005). The graphical display of the genetic structure was produced using DISTRUCT
(Rosenberg, 2004). The phylogenetic relationship between sampling localities was visualized
using a neighbor-joining tree based on Cavalli-Sforza’s chord distance (Dc) between
samples and plotted using FIGTREE version 1.3.1 (http://tree.bio.ed.ac.uk/software/figtree/).
This tree was associated with the Bayesian clustering analysis in order to establish the
phylogenetic relationship between the resulting genetic clusters.

Aphid reproductive performance
The MLG of R. padi found at the highest frequency in all samples (Rp1) was further
studied in terms of its reproductive performance across different cereal hosts under
aforementioned described laboratory rearing conditions (see “Aphid Collection
and Laboratory Rearing” section). This would allow estimating any effect of the location
and host of provenance. Thus, five clonal lineages of Rp1 were obtained: Rp1 genotype
collected in Licantén from T. turgidum, Rp1 collected in Docamávida from barley,
Rp1 collected in Limávida from T. turgidum, Rp1 collected in Villa Alegre from
T. turgidum, and Rp1 collected in Cato from T. turgidum. These clonal lineages were
maintained on barley for several generations before subjecting each clonal lineage to
performance assessment. The reproductive performance was assessed on seedlings of oat
(Avena sativa cv. Supernova), barley (H. vulgare cv. Sebastián), winter wheat (T. aestivum
cv. Pantera) and durum wheat (T. turgidum subsp. durum cv. Llareta). When all seedlings
attained growth stage 13 (three leaves unfolded; Zadoks, Chang & Konzak, 1974), each
seedling was infested with five fully developed apterous adult aphids of the Rp1 genotype.
Plants were placed in trays each one with six pots and distributed randomly in shelfs in the
plant growth room. To avoids bias in the conditions, trays were randomly redistributed
twice during the experiment. After 16 days, all surviving aphids were counted, separating
apterous and alates individuals. The reproductive success was estimated by calculating
daily per capita growth rate of aphids (PGR = dN/Ndt) as (ln(Nf) – ln(Ni))/((tf – ti)). Here,
Ni and Nf indicate the initial and final number of individuals, respectively, while tf–ti
correspond to the difference in days from the beginning to the end of the experiment
(Kersch-Becker & Thaler, 2019). Five replicates were included for each host. Number of
nymphs, number of adult apterous and number of alates produce after 14 days were
analyzed by two-way analysis of variance (factors: clonal lineage and hosts) using
generalized linear models with according error distributions and link functions:
Poisson distribution for count data (nymphs, apterous, and alates) and inverse gaussian
distribution for continuous data (PGR). Generalized linear models were conducted
using the interface Rcmdr implemented in the R statistical package 3.3.0 (R Core Team,
2012). The lsmeans package was used to conduct Tukey’s HSD multiple comparisons test
also implemented in R package.
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RESULTS
Clonal and genetic diversities
A total of 377 R. padi individuals were genotyped at six microsatellite loci. All six
microsatellite loci were reproducible and polymorphic in all samples, finding a total of
69 alleles (full data set available in Supplemental Information). The mean number of alleles
at each sample site ranged between 1.7 and 5.2 (Table 2), with an average of 11.7 alleles
per locus, and all were found in HW equilibrium. Evidence for null alleles was found for
locus R5.138 (the allele frequencies ranged between 0.001 and 0.805). Regarding the
genetic diversity, the observed heterozygosity (HO) ranged between 0.400 and 0.667,
whereas the expected heterozygosity (HE) was between 0.354 and 0.684. Both indices of
genetic diversity were homogeneous among locations.

The combination of all six microsatellites allowed the identification of 62MLGs. Among
them, 23 MLGs were found more than once in the whole sample and were considered
as multicopy, while 39 MLGs were unique (Table 2; Fig. 1). The number of MLGs in each
location ranged from 1 to 14. Samples from LI, VP, and PE contained the higher number
of MLGs (14, 14, and 13, respectively). Differently, samples from LIM, DO, VA, and
CA localities only presented one MLG (Table 2).

Most of the multicopy MLGs showed significantly low Psex values, suggesting very low
chances of arising from sexual reproduction (Table 3). Mean clonal richness reached

Table 2 Population genetic parameters in populations of Rhopalosiphum padi.

