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ABSTRACT
The end-Permian mass extinction (∼252 Ma) was responsible for high rates of
extinction and evolutionary bottlenecks in a number of animal groups. Echinoids, or
sea urchins, were no exception, and the Permian to Triassic represents one of the most
significant intervals of time in their macroevolutionary history. The extinction event
was responsible for significant turnover, with the Permian–Triassic representing the
transition from stem group echinoid-dominated faunas in the Palaeozoic to Mesozoic
faunas dominated by crown group echinoids. This turnover is well-known, however,
the environmental and taxonomic distribution of echinoids during the latest Permian
and Early Triassic is not. Here we report on an echinoid fauna from the TeseroMember,
Werfen Formation (latest Permian to Early Triassic) of the Dolomites (northern Italy).
The fauna is largely known from disarticulated ossicles, but consists of both stem group
taxa, and a new species of crown group echinoid, Eotiaris teseroensis n. sp. That these
stem group echinoids were present in the Tesero Member indicates that stem group
echinoids did not go extinct in the Dolomites coincident with the onset of extinction,
further supporting other recent work indicating that stem group echinoids survived
the end-Permian extinction. Furthermore, the presence of Eotiaris across a number of
differing palaeoenvironments in the Early Triassic may have had implications for the
survival of cidaroid echinoids during the extinction event.

Subjects Evolutionary Studies, Paleontology, Taxonomy, Biosphere Interactions
Keywords Sea urchins, Recovery, Bottleneck, Biodiversity, Triassic, Cidaroid

INTRODUCTION
The end-Permian extinction saw the demise of several evolutionary lineages, and ushered
in the taxonomic and ecological restructuring of marine invertebrate ecosystems that gave
rise to the Modern Fauna (Sepkoski, 1984). The combined effects of thermal stress and
hypoxia (Sun et al., 2012; Song et al., 2014; Penn et al., 2018; Petsios et al., 2019), ultimately
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precipitated by the emplacement of the Siberian Traps Large Igneous Province (Reichow
et al., 2009; Burgess, Bowring & Shen, 2014), is hypothesized to have led to 96% species loss
across faunas with differing palaeophysiology and palaeoecology (Raup, 1979; Bambach,
2006). The severity of the taxonomic loss led to bottlenecks and eventual evolutionary
turnover across several groups, including ammonoid cephalopods (McGowan, 2004;
Brayard et al., 2009; Pietsch et al., 2019), conodonts (Orchard, 2007), ostracod crustaceans
(Crasquin & Forel, 2014), and the focus of this current study, the echinoids or sea urchins.

The end-Permian mass extinction represents one of the most significant intervals
of time for understanding the macroevolutionary history of echinoids (Erwin, 1993;
Erwin, 1994; Benton, 2003; Thompson et al., 2018). During the Palaeozoic, echinoid
faunas were comprised predominantly of imbricate plated stem-group echinoids, with
abundant columns of interambulacral and ambulacral plates. Almost all of the post-
Palaeozoic echinoids, however, have a body plan constructed of only two columns
of interambulacral and ambulacral plates (Erwin, 1993; Erwin, 1994; Kroh & Smith,
2010), indicating significant turnover during the Permian–Triassic interval. In the late
Palaeozoic, echinoid faunas were comprised of the stem group families Archaeocidaridae,
Lepidesthidae, Proterocidaridae, Cravenechinidae and Lepidocentridae (Jackson, 1912;
Kier, 1958b;Kier, 1965;König, 1982; Thompson, Petsios & Bottjer, 2017) and the early crown
group echinoids of the family Miocidaridae (Smith & Hollingworth, 1990; Thompson et al.,
2015). By the earlyMesozoic, only themiocidarids and proterocidarids remained (Hagdorn,
2018; Thuy, Hagdorn & Gale, 2017; Thompson et al., 2018; Pietsch et al., 2019). Indeed, only
one genus, the miocidarid Eotiaris, is known from fossil representatives on both sides of
the mass extinction event (Smith & Hollingworth, 1990; Thompson et al., 2015; Godbold et
al., 2017), though phylogenetic analyses indicate more boundary crossers likely existed as
ghost lineages (Smith, 2007; Thompson et al., 2018; Pietsch et al., 2019).

Though there is little doubt that the Permian–Triassic interval had a profound impact
on echinoid macroevolution, the precise details surrounding extinction and duration of
echinoid groups, especially on the genus and family levels, remain obscured. Here we
describe in detail an echinoid fauna from the Tesero Member, Werfen Formation of Italy,
including a new species of the genus Eotiaris, Eotiaris teseroensis n. sp., which has been
mentioned several times in the literature (Broglio Loriga, Neri & Posenato, 1986; Broglio
Loriga et al., 1988; Broglio Loriga et al., 1990; Posenato, 1988) but which has until now
remained undescribed. In the Tesero section, the Tesero Member spans the Permian–
Triassic Boundary (PTB) and contains a rich ‘‘mixed fauna’’ (Neri & Pasini, 1985; Broglio
Loriga et al., 1988) which occurs within the end-Permian extinction interval (about three
m thick) and above the extinction peak occurring in the lowermost Tesero Member
(e.g., Chen et al., 2006; Groves et al., 2007; Posenato, 2009; Posenato, 2010; Clapham et al.,
2013). In addition to the specimen of Eotiaris, we also describe additional disarticulated
material from the Tesero Member which is attributed to both stem group and crown
group echinoids. Analysis of the stratigraphic setting of these echinoid occurrences relative
to the onset of the extinction event, and comparison of this fauna to other pre- and
post-extinction echinoid faunas informs the nature and timing of faunal turnover in
echinoid communities, and the palaeoenvironmental distribution of echinoids during the
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Figure 1 Geographic position of the Tesero section within (A) Italy and within (B) the Fiemme Valley,
Trento Province.

Full-size DOI: 10.7717/peerj.7361/fig-1

Permian–Triassic interval. This provides clues as to the nature and timing of echinoid
extinction and survival during the end-Permian mass extinction (EPME).

