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ABSTRACT
Background. Oral squamous cell carcinoma (OSCC) is the most common type of head
and neck squamous cell carcinoma with an unsatisfactory prognosis. The aim of this
studywas to identify potential prognosticmRNAbiomarkers ofOSCCbased on analysis
of The Cancer Genome Atlas (TCGA).
Methods. Expression profiles and clinical data of OSCC patients were collected from
TCGA database. Univariate Cox analysis and the least absolute shrinkage and selection
operator Cox (LASSO Cox) regression were used to primarily screen prognostic
biomarkers. Thenmultivariate Cox analysis was performed to build a prognostic model
based on the selected prognostic mRNAs. Nomograms were generated to predict the
individual’s overall survival at 3 and 5 years. The model performance was assessed by
the time-dependent receiver operating characteristic (ROC) curve and calibration plot
in both training cohort and validation cohort (GSE41613 from NCBI GEO databases).
In addition,machine learningwas used to assess the importance of risk factors ofOSCC.
Finally, in order to explore the potential mechanisms of OSCC, Kyoto Encyclopedia of
Genes and Genomes (KEGG) pathway analysis was completed.
Results. ThreemRNAs (CLEC3B,C6 andCLCN1)were finally identified as a prognostic
biomarker pattern. The risk score was imputed as: (−0.38602 × expression level of
CLEC3B) + (−0.20632 × expression level of CLCN1) + (0.31541 × expression level
of C6). In the TCGA training cohort, the area under the curve (AUC) was 0.705 and
0.711 for 3- and 5-year survival, respectively. In the validation cohort, AUC was 0.718
and 0.717 for 3- and 5-year survival. A satisfactory agreement between predictive values
and observation values was demonstrated by the calibration curve in the probabilities
of 3- and 5- year survival in both cohorts. Furthermore, machine learning identified the
3-mRNA signature as the most important risk factor to survival of OSCC. Neuroactive
ligand-receptor interaction was most enriched mostly in KEGG pathway analysis.
Conclusion. A 3-mRNA signature (CLEC3B,C6 andCLCN1) successfully predicted the
survival of OSCC patients in both training and test cohort. In addition, this signature
was an independent and the most important risk factor of OSCC.
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INTRODUCTION
Oral squamous cell carcinoma (OSCC) is a common malignant tumor, which results in
approximately over 600,000 new cases and 350,000 related deaths every year (Siegel, Miller
& Jemal, 2017). Advances in treatments for OSCC have significantly improved the quality
of life and further life expectancy of patients. However, the overall clinical outcomes of
patients remain poor, especially among those diagnosed at advanced stages (Shimomura
et al., 2018; Wang et al., 2017). Hence, exploring effective prognostic models is essential
to predict overall survival (OS) of OSCC patients and guide the therapeutic process for
clinicians. Present prognostic models of OSCC focus on multiple clinicopathological
parameters like age, smoking status, and advanced clinical stage at diagnosis (Boxberg et al.,
2018; Lee et al., 2010). However, cancers generally possess complex molecular regulation
mechanisms and thus traditional predictive factors are limited by their efficiency, specificity,
and consistency among patients (Shen et al., 2017a).