Locality N G G/N D* ED* Na HO HE FIS

MP 30 8 0.267 0.634 0.444 2.3 0.604 0.452 -0.374
ME 21 9 0.429 0.833 0.672 3.3 0.500 0.484 0.037

SV 25 9 0.360 0.817 0.712 4.2 0.481 0.614 0.248

LR 25 10 0.400 0.807 0.612 5.0 0.467 0.637 0.326

LC 21 2 0.095 0.095 0.000 1.8 0.667 0.354 -0.900
SC 30 8 0.267 0.703 0.586 5.2 0.583 0.684 0.176

RA 12 5 0.417 0.727 0.510 4.0 0.400 0.630 0.405

LI 53 14 0.264 0.818 0.751 3.7 0.524 0.548 0.042

LIM 4 1 0.250 0.000 -1.00 1.7 0.667 0.333 -1.000
DO 4 1 0.250 0.000 -1.00 1.7 0.667 0.333 -1.000
CU 10 6 0.600 0.778 0.000 2.5 0.583 0.428 -0.238
VP 67 14 0.209 0.704 0.596 4.7 0.583 0.585 0.044

PE 46 13 0.283 0.747 0.595 3.8 0.564 0.560 0.096

SnC 16 7 0.438 0.792 0.576 2.7 0.643 0.468 -0.434
QE 7 3 0.429 0.667 0.563 2.3 0.667 0.481 -0.477
VA 3 1 0.333 0.000 -1.00 1.7 0.667 0.333 -1.000
CA 3 1 0.333 0.000 -1.00 1.7 0.667 0.333 -1.000
Total 377 62 0.165 0.744 0.648 3.04 0.584 0.486 -0.137

Note:
Localities name, number of aphids analyzed (N), number of multilocus genotypes (G), clonal diversity index (G/N),
clonal heterogeneity indices (D*, adapted Simpson’s index), clonal evenness index (ED*, Simpson’s evenness index).
Mean number of alleles (Na), heterozygosity expected (HE), heterozygosity observed (HO), and inbreeding coefficient
(FIS) over all loci.
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0.162 (Table 2), while mean clonal diversity was 0.165 (Table 3), while. The clonal diversity
according to the sampled locality ranged between 0.095 and 0.600, albeit similar among
most locations (Table 3). Besides, the gross clonal diversity among hosts was also low

Figure 1 Sampling sites of R. padi in central Chile. The names of the localities are: MP, María Pinto;
ME, Melipilla; SV, San Vicente; LR, Lago Rapel; LC, Las Cabras; SC, Santa Cruz; RA, Rauco; LI, Licantén;
LIM, Limavida; DO, Docamavida; CU, Curepto; VP, Villa Prat; PE, Pencahue; SnC, San Clemente;
QE, Quepu; VA, Villa Alegre; CA, Cato. Charts with many pie segments of colors show percentages of
each multilocus genotype, and a gray area shows percentages unique multilocus of the samples of R. padi.

Full-size DOI: 10.7717/peerj.7366/fig-1
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(0.429, 0.250, 0.417, and 0.164 on oat, barley, maize, and wheat, respectively; data not
show). LD between pair of loci was found in six out 15 cases (Table S2). Geographic
distribution of the three most common MLGs revealed that were simultaneously found in
only five localities, while the most commonMLG (Rp1) was found in all sampled localities.

Genetic differentiation among populations
Considering all copies for each MLG, the AMOVA showed significant genetic
differentiation among all localities (FST = 0.0277; P = 0.001). Considering one single copy
per MLG, however, the AMOVA resulted in low non-significant genetic differentiation
among all localities (FST = 0.00931; P = 0.086). Because using multiple copies generates
that distortions, the latter AMOVA was preferred. Consistent with this result, most
of pairwise FST comparisons exhibited non-significant genetic differentiation among
samples from different localities (Fig. S1). However, samples from RA, which included
aphids collected from maize, showed higher pairwise FST, although most of these values

Table 3 Genetic features of repeated multilocus genotypes of Rhopalosiphum padi populations in
central Chile.