Geological and stratigraphical setting
Since the 19th century, the Dolomites (northern Italy; Fig. 1) have represented a reference
area to study the EPME of the shallow marine biota. The Upper Permian is represented by
the Bellerophon Formation, a thick sulphate-carbonate succession, which records marginal
(sabkha) to shallow marine conditions (e.g., Massari & Neri, 1997). The upper part of the
formation is characterised by black bioclastic limestone, which contains rich benthic
assemblages dominated by calcareous algae, foraminifers, molluscs and brachiopods. The
Bellerophon Formation is overlain by the Werfen Formation, which begins with the Tesero
Member, a transgressive carbonate unit mostly composed of oolitic grainstones, mudstone
and microbial limestone (e.g., Bosellini, 1964; Noé, 1987; Beretta et al., 1999; Farabegoli,
Perri & Posenato, 2007; Groves et al., 2007; Jia et al., 2012). The basal centimetres of the
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Tesero Member record the peak of the EPME, while the PTB has been recognized a few
decimetres above (e.g., 1.3 m above the formational boundary in the Bulla section; for
comprehensive descriptions of the PTB succession of the Dolomites see Farabegoli, Perri &
Posenato (2007), Posenato (2009) and Posenato (2010)).

Conodonts are rare in the Tesero section (e.g., Farabegoli, Perri & Posenato, 2007).
Hindeodus changxingensis, the marker of the last Permian biozone and proxy of the
PTB (Metcalfe, Nicoll & Wardlaw, 2007), occurs 1.3 m above the Bellerophon–Werfen
formational boundary (BWFB), while Hindeodus parvus, the marker of the PTB, appears
here only at 11 m above the BWFB, after a 9 m interval lacking conodonts. For this reason,
the H. parvus first occurrence in the Tesero section has been considered diachronous
and younger than that of the Bulla section, another key section for studies of the PTB in
the Dolomites. At Bulla, it appears at 1.3 m above the BWFB (Perri & Farabegoli, 2003).
Following Posenato (2009) and Farabegoli & Perri (2012), the PTB in the Tesero section is
tentatively placed in the upper part of unit 5b, slightly predating bed CNT11A (Fig. 2),
where the peak of the articulate brachiopod Teserina nerii occurs. Therefore, the echinoid
bearing beds of the Tesero section probably have an age encompassing the PTB.

The Tesero section, easily accessible because of its location along the road connecting
the village of Tesero with the main road along the bottom of the Avisio Valley (Fig. 1),
is among the most studied PTB successions in the Dolomites. It was first described by
Leonardi (1935), and carefully analysed over the course of the last few decades from
palaeontological, sedimentological and geochemical points of view (e.g., Bosellini, 1964;
Neri & Pasini, 1985; Noé, 1987; Broglio Loriga et al., 1988; Magaritz et al., 1988; Wignall &
Hallam, 1992; Beretta et al., 1999; Perri & Farabegoli, 2003; Chen et al., 2006; Groves et al.,
2007; Posenato, 2009; Spina et al., 2015; Foster et al., 2017). The section became famous
globally after the discovery of a ‘‘mixed brachiopod and mollusc fauna’’ located about
1.5–2.8 m above the BWFB, formerly considered to be coincident with the PTB (Neri &
Pasini, 1985).

At Tesero, the black bioclastic limestone of the Bellerophon Fm (Bulla Member) is only
about 50 cm thick (Fig. 2, unit 3). It overlies light-grey, marly dolostone representing
peritidal environments with root traces and mud-cracks, recording short-term subaerial
exposure, in the underlying Bellerophon Formation unit (unit 2). The Tesero Member
begins with a basal oolitic bedset, about 90 cm thick (units 4a, 4b), the middle of which
records the extinction peak of lagenide foraminifers (Groves et al., 2007). It is followed
by an interval of ca. 180 cm (units 5a, 5b) characterised by wide lateral facies variability,
composed of oolitic and bioclastic grainstone/packstone, marly interlayers and lenses,
mudstone and microbialite dm-size mounds (Beretta et al., 1999, fig. 4). The marlstone is
dominated by the articulate brachiopods Orbicoelia dolomitensis Chen and Teserina nerii
Posenato (Broglio Loriga et al., 1988; Chen et al., 2006; Posenato, 2009; Posenato, 2011),
which are respectively abundant in the lower and upper ‘‘mixed fauna beds’’. It is these
same ‘‘mixed fauna beds’’ from which the echinoids described herein were collected.

In the upper Palaeozoic of northern Italy, two species of echinoid, Archaeocidaris
tirolensis Stache, 1876 and Archaeocidaris ladina Stache, 1877 have been named from the
Bellerophon Formation. These named taxa are, however, nomina nuda or indeterminate,
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Figure 2 Stratigraphic column of the Tesero succession containing the formational and (supposed)
erathem boundaries and the stratigraphic ranges of conodonts and brachiopods. The duration of the
extinction interval is from Posenato (2010); the extinction peak (EP) refers to the extinction of the lagenide
foraminifers at a confidence interval of 96% (from Groves et al., 2007). The echinoids studied herein were
collected from beds CNT6 to CNT11A. Abbreviations: Orthothet., Orthothetina; Comelic., Comelicania;
Hi., Hindeodus (modified from Posenato, 2009).

Full-size DOI: 10.7717/peerj.7361/fig-2

respectively (Jackson, 1912) and are based off of disarticulated, fragmentary material. In the
Tesero section, echinoid remains are abundant in the black limestone of the Bellerophon
Fm (BullaMb), but cannot be extracted from thematrix because they are embedded in hard,
cemented, limestone. The material studied herein has been collected from unit 5b of the
Tesero Member (Fig. 2), where plates and spines are preserved on microbial bed surfaces
or as isolated specimens extracted from washed residues obtained from disaggregation
and sieving of the marlstones between the microbialites. Higher in the Werfen formation,
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echinoid spines are recorded within the SiusiMember (late Induan) (Broglio Loriga, Masetti
& Neri, 1983, 1983, pl. 46).