Recently, molecular biomarkers of diagnosis or prognosis, such as protein-coding
genes and non-coding RNAs, have gained much attentions in oncology. Messenger RNAs
(mRNAs) have been highlighted for their important roles in physiological and pathological
processes as well as their potential predictive abilities (Feng et al., 2019; Tschirdewahn et al.,
2019). Moreover, an integrated model composed of multiple genes has been shown to be
more predictive than single clinic biomarker (Shao et al., 2018). An area under the curve
(AUC) of 0.7 and above indicates relatively good prediction. For example, a 7-mRNA
signature (AATF, APP, GNPDA1, HPRT1, LASP1, P4HA1 and ILF3) of head and neck
squamous cell carcinoma (HNSCC) shows a moderate predictive ability for 5-year OS
(AUC for training set, 0.75; testing set, 0.66) (Shen et al., 2017a). Another prognostic
model of HNSCC based on 6-mRNA (FOXL2NB, PCOLCE2, SPINK6, ULBP2, KCNJ18
and RFPL1) also has a good performance of 5-year OS (AUC for training set, 0.766; testing
set, 0.669) (Tian, Meng & Zhang, 2019). However, existing prognostic models for OSCC
lacks excellent accuracy and a comprehensive assessment. A three-mRNA signature (PLAU,
CLDN8 andCDKN2A) identified by Zhao et al. (2018b) performs with insufficient accuracy
(AUC = 0.609) and this model was not assessed by calibration plot. Another prognostic
signature was derived from seven DNA methylation CpG sites (AJAP1, SHANK2, FOXA2,
MT1A, ZNF570, HOXC4, and HOXB4) as a potential reliable indicator for predicting
survival in training cohort (AUC = 0.76), while in validation cohort the accuracy and
stability of this model needs further improvements (AUC = 0.66 or 0.67) (Shen et al.,
2017b). The current study therefore attempted to develop a better prognosis model with
comprehensive evaluation.

The Cancer Genome Atlas (TCGA) is a public database with genome sequencing
data on 33 tumor types, analysis of which has contributed a tremendous amount to the
understanding of potential molecular mechanisms, diagnostic prediction and the prognosis
of cancers (Zhang et al., 2019). In this study we developed and validated a prognostic model
with 3 mRNAs based on TCGA OSCC RNA-seq data, which showed good performance for
3- and 5-year overall survival (OS). Furthermore, this 3-mRNA signature was demonstrated
as the most important and independent factor for risk of OSCC survival compared with
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other clinical features (age, gender, race, survival time, survival status, tumor grade,
pathological stage and TNM stage).

MATERIALS AND METHODS
Data source and differential expression analysis
Level 3 RNA-Seq data consisting of 328 OSCC tissues and 32 normal controls were
downloaded from the TCGA data portal (up to December 8, 2018). Related clinical data
(age, gender, race, survival time, survival status, tumor grade, pathological stage and TNM
stage) were also obtained. All the data concerned in this study are publicly available from
the United States National Cancer Institute (https://portal.gdc.cancer.gov/). Raw sequence
data was originally derived from IlluminaHiSeq_RNASeq. We used the edgeR package to
identify differentially expressed mRNAs (DEmRNAs) between OSCC and normal tissues.
False discovery rate (FDR) was used for multiple testing correction of all p-values. Absolute
log2fold change(FC) ≥ 2 and the FDR < 0.01 were used as cut-off criteria.

Construction and evaluation of mRNA prediction model
Only patients with complete information to build prediction model, including age, gender,
race, survival time, survival status, pathological stage and TNM stage were included.
Metastatic stages were not analyzed, since most data for this item were missing. After
filtering available data, a total of 259 OSCC patients and 32 normal tissues were included
in our analysis; their baseline information is shown in Table 1.

Univariate Cox analysis was used to estimate the association between the expression
level of mRNAs and patient’s OS with p < 0.05 set as the cut-off of statistical significance.
Then, the least absolute shrinkage and selection operator (LASSO) method (Tibshirani,
1997) was used to further screen out prognostic mRNAs. Finally, stepwise multivariate
Cox regression analysis was performed to construct a mRNA-derived prognostic model
based on the Akaike information criterion (AIC). After calculating the risk score based
on the formula of the chosen model, smooth curve fitting was competed to evaluate
the relationship between risk score and survival (Li et al., 2019). If a linear relationship
between these measures was found, then the cut-off value was set as the median risk score.
Otherwise, segmented regression model and likelihood ratio test were employed to find
the threshold. The Kaplan Meier survival curve was completed to assess the survival rates
of patients with high/low risk score.

A nomogram was generated to predict the individual’s overall survival at 3 years and 5
years. The time-dependent receiver operating characteristic (ROC) curve and calibration
plot were used to assess the performance of the nomogram.

Validation of the mRNA prediction model
Dataset GSE41613 with 97 OSCC patients was selected as the validation cohort from
the Gene Expression Omnibus (GEO, https://www.ncbi.nlm.nih.gov/geo/). The time-
dependent ROC curve and calibration plots were created to investigate whether the built
model could effectively predict survival in OSCC.
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Table 1 Clinicopathological characteristics of 259 patients with oral squamous cell carcinoma.