MLG N % P-value
of Psex

R550 R5138 R3171 R273 R510 R529b

Rp1 185 49.1 <0.001 322/322 251/251 231/241 283/301 273/275 187/193

Rp2 29 7.7 <0.001 322/322 249/249 231/241 283/301 273/275 187/193

Rp3 27 7.2 <0.001 322/322 251/251 231/241 283/301 269/275 187/193

Rp4 20 5.3 <0.001 322/322 251/251 231/231 283/301 273/275 187/193

Rp5 10 2.7 <0.001 322/322 249/249 231/231 283/301 273/275 187/193

Rp6 9 2.4 0.058 ns 322/322 251/251 231/241 283/301 273/273 187/193

Rp7 8 2.1 <0.001 251/251 231/241 283/301 273/275 187/193

Rp8 6 1.6 <0.001 310/322 219/251 249/257 285/289 271/271 199/199

Rp9 5 1.3 <0.01 322/322 251/251 231/231 283/301 269/275 187/193

Rp10 5 1.3 0.515 ns 322/322 251/251 231/241 283/301 275/275 187/193

Rp11 4 1.1 <0.001 322/322 251/251 231/241 283/301 187/193

Rp12 3 0.8 <0.001 310/322 219/219 249/257 285/289 271/271 199/199

Rp13 3 0.8 <0.001 322/322 249/249 231/241 283/301 187/193

Rp14 3 0.8 <0.001 322/322 251/251 229/229 309/309 263/263 179/179

Rp15 3 0.8 <0.001 322/322 251/251 231/231 273/275 187/193

Rp16 3 0.8 <0.001 324/324 251/251 231/241 283/301 273/275 187/193

Rp17 3 0.8 <0.001 251/251 231/241 283/301 269/275 187/193

Rp18 2 0.5 <0.01 322/322 249/249 231/231 283/283 273/275 187/193

Rp19 2 0.5 <0.01 322/322 249/249 231/231 283/301 269/275 187/193

Rp20 2 0.5 0.072 ns 322/322 249/249 231/241 283/283 273/275 187/193

Rp21 2 0.5 <0.05 322/322 249/249 231/241 283/301 269/275 187/193

Rp22 2 0.5 <0.001 332/344 225/225 253/253 279/283 275/275 181/181

Rp23 2 0.5 <0.001 334/334 251/251 231/241 283/301 273/275 187/193

Unique 39 10.3

Note:
PSEX is the probability that replicates of the same MLG are products of different sexual reproductive events.
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were non-significant. The AMOVA considering samples from different hosts showed a
significant genetic differentiation between hosts oat, barley, maize, and wheat (FST = 0.062;
P = 0.034). The pairwise FST between samples from maize and wheat were the only
statistically significant (FST = 0.160; P < 0.001).

The Bayesian analysis agreed with the AMOVA conducted with unique MLGs, showing
there is no genetic differentiation among them (FST = 0.018; P = 0.077). Analysis of the
population genetic structure considering one copy per MLG from all localities, revealed
the best partition of the dataset involves two genetic clusters (K = 2) according to the
Evanno method (modal value of DK, Fig. S2). Cluster 1 included individuals present in all
localities, although six localities represented over 94% of this cluster. Additionally, Cluster
2 included individuals mainly from the central zone of study and maize samples (RA).
This cluster also included other seven localities (SC, LR, SV, PE, LI, ME, and VP), without
any pattern of geographic distribution. The phylogenetic relationship between samples
from different localities revealed no grouping according to the geographical origin of
samples (Fig. 2). Samples grouped more consistently in relation the clusters resulting from
the Bayesian analysis. Samples from RA showed again a distinctive set of individuals
exhibiting a high membership coefficient to cluster 2.