MATERIALS & METHODS
Terminology and classification for systematics follows Smith (1984), Kroh & Smith (2010),
and Märkel (1979). Taxonomic methodology follows Lewis & Donovan (2007). Because
most of the material dealt with herein is preserved as disarticulated ossicles, we chose to
group taxa together in such a way as to minimize the number of discrete taxa. Thus all
interambulacral plates and spine material with a prominent milled ring is grouped together
with Eotiaris teseroensis n.sp., and all spines representing putative stem group echinoids
are grouped together as indeterminate stem group echinoids. All disarticulated lantern
elements and fragmentary spines lacking a proximal end, which cannot be attributed to
either of the other taxonomic concepts used herein, are treated as indeterminate echinoids.
All material is deposited in the ‘‘Museo di Paleontologia e Preistoria Piero Leonardi’’ of
Ferrara University (MPL).

The electronic version of this article in Portable Document Format (PDF) will represent
a published work according to the International Commission on Zoological Nomenclature
(ICZN), and hence the new names contained in the electronic version are effectively
published under that Code from the electronic edition alone. This published work
and the nomenclatural acts it contains have been registered in ZooBank, the online
registration system for the ICZN. The ZooBank LSIDs (Life Science Identifiers) can be
resolved and the associated information viewed through any standard web browser by
appending the LSID to the prefix http://zoobank.org/. The LSID for this publication
is: urn:lsid:zoobank.org:pub:5B9E9AE3-B43E-44D0-99BE-F92C979CF325. The online
version of this work is archived and available from the following digital repositories: PeerJ,
PubMed Central and CLOCKSS.

Systematic palaeontology

Class Echinoidea Leske, 1778
Subclass Cidaroidea Smith, 1984
Family Miocidaridae Durham &Melville, 1957

Type genus. Miocidaris Döderlein, 1887
Other genera. Eotiaris Lambert, 1899, Couvelardicidaris Vadet, 1991, Procidaris Pomel, 1883
Genus Eotiaris Lambert, 1899
Type species. Cidaris keyserlingi Geinitz, 1848, from the Wuchiapingian Zechstein of
Germany and the United Kingdom.
Other species. Eotiaris guadalupensis Thompson 2017 in Thompson, Petsios & Bottjer,
2017 from the Roadian and Capitanian of west Texas and E. connorsi Kier, 1965 from the
Capitanian of West Texas.
Diagnosis.Miocidarid with small test. Interambulacral plates imbricate adapically. Areoles
confluent at or below ambitus.
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Figure 3 Photos of specimenMPL 8651-1 of Eotiaris teseroensis. Photos of specimen MPL 8651-1 of
Eotiaris teseroensis. (A-D) show the same specimen, with different angles and amounts of lighting. Note
the crenulate tubercles, and confluence of areoles. The specimen in (D) has been coated with ammonium
chloride prior to photography. Photo credit for A-C to Jeffrey Thompson and D to Renato Posenato.

Full-size DOI: 10.7717/peerj.7361/fig-3

Occurrence. Wuchiapingian of Germany, the U.K. and Roadian and Guadalupian of
Texas.

Eotiaris teseroensis n sp.
Figs. 3, 4B, 4C, 5A–5L
urn:lsid:zoobank.org:act:C14A9C9C-90FB-4F41-9A7B-AF5D0C43A326
1986 ?Miocidaris sp. Broglio Loriga et al. p. 9; pl. 1, fig. 3.
1988 ?Miocidaris sp. Broglio Loriga et al. p. 26; pl. 2 fig. 10.
1988Miocidaris sp. Posenato p. 40; pl. 2, fig. 8.
1990Miocidaris sp. Broglio Loriga et al. pl. 1, fig. 5.
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Figure 4 Plates and lantern elements attributed to Eotiaris teseroensis or indeterminate. (A) Specimen
MPL 8651-2, a disarticulated hemipyramid. Note the shallow foramen magnum indicated with arrow. (B)
Specimen MPL 8652, disarticulated spine from E. teseroensis. (C) Specimen MPL 8659, disarticulated spine
from E. teseroensis. Photo credit to Jeffrey Thompson.

Full-size DOI: 10.7717/peerj.7361/fig-4

Diagnosis. Eotiaris with only first one or two most adoral areoles confluent. Spines long,
thin, straight and cylindrical. Some spines striate and some with small distally facing
spinules.
Etymology. After the locality Tesero, where the holotype was collected.
Holotype. The holotype is specimen MPL 8651-1 (Figs. 3A–3D).
Material. In addition to the holotype, a number of disarticulated spines and interambulacral
plates are attributed to this taxon. These are MPL 8652, MPL 8659, MPL 8653-1, MPL
8656-2, MPL 8656-1, MPL 8657-5, MPL 8655-1, MPL 8653-5, MPL 8653-3, MPL 8657-4,
MPL 8657-3, MPL 8658-5, MPL 8654-2, and MPL 8657-6.
Occurrence. This species is known from the latest Changhsingian –early Induan Tesero
Member at the Tesero section, Dolomites of Italy.
Description. Test regular and small. Only a single interambulacral area 6.1 mm in
width is known from specimen MPL 8651-1 (Fig. 3), but using the calculation of
Smith & Hollingworth (1990), the test diameter would likely have been about 13.5 mm.
Hemipyramids and rotulae thatmay belong to this taxon are described below as Echinoidea,
gen. et sp. indet. The peristomial plating, apical plating and details of the perignathic girdle
are unknown.
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Figure 5 Disarticulated echinoid interambulacral plates and spines from the TeseroMember of the
Werfen Formation. Interambulacral plates (A–D) and spines with distinct milled ring (E–L) are attributed
to Eotiaris teseroensis, while spine fragments (M–R) are indeterminate. (A) Specimen MPL 8653-1, disar-
ticulated interambulacral plate. (B) Specimen MPL 8656-2, fragmentary interambulacral plate from sam-
ple. (C) Specimen MPL 8656-1, fragmentary interambulacral plate; note non-confluent areole. (D) Speci-
men MPL 8657-5, interambulacral plate; note crenulate tubercle. (E) specimen MPL 8654-2, fragmentary
spine; note prominent milled ring. (F) Specimen MPL 8655-1, spine; small spinules on distal tip of (con-
tinued on next page. . . )