Characteristic Subtype No. of cases (%)

Age (years) <50 41 (15.83)
≥50, <60 69 (26.64)
≥60, <70 88 (33.98)
≥70 61 (23.55)

Gender Male 179 (69.11)
Female 80 (30.89)

Race White 232 (89.58)
Asian 9 (3.47%)
Black or African American 18 (6.95)

Histologic grade G1 39 (15.06)
G2 172 (66.41)
G3 47 (18.15)
G4 1 (0.39)

Pathological stage Stage I 16 (6.18)
Stage II 36 (13.90)
Stage III 54 (20.85)
Stage IV 153 (59.07)

Pathological T T1 23 (8.88)
T2 76 (29.34)
T3 60 (23.17)
T4 100 (38.61)

Pathological N N0 113 (43.63)
N1 45 (17.37)
N2 99 (38.22)
N3 2 (0.77)

Vital status Alive 157 (60.62)
Dead 102 (39.38)

3-mRNA signature as an independent and important prognostic
factor
To verify that the mRNA signature was independent of other clinical characteristics,
univariate and multivariate Cox regression analysis were implemented. First, univariate
Cox analysis identified the clinical features that were related to OS of OSCC patients. Then
multivariate Cox regression was used to explore whether the mRNA signature could be an
independent indicator after adjusting other traits.

Then machine learning (extreme gradient boosting (XGBoost)) analysis (Livne et al.,
2018) was used to further identify the importance of the mRNA signature on the prognosis
of OSCC compared with other clinical features. The parameters were set as following:
booster=gbtree, objective=binary:logistic, max_depth=10, min_child_weight=6.23,
subsample=0.75, colsample_bytree=0.99. The XGBoost model has been previous
demonstrated to provide state-of-the-art results for a variety of medical applications
and has received numerous awards in machine learning (Chen & Guestrin, 2016).
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Figure 1 Volcano plot of genesthat are significantly different between OSCC tissues and normal con-
trols. Red spots represent up-regulated genes, and green spots represent down-regulated genes.

Full-size DOI: 10.7717/peerj.7360/fig-1

Functional enrichment analysis
DEmRNAs were identified by edgeR package based on the high/low risk score with a cut-
off criteria of absolute log2FC ≥ 1 and the FDR < 0.05. Gene Ontology (GO) enrichment
analysis was performed using the Database for Annotation Visualization and Integrated
Discovery (DAVID) and Kyoto Encyclopedia of Genes and Genomes (KEGG) pathways
with clusterProfiler package. A p value < 0.05 was considered to represent statistical
significance. All statistical analyses were performed using R and EmpowerStats software
(http://www.empowerstats.com; X&Y Solutions, Inc, Boston, MA, USA).

RESULTS
DEmRNAs in OSCC
A total of 1996 DEmRNAs (707 up-regulated and 1289 down-regulated) were identified in
this OSCC dataset (Table S1). The distribution of DEmRNAs between OSCC and normal
controls are shown in Fig. 1. The expression heat map of DEmRNAs is presented in Fig.
S1 where red and green represents significantly upregulated and downregulated genes,
respectively.

Construction and evaluation of a mRNA prediction model
A total of 120 DEmRNAs with potential prognostic value were identified by univariate
Cox analysis, 50 remained after being filtered by LASSO (Figs. 2A and 2B). Finally,
3 mRNAs (CLEC3B, CLCN1 and C6) were selected to construct prediction model by
stepwise multivariate Cox regression analysis. The total risk score was imputed as follows:
(−0.38602 × expression level of CLEC3B) + (−0.20632 × expression level of CLCN1)
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Figure 2 mRNA selection using the least absolute shrinkage and selection operator (LASSO) model.
(A) Ten-fold cross-validation for the coefficients of 120 mRNAs in the LASSO model. (B) X-tile analysis of
the 50 selected mRNAs.