Aphid reproductive performance
Reproductive performance was characterized in the most frequent genotype Rp1 collected
from four different hosts. Notice that performance was also assessed separately on
Rp1 individuals generated from colonies collected from different sites but similar host
(wheat). Number of nymphs produced by the most frequent genotype varied among hosts
(main host effect: F3, 92 = 568.3; P < 0.001), with significantly higher values on T. turgidum
and lower values on T. aestivum (Fig. 3A; Table S3). Nymphs also varied among clonal
lineages of Rp1 (main clonal lineage effect: F4, 95 = 150.1; P < 0.001), with significantly
higher values exhibited by Rp1-Cato and Rp1-Licantén and the lowest values exhibited by
Rp-1-Limávida (Fig. 3A; Table S3). There was a significant clonal lineages � host
interaction (F12, 80 = 24.4; P < 0.001), which was produced due to a lower number of
nymphs produced by Rp-1-Villa Alegre lineage on T. turgidum (Fig. 3A; Table S3).
Number of adult apterous and alates followed a similar trend, albeit values were about ten
times lower than nymphs produced (Table S3). The PGR, which includes nymphs,
adult apterous, and alates, also varied among hosts (main host effect: F3, 96 = 11.27;
P < 0.001), with significantly higher values on T. turgidum and lower values on T. aestivum
(Fig. 3B; Table S3). PGR varied among the five clonal lineages (F4, 92 = 9.38; P = 0.001),
although no interaction between factors was found (F12, 80 = 8.45; P = 0.490).

DISCUSSION
Genetic features of R. padi in Chile suggest a primary reproductive
mode of obligate parthenogenesis
We found that Chilean populations of R. padi exhibited low clonal diversity and low
genetic diversity compared with sexual populations from elsewhere around the world.
These findings are typical of populations reproducing predominantly by obligate
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Figure 2 Neighbor-Joining tree and Bayesian clustering of R. padi based on sampled sites. (A) NJ tree based on Cavalli-Sforza’s chord distance
(Dc) of 17 sample sites of R. padi from various cereals crops in central Chile. (B) Bayesian clustering analysis of different sampling sites using
STRUCTURE (version 2.3.2) software based on six microsatellite loci (sites organized from north to south distribution). The vertical lines are broken
into colored segments showing the proportion of each individual assigned to each of the inferred K (K = 2). Geographic regions from which the
populations belong appear along from north to south (1, MP; 2, ME; 3, SV; 4, LR; 5, LC; 6, SC; 7, RA; 8, LI; 9, LIM; 10, DO; 11, CU; 12, VP; 13, PE; 14,
SnC; 15, QE; 16, VA; 17, CA). Charts with two pie segments show the results of Bayesian clustering analysis using STRUCTURE, percentages
of cluster 1 (brown area) and percentage of cluster 2 (yellow area). Full-size DOI: 10.7717/peerj.7366/fig-2
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parthenogenesis (see Table S1 in Figueroa et al., 2018). There are several factors that
may explain the lack of sexual reproduction of R. padi in populations distributed in
south-central Chile: (1) specific climatic conditions, which are characterized by mild
winters, (2) the absence or low abundance of the primary host in the areas where cereals
are grown, (3) spontaneous sex loss due to mutations or hereditary distortions (Frantz
et al., 2005), (4) interspecific hybridization events (Lynch, 1984; Sunnucks et al., 1996;
Sunnucks & Hales, 1996) possibly between R. padi and R. maidis, and (5) gene flow
of asexuality genes from asexual populations to sexual populations. Reproduction between
sexual and androcyclic individuals has been reported for R. padi (Delmotte et al., 2001,
2002, 2003; Halkett et al., 2008). All of these factors may be operating on Chilean
populations of R. padi.

The first reports of R. padi lineages present in Chile were made in the 1960s (Zuñiga,
1986). One may speculate that the first-arriving individuals were subjected to a founder
effect and probably lost the sexual phase of their original life cycle and hence the chance
to alternate clonal and sexual reproductive phases. Alternatively, the lineages that arrived
in Chile may have been those within a native range that were widespread and were
reproducing most frequently via asexual reproduction (Figueroa et al., 2018). Our data
show that the genotypic differences among Chilean MLGs of R. padi are very small
and likely arose from mutations within a clonal family. For example, genotypes Rp1 and
Rp2 differ simply in alleles of locus R5138 (251/251 and 249/249, respectively), which
suggests the occurrence of a single mutational step. Similarly, the differences between Rp1