Full-size DOI: 10.7717/peerj.7361/fig-5
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Figure 5 (. . .continued)
spine. (G) Specimen MPL 8653-5, fragmentary spine. (H) Specimen MPL 8653-3, incomplete spine; note
small spinules along spine shaft. (I) Specimen MPL 8657-4, spine base and proximal shaft. (J) Specimen
MPL 8657-3, spine. (K) Specimen MPL 8658-5, spine base and proximal spine. (L) Specimen MPL 8657-6,
spine; note slightly fusiform morphology of spine. (M) Specimen MPL 8657-2, spine fragment. (N) Spec-
imen MPL 8654-3, spine fragment. (O) Specimen MPL 8658-4, spine fragment. (P) Specimen MPL 8653-
4, spine fragment. (Q) Specimen MPL 8658-2, spine fragment. (R) Specimen MPL 8658-7, spine fragment.
All scale bars one mm. Photo credit to Jeffrey Thompson.

Table 1 Measurements from select interambulacral plates of Eotiais teseroensis from specimenMPL
8651-1.

Plate 1 2 3 Mean

Plate height (mm) 1.5 2.1 1.7 1.8
Plate width (mm) 3.2 3.2 2.8 3.1
Plate width/height 2.1 1.5 1.6 1.8
Areole height (mm) 1.5 1.7 1.4 1.5
Areole width (mm) 1.8 1.7 1.5 1.7
Areole width/height 1.2 1.0 1.1 1.1

The interambulacrum is composed of two columns of plates (Fig. 3). At and below
the ambitus the plating appears to be rigid, while plates above the ambitus are missing.
Five plates are preserved in each column, though more were undoubtedly present. These
missing adapical plates may have been imbricate as is the case for other species in the
genus (e.g., E. keyserlingi). Interambulacral plates are pentagonal, ranging from 1.5 to 2.1
times wider than high (Table 1). Interambulacral tubercles are perforate and crenulate,
slightly sunken. The one or two most adoral plates with confluent areoles adorally and
adapically (Fig. 3). One disarticulated plate attributed to this taxon without confluent
areoles (Fig. 5C) so more adapical plates were likely without confluent areoles. Areoles at
the ambitus are circular, from 1.4 to 1.7 mm high and 1.5 to 1.8 mm wide (Table 1). Each
plate is covered with numerous imperforate, non-crenulate secondary tubercles, which
are arranged in a closest-packing arrangement and cover the entire extrascrobicular area.
There are about 40 secondary tubercles on the largest ambital plates, and about 25 on
the second most adoral plate (Fig. 3). At the ambitus there are three rows of scrobicular
tubercles between the areoles and the adambulacral suture and three rows between the
areole and interradial suture. On the secondmost adoral plates, there are about two rows of
scrobicular tubercles between the areole and adambulacral suture and one or two between
the areole and interradial suture. Scrobicular tubercles differentiated into slightly distinct
scrobicular ring (Figs. 5A, 5C).

Spines attributed to this species are long, thin. They are straight and cylindrical or slightly
fusiform. Some spines striate and lacking ornamentation (Figs. 5J, 5L) and some with small
distally facing spinules located distally (Figs. 5F–5H). All spines with a well-defined milled
ring (Figs. 5E–5L). Straight spines widest at the milled ring, fusiform spines widest at about
midway their length (Fig. 5L). Longest spine fragment is 17.4 mm in length, though this
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is not associated with any test thus the spine length relative to test size is unknown. Most
other complete spines are much shorter.
Remarks. The two columned interambulacral area, morphology of spines, confluence
of areoles, imbricate adradial suture and imbricate adapical interambulacral plating
identify this species as a member of the genus Eotiaris. The specimens described herein are
morphologically similar to many specimens of Eotiaris keyserlingi (Geinitz, 1848) known
from the Wuchiapingian Zechstein of Germany (Reich, 2007), the United Kingdom (Smith
& Hollingworth, 1990) and reported from Poland (Peryt et al., 2016). E. teseroensis differs
from E. keyserlingi with respect to the confluence of it’s areoles. While only the first one
or two areoles of E. teseroensis are confluent, in E. keyserlingi, about the four most adoral
interambulacral plates bear confluent areoles. Other than the features of the interambulacral
plates, the main differentiating feature of species of Eotiaris is the morphology of the spines.
Both E. keyserlingi from the Zechstein and E. teseroensis described herein have spines which
are smooth, taper distally and bear small spinules at their distal end (Compare Figs. 5F, 5H
with fig. 4.6 in Smith & Hollingworth, 1990). There apparently exists much variability in
the spines attributed to E. keyserlingi, as those shown in Fig. 3C by Reich (2007) bear many
more spinules along their proximal shaft than those in fig. 4.6 of Smith & Hollingworth
(1990). Furthermore, some spines attributed to E. keyserlingi appear to show no spinules,
and are instead smooth for their entire length. Many echinoids, both extant and fossil, show
aboral to oral variability in spine morphology along their test (Mortensen, 1928; Schneider,
Sprinkle & Ryder, 2005), thus it should be no surprise that this is found in E. keyserlingi. In
our washed samples and on bedding planes, we also find variability in spine morphology,
from thin striate spines with distal spinules to fusiform spines lacking ornamentation
(Figs. 5F–5L). E. teseroensis differs substantially from E. guadalupensis Thompson in
Thompson, Petsios & Bottjer, 2017 from the Roadian to Capitanian of west Texas in the
morphology of its spines. E. guadalupensis has spines covered with numerous spinules
which are straight to fusiform to clavate or bulbous in shape (Thompson et al., 2015;
Thompson, Petsios & Bottjer, 2017). The spines attributed to E. teseroensis, however, are
much less wide and do not have the large, bulbous or clavate morphology or distinct
spinules of E. guadalupensis. E. teseroensis, E. keyserlingi, and E. guadalupensis all differ
from E. connorsi Kier, 1965 in having narrower interambulacral plates, denser secondary
tuberculation on their interambulacral plates, and more rigidly sutured plating adorally.
Phylogenetic analyses also indicate that E. connorsi may be more basal than the other
species of Eotiaris (Thompson et al., in press). Despite the fact that the echinoids described
herein largely differ morphologically from E. keyserlingi only with respect to the number of
confluent areoles adorally, there also exist biogeographic differences between the Zechstein
basin and the tropical Tethyan carbonates of northern Italy (Mei & Henderson, 2001).