Full-size DOI: 10.7717/peerj.7360/fig-2

Figure 3 (A) Curve-fitting between the risk score of the 3-mRNA signature and log (risk ratio) for
death; (B) Kaplan–Meier analysis of overall survival based on risk score of the 3-mRNAsignature OSCC
patients.

Full-size DOI: 10.7717/peerj.7360/fig-3

+ (0.31541 × expression level of C6). The result of smooth curve fitting shows a linear
relationship between risk score and survival, thus the median of the risk score was viewed
as cut-off value (high risk score: risk score >−3.03, low risk score: risk score <−3.03).
Patients with a high risk score had a poor prognosis (Fig. 3).

Nomograms of 3- and 5-year OS in the cohort are presented in Fig. 4. AUC of the
time-dependent ROC curve was 0.705 and 0.711 for 3- and 5-year survival, respectively
(Fig. 5). Remarkable, the calibration curve also demonstrated satisfactory agreement
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Figure 4 (A) The nomogram for predicting probabilities of patients 3-year overall survival; (B) the
nomogram for predicting probabilitiesof patients 5-year overall survival.

Full-size DOI: 10.7717/peerj.7360/fig-4

between predictive values and observation values in the probabilities of 3- and 5-year
survival (Fig. 5).

External validation set and performance
The GSE41613 dataset including 97 OSCC patient records was chosen to validate the
prognostic three genes signature. Time-dependent AUCs of risk scores were 0.718 and 0.717
for 3- and 5-year OS, respectively (Fig. 6). The calibration curve also shows satisfactory
agreement between predictive values and observation values for the probabilities of 3- and
5-year OS in the cohort (Fig. 6).

Risk score of 3-mRNA signature as an independent indicator to
predict OSCC prognosis
Cox analysis was performed to assess the independent prognostic value of the 3-mRNA
signature and the results are shown in Table 2. According to the results from univariate
analysis, the risk score, tumor grade, tumor size, lymphaticmetastasis and pathological stage
were significantly associated with OS in the TCGA cohort. After multivariate adjustment
using the factors above, the risk score remained a powerful and independent prognostic
factor (hazard ratio [HR] = 1.9, p < 0.001) in this cohort.

To further understand the importance of the risk score, machine learning analysis
was carried out. The XGBoost model indicated a high performance in predicting OSCC
patients’ survival status (AUC= 0.927) (Fig. 7). In addition, the most important parameter
for final survival status prediction was identified with this model as the risk score (Table 3
and Fig. 7).

Functional enrichment analysis
A total of 404 differentially expressed genes (218 upregulated genes and 186 downregulated
genes) correlated with high/low risk score group were displayed (Fig. 8). To better
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Figure 5 Evaluation of mRNA prediction model. (A) ROC curve based on the mRNA risk score for
3-year overall survival probability in TCGA cohort. (B) The calibration plots for predicting patient 3-
year overall survival. Green line indicates actual survival in TCGA cohort; dotted red and blue indicate
nomogram-predicted probability of survival and its corresponding 95% confidence interval, respectively.
(C) ROC curve based on the mRNA risk score for 5-year in TCGA cohort; (D) the calibration plots for
predicting patient 5-year overall survival in TCGA cohort. Green line indicates actual survival in TCGA
cohort; dotted red and blue indicate nomogram-predicted probability of survival and its corresponding
95% confidence interval, respectively.

Full-size DOI: 10.7717/peerj.7360/fig-5

understand the potential mechanism of processing different risk score groups, GO
and KEGG enrichment analyses were performed. For ‘‘biological processes (BP)’’, the
top five enriched terms were cellular protein metabolic process, negative regulation of
endopeptidase activity, phospholipid efflux, retinoid metabolic process and cholesterol
efflux. For the ‘‘cellular component (CC)’’ ontology, the top five were: extracellular space,
extracellular region, blood microparticle, chylomicron and very-low-density lipoprotein
particle. Finally, the five ‘‘molecular function (MF)’’ top terms were structural molecule
activity, lipid binding, cholesterol transporter activity, phosphatidylcholine-sterol O-
acyltransferase activator activity and lipid transporter activity (Figs. 9A, 9B and 9C and
Table S2).