Figure 3 Performance of the Rp1 genotype of R. padi. (A) Number of nymphs (mean ± SE) and
(B) population growth rate (PGR) (mean ± SE) after 14 days of infestation on four cereal hosts by five
clonal lineages of the Rp1 genotype. Different letters within a host represent statistically significant
differences according to Tukey’s HSD test (P < 0.05). Full-size DOI: 10.7717/peerj.7366/fig-3
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and Rp3 are small and again restricted to only a single locus R510 (273/275 and 269/275,
respectively), which, in this case, suggests two mutation steps (269 -> 271 -> 273 -> 275).
These events probably took place in Chilean populations of the grain aphid Sitobion
avenae and the pea aphid Acyrthosiphon pisum (Figueroa et al., 2005; Peccoud et al., 2008),
for which widely distributed genotypes are also frequently present in their native range.
In addition to the recent introduction of genotypes, one must consider that some
mutations in asexual aphids can yield genetic inheritance variations that, in turn, can give
rise to a potentially selectable phenotypic variation (Wilson, Sunnucks & Hales, 2003).
However, additional studies are necessary to assess the origin of R. padi genotypes and
whether diversification via mutations has taken place in the Chilean populations of R. padi.

Worldwide variations in the reproductive mode of R. padi
The variation in reproduction modes exhibited by R. padi is a good example of how aphid
populations maintain both sexual/asexual reproduction in their range of origin and
how asexuality prevails in areas where these insects have been introduced. For example,
European populations of R. padi are composed of sexual/asexual clones. In France, the
genetic diversity, population structure, and transitions between reproductive modes have
been extensively studied (Simon et al., 1996; Delmotte et al., 2001). Specifically, roughly
54% of asexual populations were copies of genotypes in the northern half of France,
with seven of them widely distributed and persistent through time (Delmotte et al., 2002).
Likewise, Halkett et al. (2005) studied the western population of R. padi in France and
found the presence of two genetically distinct clusters composed of sexual and facultative
asexual lineages. The latter consisted of few genotypes with numerous copies. More
recently, an east–west transect in northern France revealed that the most common
genotypes (“superclones”) of R. padi were distributed in clines along a climatic gradient
(Gilabert et al., 2015). In Germany, three primary genetic clusters of R. padi were detected:
“early colonizers,” found during winter, which largely disappeared later in the year;
“late colonizers,” found on wheat fields and bird cherry trees and spreading mainly later in
the year; and populations found exclusively on bird cherry trees (Klueken et al., 2012).
Heteroecious, holocyclic populations of R. padi have been reported from northwest Russia,
including clones capable of prolonged anholocyclic development (Vereshchagina &
Gandrabur, 2016). In the UK, Leybourne et al. (2018) genotyped a very small sample of
R. padi (n = 16) collected in Scotland and found a predominant genotype (genotype E) on
three different cereal hosts. These results suggest that asexual reproduction persists as
the primary mode of reproduction. In Spain, where the winters are not very cold and the
primary host is absent, R. padi has been reported to overwinter parthenogenetically
(Fereres et al., 1989; Pons, Comas & Albajares, 1993). In China, both reproductive forms of
R. padi were also present; sexual populations were identified in spring wheat areas, and
obligate parthenogenesis populations were found predominantly in winter wheat areas
(Duan et al., 2015). A comparison between these populations revealed significant genetic
differentiation; the cyclic parthenogenetic populations exhibited a larger number of
alleles, greater allelic richness, and higher genotypic diversity compared with the asexual
populations (Duan et al., 2017). Low levels of genetic diversity and differentiation using
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mitochondrial DNA were also detected in China (Wang et al., 2018b). Additionally, in the
Southern Hemisphere R. padi displays only obligate parthenogenesis. The strong signature
of obligates parthenogenesis in the Chilean populations of R. padi described in this
work resembles that of the Australian populations of R. padi. Both populations presumably
result from a recent invasion event. This event, together with mild winters and a low
abundance of the primary host, may have resulted in the predominance of asexual
reproduction (Figueroa et al., 2018; Valenzuela et al., 2010).