Stem Group Echinoidea, gen. et sp. indet.
Figs. 6H–6I

Material. Five disarticulated spines: MPL 8653-2, 8657-7, MPL 8658-6, MPL 8655-2, and
MPL 8658-3.
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Figure 6 Disarticulated echinoid Aristotle’s lantern elements and spines from the TeseroMember
of theWerfen Formation. Lantern elements are indeterminate (A–G), while spines are attributed to
stem group echinoids (H–L). (A) Specimen MPL 8654-1, disarticulated rotula from sample TCn 10. (B)
Specimen MPL 8657-8, disarticulated rotula from sample CNT11A . (C) Same as B. (D) Specimen MPL
8658-1, disarticulated rotula from sample CNT6. (E) Same as D. (F) Specimen MPL 8658-8 disarticulated
hemipyramid from sample CNT6. (G) Specimen MPL 8657-1, disarticulated hemipyramid from sample
CN T11A. (H) Specimen MPL 8653-2, disarticulated spine. (I) Specimen 8657-7. (J) Specimen MPL
8658-6, disarticulated spine from sample CNT6. (K) Specimen MPL 8655-2, disarticulated spine. (L)
Specimen MPL 8658-3, disarticulated spine from sample CNT6. In spines attributed to stem group
echinoids (H-L) note lack of milled ring and rounded, smooth acetabulum. All scale bars 1 mm. Photo
credit to Jeffrey Thompson.

Full-size DOI: 10.7717/peerj.7361/fig-6

Description. This taxon is represented only from disarticulated spines (Figs. 6H–6I). These
spines are striated and peg-like (up to 0.7 mm wide) and taper distally. They lack any
visible ornamentation such as spinules and are widest where the spine meets the base. The
acetabulum is round and perforated and they lack a milled ring (Figs. 6H–6I).
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Remarks. Disarticulated spines recovered from washed residues display a morphology
that is inconsistent with identification as crown group echinoids in the Palaeozoic or
Early Mesozoic. These spines lack a milled ring (Figs. 6H–6I), a character which is
found in many regular crown group echinoids, and appears to have first evolved in
archaeocidarid echinoids during the Late Palaeozoic (Thompson et al., in press). Permian
taxa with primary spines lacking a milled ring include Pronechinus cretensis König, 1982,
Pronechinus anatoliensis Kier, 1965 bothmembers of the Proterocidaridae, andMeekechinus
elegans Jackson, 1912 of the Lepidesthidae. The stem group echinoid Yunnanechinus
loupingensis Thompson et al., 2018 from the Anisian of Yunnan province, China and
Lazarechinus mirabeti Hagdorn, 2018 from the Anisian of the French Muschelkalk (Thuy,
Hagdorn & Gale, 2017) also display spines lacking a milled ring. All Permian crown
group echinoids have spines with a milled ring (Kier, 1965; Smith & Hollingworth, 1990;
Thompson et al., 2015; Thompson, Petsios & Bottjer, 2017) and this feature is also found in
Permian archaeocidarids (Kittl, 1904; Boos, 1929; Kier, 1958b; Luepke, 1976; Simpson, 1976;
Thompson, Petsios & Bottjer, 2017) and Lower and Middle Triassic cidaroids (Kier, 1968b;
Kier, 1977; Hagdorn, 1995).

Because other ossicles representing stem group echinoid coronal plates were not
recovered from washed residues, however, we note that it is necessary to treat the stem
group nature of this material with caution.

Echinoidea, gen. et sp. indet.
Figs. 4A, 5M–5R, 6A–6G

Material. Three disarticulated rotulae (MPL 8654-1, MPL 8657-8, and MPL 8658-1),
and three disarticulated hemipyramids (MPL 8651-2, MPL 8658-8, and MPL 8657-1).
Furthermore, we include numerous fragmentary spines (MPL 8657-2, MPL 8654-3,
MPL 8658-4, MPL 8653-4, MPL 8658-2, MPL 8658-7) whose taxonomic affinities are
indeterminate.
Description. This material consists of numerous disarticulated elements of the Aristotle’s
lantern and fragmentary spines which are indeterminate. The lantern elements recovered
include rotulae and hemipyramids (Figs. 4A, 6A–6G). Three rotulae were recovered, which
are shown in Figs. 6A–6E. The rotulae are bilaterally symmetrical, dorso-ventrally flattened,
roughly rectangular in shape, and ranging from about two to five mm in length. All rotulae
collected are hinge type (Märkel, 1979). Two morphotypes are known, hereby referred
to as morphotypes A (Figs. 6A–6C) and B (Figs. 6D–6E). In photographs, all rotulae are
oriented with the adaxial end (the end closest to the center of the lantern) oriented towards
the bottom of the page.