Given that aphid populations in similar environments tend to exhibit similar
reproductive modes (Figueroa et al., 2018), it is very likely that other populations of R. padi
in South America exhibit reproductive patterns similar to Chilean populations, particularly
those from Argentina. We emphasize that more samples from the southernmost parts
of Chile and Argentina are necessary. Interestingly, strictly parthenogenic populations
of R. padi have been recorded on sub-Antarctic islands, which host several wild and
introduced plants (Lebouvier et al., 2011; Delmotte et al., 2001). This finding strengthens
the idea that asexuality is a successful aphid strategy for invading new habitats.

Weak host-based differentiation
We detected a weak degree of host differentiation among our samples (FST = 0.062).
Specifically, only samples collected on maize in the locality RA exhibited a distinct set of
genotypes (Fig. S1). A lack of host-based differentiation has been described in populations
from Australia (Valenzuela et al., 2010) and France (Gilabert et al., 2009); these locales
are where most genetic differences are associated with host alternation. Populations
from China have been studied only from wheat samples, and a study using mitochondrial
DNA furthermore confirmed low levels of genetic variation in this country
(Duan et al., 2017).

Superclones of R. padi predominate in new areas of introduction
In addition to the obligate parthenogenesis of Chilean populations of R. padi described
here, a large skewed frequency distribution of MLGs was found. One genotype (Rp1)
dominated the sampling and was found in two consecutive seasons (2013–2014 and
2014–2015) in three different localities (Licantén, Villa Prat, and Pelarco). Genotypes Rp2
and Rp3 were also found consecutively in two seasons, but only in one location (Licantén).
This situation has also been noted in other introduced aphid species such as Myzus
persicae and S. avenae (Vorburger, Lancaster & Sunnucks, 2003; Loxdale et al., 2017).
The presence of one dominant genotype in Australian populations of R. padi was even
more striking; a single genotype accounted for 62.7% of the population (Valenzuela et al.,
2010). Other studies performed in the Northern Hemisphere (e.g., France and China)
have also demonstrated the predominance of superclones (Simon et al., 1996; Duan et al.,
2017). However, R. padi persist only in areas with mild winters (e.g., northern France
and central and northern China). Although R. padi is present in Chile in a wider range
than even at more southern latitudes (Koch & Waterhouse, 2000), the area covered
in our study was characterized by mild winters and encompassed where most cereals
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are produced (e.g., the Maule and Bio-Bio regions). Therefore, the presence of sexually
reproducing R. padi aphids at more southern locations cannot be neglected.

The Rp1 clones studied exhibited variable performance across the cereals. Higher
performance (i.e., a larger number of nymphs produced and PGR) on T. turgidum by Rp1
independent of provenance suggests some specific association with this host. T. turgidum
has been found to be comparatively more resistant to R. padi than other cereal aphids
because of its higher content of benzoxazinoid (Shavit et al., 2018). Interestingly, the
Rp1 lineage sampled in locality Limávida exhibited the lowest reproductive performance
on all hosts, with the exception on T. turgidum (Fig. 3). This finding suggests an intrinsic
weakened performance independent of genetic background. It should be noted that
aphid performance is dependent on the plant age and plant quality (Leather & Dixon,
1981; Stadler, Dixon & Kindlmann, 2002). Thus, at the plant stage used in this study,
T. turgidum appears as the most suitable host for this R. padi genotype.

Several factors may underpin the phenotypic plasticity of the reproductive performance
of aphids. Such plasticity appears to be particularly relevant in the case of introduced
aphid populations (Figueroa et al., 2018; Loxdale, 2008). A recent screening of facultative
endosymbionts of Chilean populations of S. avenae and R. padi revealed the presence,
albeit at very low frequency of the bacteria Regiella insecticola (Zepeda-Paulo et al., 2018).
However, it remains unclear whether that genotype corresponds with the Rp1 genotype
described in this study. A recent investigation conducted in China (Guo et al., 2019)
also screening facultative bacteria in R. padi and revealed the presence of seven species of
facultative endosymbionts widely distributed over 32 R. padi populations. In that study,
R. padi samples from Europe were compared with Chinese populations, and also
described the presence of Hamiltonella defensa, Rickettsia sp., and Arsenophorus sp.,
which mostly exhibited multi-infections. In another recent study, a small population of
R. padi from Scotland was shown to exhibit Hamiltonella defensa in two of the seven
genotypes studied; the authors found that this endosymbiont conferred protection against
the parasitoid Aphidius colemani in R. padi (Leybourne et al., 2018). Interestingly, this
endosymbiont was present in the most common MLG genotype (Genotype E) and was
the only genotype with a positive detection of three markers of APSE bacteriophages,
which suggest that the presence of Hamiltonella defensa may confer protection against
parasitoid wasps therefore ensure greater ecological success for this genotype.