Mophotype A is about equally wide throughout its width, except for the abaxial end,
which narrows slightly passing from the epicondyles to the condyles. The dorsal surface is
smooth throughout most of its length, with the exception of the abaxial end which ends in
two slight bulges, which are the condyles. At the adaxial end of the dorsal surface, there is
a shallow depression (Figs. 6A, 6C) in which the adaxial end of the compass would have
rested. On the ventral surface of the rotula, slight indentations representing fossae are
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present at the adaxial end. At the abaxial end, the narrowing the condyles passing adaxially
is clear (Fig. 6B) The abraded nature of the material makes it difficult to determine the
location of rotular muscle scars.

Morphotype B is much wider at its adaxial end than abaxial end (Figs. 6D–6E). The
dorsal side is smooth, and the condyles not very distinct. At the adaxial end, there is a
small indentation, where the compass would rest. Also at the adaxial end, there is a slight
constriction. On the ventral side, the condyles and epicondyles are much clearer (Fig. 6E)
and two lateral bulges toward the adaxial end are the middle and inner fossae. Between
these fossae are small indentations, which probably represent the rotular muscle scars.

Hemipyramids are small, no more than four mm tall. The foramen magnum is shallow,
no more than 1/5 the height of the pyramid (Figs. 6F, 6G). A thickened wing edge is present
along the edge of the hemipyramids (Fig. 6F) though this is only obvious in specimen MPL
8658-8.

The spines included herein are finely striate or covered in small rough spinules
(Figs. 5M–5R). They range in length from about two mm to longer than five mm in
length. They are circular in cross section. The spines are straight or show slight curvature
in their orientation and many appear as small cylinders (Figs. 5N, 5P, 5R).
Remarks. The two rotulae morphotypes described herein; morphotype A and morphotype
B, may represent variation within a single species, or, more likely, may represent rotulae
from two different taxa. The two morphotypes differ most obviously in their general
shape, with the adaxial end of morphotype B being much larger than that of A (compare
Figs. 6A–6C to Figs. 6D–6E). Additionally in morphotype A, it is difficult to distinguish the
precise location and number of fossae, while in morphotype B, the two symmetrical bulges
located towards the adaxial end of the ventral side likely represent the inner and middle
fossae. Insomuch as both of these morphotypes are hinge-type, they are similar to other
rotulae reported from the Palaeozoic and Triassic. The rotula figured by Lewis & Ensom
(1982) from the Mississippian Archaeocidaris whatleyensis Lewis & Ensom, 1982 is similar
in its general rectangular shape, and in having a hinge joint, to the rotulae described herein.
Furthermore, the rotula of the Anisian–Ladinian Triadotiaris grandaeva (v. Alberti, 1834),
is similar to our morphotype 2 in widening adaxially (Hagdorn, 1995, fig. 5).

Hoare & Sturgeon (1976) figured three different rotulae in their study of echinoid ossicles
from the Pennsylvanian Vanport Limestone of Ohio. Our morphotype B is similar to their
figures 1 and 2 from their plate 2, while our morphotype A is similar to their plate 2,
figure 3, albeit less narrow. In their study they attributed their disarticulated ossicles to
two taxa, an archaeocidarid and a lepidesthid. Though the family level differences in
rotula morphology are not well-known in stem group echinoids, it is possible that our
two morphotypes represent a stem group and early crown group echinoid. Determining
if this is the case is further complicated, however, in that all stem group echinoids where
the rotulae are well-known, including Archaeocidaris M’Coy, 1844, Nortonechinus Thomas,
1920, and Polytaxicidaris Kier, 1958a and early crown group echinoids, such as T. grandaeva
have hinge-type lanterns (Thomas, 1921; Kier, 1965; Märkel, 1979; Lewis & Ensom, 1982;
Hagdorn, 1995). Further sampling of specimens where detailed morphology of rotulae, and
of plates that are taxonomically informative at the family level (Thompson & Denayer, 2017),
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will be necessary to tie the details of differences in rotulae morphology to higher-taxonomic
level classification in stem group echinoids.

The hemipyramids described herein are similar to those drawn by Smith & Hollingworth
(1990) for E. keyserlingi. Both lanterns have shallow foramen magna, as is seen in crown
group cidaroids. They are alsomuch smaller than other hemipyramids potentially belonging
to cidaroids described from the Capitanian of Texas (Thompson, Petsios & Bottjer, 2017).
While the hemipyramids described by Thompson, Petsios & Bottjer (2017) were much too
large to be attributed to the co-occurring cidaroid E. guadalupensis, the hemipyramids
described herein are not much taller than a few millimeters, and could well belong to
E. teseroensis. Though this may be the case, the incomplete nature of these hemipyramids
and the fact that stem group echinoids likely also occur from the Tesero member precludes
definitive attribution of these hemipyramids to a particular taxon.

The spines included herein are indeterminate given the state of their preservation, and
could belong to any of the discussed taxa herein. Given the length and cylindrical nature
of these spines, they may belong to Eotiaris teseroensis. Given their incomplete nature,
however, we refrain from assigning them formally to that taxon.

DISCUSSION
Palaeoecological setting of the Tesero echinoids
The echinoid fauna reported herein is remarkable in that it occurs within the end-Permian
extinction interval, about 2 m above the horizon representing the onset and peak of the
EPME and about 0.4 m below the disappearance of the last stenotopic marine taxa (e.g.,
calcareous algae; e.g., Groves et al., 2007; Posenato, 2010; Fig. 2). It thus provides a glimpse
into echinoid faunas and their palaeoecological setting in the immediate aftermath of the
onset of extinction. Though this echinoid fauna occurs stratigraphically above the main
extinction horizon, the occurrence of echinoids likely straddles the PTB, occurring in both
the latest Permian and earliest Triassic (Fig. 2). The Tesero Member at the Tesero Section
is characterized by basal oolitic beds, followed by an interval of oolitic and bioclastic
grainstones and packstones interbedded with marly lenses, mudstones and microbialites
(Posenato, 2009). The stratigraphic placement of the echinoid bearing samples is shown
in Fig. 2. Two of the samples are from beds interpreted as microbial mats and represent
shallow-water settings (CNT10 and CNT11; Noé, 1987; Posenato, 2009). CNT10 contains
a fauna dominated by the brachiopod Orbicoelia (=?Crurithyris of Broglio Loriga et al.,
1988), while CNT11 is dominated by Teserina nerii (Posenato, 2011). These shallow water
brachiopod dominated assemblages in the Tesero section, despite occurring after the onset
of the extinction event, yield faunal components characteristic of the Permian. Coeval
benthic assemblages from a deeper-water setting (e.g., the Bulla section) are dominated by
the bivalve Eumorphotis, and show a taxonomic composition similar to those occurring
in the Early Triassic, when only a few eurytopic taxa were able to survive in heavily
stressed marine conditions (e.g., Posenato, Holmer & Prinoth, 2014; Foster et al., 2017).
The assemblages of the echinoid-bearing ‘‘mixed fauna’’ beds at the Tesero section thus
record an ephemeral shallow water refuge for marine stenotopic taxa (Broglio Loriga, Neri
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& Posenato, 1986; Posenato, 2009) (Fig. 2). Echinoid remains are also known from the
underlying Changhsingian Bulla Member of the Bellerophon Formation (Broglio Loriga et
al., 1988; Posenato, 2009), though their taxonomic affinities are not well characterized.

In the western Dolomites (including the Tesero section), the extinction of stenotopic
marine organisms occurred within a stratigraphic interval in the Tesero Member ranging
from the contact with the underlying Bulla Member to the lower H. parvus Zone. The
lower limit corresponds to the basal centimeters of the Tesero Member, which records the
onset and peak of the extinction event, represented by a dramatic drop in fossil abundance
and the loss of most foraminifers and large brachiopods (Posenato, 2010). The upper
limit of the extinction interval is located within the lower H. parvus Zone, where the last
stenotopic taxa occur rarely (Farabegoli, Perri & Posenato, 2007; Posenato, 2009; Posenato,
2010). The echinoid bearing beds (CNT6-CNT11A) occur stratigraphically above the onset
of extinction, indicating that, at least in the Tesero section, echinoids survived the onset of
extinction and associated environmental change. Themicrobialite-rich interval fromwhich
echinoids were collected at the Tesero section has been correlated with Beds 27a-b of the
Meishan Section in South China (Farabegoli, Perri & Posenato, 2007). The stratigraphically
lower echinoid bearing beds at Tesero (CNT6, CNT8, and CNT10) and beds 27a-b at
Meishan are within the H. changxingensis Zone (Jiang et al., 2007; Lai, Jiang & Wignall,
2018) which is located within the ‘‘Survival Interval’’ at Meishan, where relict Permian taxa
survived for ∼60,000 years up to the I. staeschei Zone (Shen et al., 2018). This correlation,
together with the co-occurrence of echinoids and the ‘‘mixed’’ faunal assemblages at
Tesero (Posenato, 2009), seems to indicate that the Tesero echinoids represent holdover
taxa from Permian pre-extinction faunas. The delicate nature of the echinoid test recovered
(Fig. 3), the occurrence of these echinoids in amicrobialite, and the occurrence of articulated
brachiopods (Broglio Loriga, Neri & Posenato, 1986), indicates that these taxa were not
reworked from older strata and represent an autochthonous assemblage.

Echinoids and the end-Permian mass extinction
Stem group echinoids and disarticulated material
It has been recently demonstrated that stem group echinoids survived the aftermath
of the end-Permian extinction event and populated Mesozoic seas until at least the
Middle or Late Triassic (Thuy, Hagdorn & Gale, 2017; Thompson et al., 2018). That we find
disarticulated spines that display stem group echinoid morphologies (Figs. 6H–6L) in the
immediate aftermath of the extinction should thus be no surprise. A current limitation to
the understanding of echinoid macroevolutionary dynamics following the end-Permian
extinction concerns the general rarity of articulated specimens in the late Permian and
Early Triassic. This is exemplified by the fact that there are currently only three species
known from relatively well-preserved echinoid tests from Lower Triassic strata (Linck,
1955; Kier, 1968b; Godbold et al., 2017). Despite the rarity of well-preserved specimens,
disarticulated echinoid plates and spines are abundant throughout Lower Triassic strata
(Broglio Loriga, Masetti & Neri, 1983; Schubert & Bottjer, 1995; Moffat & Bottjer, 1999;
Rodland & Bottjer, 2001; Fraiser & Bottjer, 2004; Nützel & Schulbert, 2005; Mata & Woods,
2008; McGowan, Smith & Taylor, 2009; Hofmann et al., 2013; Pietsch et al., 2019; Foster et
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al., 2018; Foster et al., 2019a; Foster et al., 2019b), though they are typically identified in thin
section (e.g.,Noé, 1987; Krystyn et al., 2003; Posenato, 2009; Foster et al., 2019a; Foster et al.,
2019b). A potential source of ‘‘hidden diversity’’ comes from this disarticulated material
(Twitchett & Oji, 2005; Pietsch et al., 2019) as echinoid coronal plates, like the ossicles of
other echinoderm groups, display morphological features characteristic of both higher,
and lower, taxonomic levels (Gordon & Donovan, 1992; Nebelsick, 1992; Nebelsick, 1995;
Nebelsick, 1996; Donovan, 2001; Thompson & Denayer, 2017). Analysis of disarticulated
material in Triassic strata has provided novel insight into the diversity and distribution of
a number of echinoderm groups during the end-Permian extinction event (Thuy, Hagdorn
& Gale, 2017; Reich et al., 2018).