The success of aphid superclones and challenges to pest
management
Figueroa et al. (2018) reviewed the biological and genetic features of 23 different aphid
species introduced in different geographic areas and climates. These authors reported that
putative superclones were present in roughly 60% of species. The success of superclones
in the introduced range, as in the case of the genotype Rp1 in Chile, may result from
preadaptations in clonal lineages or neutral mutations that become favorable in the
introduced environment (e.g., chemically defended hosts, managing practices). Because
asexual lineages can rapidly accumulate mutations, obligate parthenogenetic genotypes
can rapidly evolve closely related clonal lineages and persist in agroecosystems
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(Loxdale & Balog, 2018). Furthermore, superclones rapidly proliferate when they arrive in
an agroecosystem. Nonetheless, agroecosystems are located in different biogeographic
regions, they can exhibit highly similar conditions to the environment from where the
aphids originated due to the homogenizing effects of agricultural practices.

The management of aphid pests exhibiting superclonality may be difficult, particularly
in climate change scenarios (Figueroa et al., 2018). For instance, selection for and the
spread of insecticide-resistant clones can result in very rapid changes in resistance levels
in agricultural or horticultural systems (Figueroa et al., 2018; Simon & Peccoud, 2018).
Therefore, aphids can quickly become a major problem when chemical and biological
control fails owing to resistance. Resistance can be present even in aphids collected from a
single host (Chen et al., 2013), which highlights the importance of selection on the
rapid evolution of certain asexual lineages. Aphid superclones may possess insecticide
resistance mechanisms, particularly in agroecosystems that receive frequent sprays of
insecticides. For example, the superclone Burk1 of Aphis gossypii on cotton in west central
Africa (Brévault et al., 2008, 2011) and superclones Aust-01 and Aust-02 on cotton in
Australia (Chen et al., 2013) both carry the ACE1 mutation that confers resistance to
pirimicarb and some organophosphate insecticides. Likewise, the widespread superclone
NZ3 of M. persicae on potatoes in New Zealand (Van Toor et al., 2008) has enhanced
carboxylesterase activity and kdr and super-kdr mutations that confer resistance to
organophosphates and pyrethroids, respectively. Regarding R. padi, insecticide-resistant
samples from China have been recently described (Wang et al., 2016, 2018a, 2018c).
However, it remains unknown whether these strains correspond to clonal lineages
developing as superclones.

The complex biology of aphid pests constitutes a challenge for crop protection. Several
key features of aphid biology should be considered by farmers: (1) aphid pests can take
advantage of the oversimplified design of current agroecosystems, (2) subjecting aphid
populations to strong anthropic selection (e.g., insecticides, biological control) may result
in the predominance of selected superclones that appear to be more aggressive, (3) factors
such as life cycle strategies, environmental conditions (temperature, winter severity,
regional variation), behavior (host specialization, flight behavior, and migration), and
selection (massive use of insecticides and or natural enemies) affect aphid genetic
variability, and (4) the evolution of that genetic diversity and population structure in
time and space may be faster or slower depending on the intensity of the factors
described above.

CONCLUSIONS
Chilean populations of R. padi are characterized by very low levels of genotypic and genetic
diversity, suggesting that obligate parthenogenesis is the primary reproductive mode in the
sampled range. Weak signs of genetic differentiation among localities and host-based
differentiation were also observed. Among the MLGs found, one was present in all
of the sampled populations at high frequencies and exhibited variations in reproductive
performance on most common cereals cultivated in Chile. Chilean R. padi populations
appear to be similar to those from Australia; both are composed of a single widely
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distributed superclone that likely resulted from a recent introduction. These results
highlight the value of asexual reproduction during early stages of introduction to new
regions in aphids, a distinctive feature that needs to be considered when implementing
pest-management strategies.
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