At Tesero, we have shown that disarticulated material has provided novel insight into
the pattern of echinoid extinction in the immediate aftermath of the extinction event.
The presence of stem group echinoids in beds CNT6 and CNT8 indicates that the stem
group echinoids did not go extinct at the initial onset of extinction, which took place about
251.94 Ma (Burgess, Bowring & Shen, 2014) and was responsible in some sections for the
extinction of trilobites, rugose corals, and fusulinids (Wang et al., 2014). Instead, stem
group echinoids persisted into ‘‘mixed fauna’’ beds, and occur stratigraphically above the
initial onset of extinction (Fig. 2). Though stem group echinoids did unequivocally survive
the EPME, their abundance and diversity appears to have been severely reduced during the
extinction event, and they were likely minor constituents of post-Palaeozoic ecosystems
globally (Thompson et al., 2018). At least at Tesero, stem group echinoids appear to have
survived the initial onset of the extinction, and may have experienced heightened rates of
extinction during potential subsequent pulses of extinction (Song et al., 2013), or during
the widespread ecological catastrophes that characterized the rest of the Early Triassic.

The duration of Eotiaris through the extinction event
Eotiaris is a well-known constituent of late Permian echinoid communities, being known
from theWuchiapingian Zechstein reefs of Germany (Reich, 2007), the UK (Hollingworth &
Pettigrew, 1988; Smith & Hollingworth, 1990), and Poland (Peryt et al., 2016). The presence
of a species of Eotiaris in the Tesero Member is thus indicative of similarities to other
Permian echinoid faunas, and further supports the idea that the Tesero echinoids represent
a short-lived holdover fauna, which survived the initial environmental change associated
with the extinction event (and may have temporarily reappeared in the fossil record in the
Siusi Member (late Griesbachian–Dienerian; Broglio Loriga, Masetti & Neri, 1983)). The
occurrence of Eotiaris during the extinction interval in the Tesero Member also signals
similarities to another Tethyan echinoid occurrence known from after the onset of the
extinction. This additional occurrence comes from an undescribed species of Eotiaris
reported from the earliest Griesbachian of South China (Godbold et al., 2017). This species
is known from an echinoid concentration of numerous semi-articulated specimens and
differs from other latest Permian and Early Triassic echinoid occurrences in that it comes
from an upper slope deposit, interpreted to represent an environment below 150m of water
depth. Though the depth of this occurrence differs from other recorded post-extinction
occurrences, the palaeoecological distribution of these specimens is similar to the Tesero
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Eotiaris described herein, in that they are also closely associated with microbialites. Species
of Eotiaris were thus present in the aftermath of the EPME in both shallow settings (e.g.,
Tesero; Noé, 1987; Posenato, 2009) and in the deeper water environments represented
by the Shangsi section (Godbold et al., 2017). Though only these two occurrences of
Eotiaris are known from beds located above the onset of environmental change and peak
extinction, they do signal that the genus was potentially capable of inhabiting a variety
of palaeoenvironments, from shallow deposits to deeper water slope deposits. It has been
mentioned that echinoderms survived the adverse effects of the EPME in deeper water
refugia (Godbold et al., 2017; Thuy, Hagdorn & Gale, 2017). Clearly the occurrence of the
echinoids at Tesero indicates that, at least initially, echinoids did survive in shallower
water environments as well. This rules out deeper water environments as a sole refuge
for echinoderms during the onset of the EMPE. This does not, however, discount deeper
water environments as a longer-term refuge, harboring echinoderm taxa throughout the
duration of the Early Triassic.

Eotiaris, or other miocidarids like it, are thought to represent the ancestors of cidaroid
echinoids (Kier, 1968a; Smith & Hollingworth, 1990; Smith, 2007; Kroh & Smith, 2010;
Thompson et al., 2015). Cidaroids are abundant and fairly morphologically diverse in
the Triassic (Kier, 1968b; Kier, 1977; Kier, 1984; Smith, 1994), and are still extant today
(Mortensen, 1928). If the constituent species of the Miocidaridae were capable of inhabiting
numerous different palaeoenvironments, their survival and duration through the EPME
may represent an example of macroevolutionary processes operating at different scales
(Jablonski, 2007). In this case, the ability of constituent miocidarid species to inhabit
distinct palaeoenvironments (though this does not necessitate that the constituent species
were generalists), may have conferred upon the family a wider environmental range, thus
making it less prone to extinction (Jablonski, 2001). A similar trend has been observed
with regard to biogeography of mollusks at the K/Pg event (Jablonski, 1986; Jablonski, 2008;
Jablonski & Raup, 1995), and environmental breadth and biogeographic distribution of
Permian–Triassic gastropods (Erwin, 1989). Interestingly, biogeographic range did not
appear to confer a selective advantage upon echinoid genera during the K-Pg extinction
(Smith & Jeffery, 1998), and breadth of palaeoenvironmental distribution was not a factor
conferring survivorship upon K/Pg bivalves (Jablonski & Raup, 1995). If the environmental
distribution of species of Eotiaris, or other miocidarids, was such that that the genus or
family was capable of inhabiting a wide array of palaeoenvironmental settings, this may
explain the duration and survival of the Miocidaridae through the end-Permian extinction
and environmental perturbation that characterized the Early Triassic.

CONCLUSIONS
The echinoid fauna from the Tesero Member, including the new species, E. teseroensis,
informs the spatial and temporal setting of echinoid survival through the end-Permianmass
extinction interval. Furthermore, it provides clues as to the traits that may have conferred
survival upon the miocidarid echinoids, including a potentially wide palaeoecological
distribution globally. In the Tesero section and elsewhere during the Permian and Triassic,
the miocidarid echinoids also appear to be associated with microbialites.
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As with all aspects of echinoid macroevolution during the Permian–Triassic interval, the
ability to test and formulate hypotheses is hindered by the rarity of specimens. Identification
and analysis of disarticulated material precisely tied into stratigraphic sections, as was the
case with the material studied herein, provides a promising new research avenue for
untangling the survival and extinction of echinoids during the EPME. Future work
collecting and identifying further disarticulated material from uppermost Permian and
Lower Triassic strata will likely provide a more sound understanding of the diversity and
distribution of echinoids following the end-Permian extinction event.
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