Additionally, a total of 13 significantly enriched KEGG pathways are listed in Table S3,
and the top 10 KEGG pathways are shown in Fig. 9D. A neuroactive ligand–receptor
interaction was found to be the main associated pathway.
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Figure 6 Validation for the mRNA prediction model. (A) ROC curve based on the mRNA risk score for
3-year overall survival probability in validation cohort. (B) The calibration plots for predicting patient 3-
year overall survival in validation cohort. Green line indicates actual survival; dotted red and blue indicate
nomogram-predicted probability of survival and its corresponding 95% confidence interval, respectively.
(C) ROC curve based on the mRNA risk score for 5-year in validation cohort; (D) the calibration plots for
predicting patient 5-year overall survival in validation cohort. Green line indicates actual survival; dotted
red and blue indicate nomogram-predicted probability of survival and its corresponding 95% confidence
interval, respectively.

Full-size DOI: 10.7717/peerj.7360/fig-6

DISCUSSION
In the era of precision medicine, it is necessary to use accurate prognostic models to
guide the clinical decision-making process and to design a more personalized therapeutic
program for patients. However, the performance of existing OSCC prognostic models are
limited. Thus, this study aimed to develop a better prognostic model. A 3-mRNA-based
model (CLEC3B, CLCN1 and C6) of OSCC and it showed moderate predictive ability
(training cohort: AUC = 0.705 and 0.711 for 3- and 5-year OS; validation cohort: AUC
= 0.718 and 0.717 for 3- and 5-year OS). In addition, the 3-mRNA signature was an
independent and the most important risk factor of the prognosis of OSCC.

Three articles in the literature build a prognostic model of OSCC based on molecule.
A 3-mRNA signature and a 3-lncRNA signature indicate an imperfect predictive ability
(AUC < 0.7) (Zhao et al., 2018a; Zhao et al., 2018b). Although seven DNA methylation
CpG sites are a potential reliable indicator for predicting OS (AUC = 0.76), its accuracy
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Table 2 The risk score generated from the 3-mRNA signature as an independent indicator according to Cox proportional hazards regression
model.

Factors Subgroup Univariate analysis Multivariate analysis

Hazard ratio 95% CI p Hazard ratio 95% CI p

Age (year) <50 1
≥50, <60 0.8 0.4–1.5 0.516
≥60, <70 1 0.5–1.8 0.925
>70 1.6 0.9–3.0 0.125

Gender Male 1
Female 1.1 0.7–1.6 0.722

Race White 1
Asian 0.7 0.2–2.7 0.561
Black or African American 1.9 0.9–3.9 0.086

Histologic grade G1 1 1
G2 1.7 0.9–3.2 0.121 1.3 0.7–2.6 0.405
G3 2.2 1.1–4.5 0.035 1.8 0.9–3.8 0.111
G4 0 0.0–Inf 0.996 0 0.0–Inf 0.996

Pathological stage Stage I 1 1
Stage II 1.5 0.3–7.3 0.604 1 0.1–13.6 0.986
Stage III 3.4 0.8–14.4 0.1 2.3 0.2–27.8 0.518
Stage IV 5.1 1.2–20.8 0.024 1.9 0.1–23.8 0.6636

Pathological T T1 1 1
T2 2.1 0.6–7.1 0.23 1.6 0.2–12.5 0.647
T3 4.8 1.5–15.8 0.009 2.3 0.3–17.7 0.411
T4 4.4 1.4–14.2 0.013 2.2 0.3–17.2 0.45

Pathological N N0 1 1
N1 0.9 0.5–1.8 0.813 0.6 0.3–1.3 0.217
N2 2.2 1.4–3.3 <0.001 1.3 0.7–2.4 0.447
N3 4.2 1.0–17.5 0.05 3.5 0.8–15.4 0.099

Risk scores Low risk 1 1
High risk 2.3 1.5–3.6 <0.001 1.9 1.2–2.9 0.004

for validation requires improvement (AUC = 0.66 or 0.67) (Shen et al., 2017b). The 3-
mRNA-based model constructed in the current study performed well in both training and
validation cohorts (training cohort: 0.711; validation cohort: AUC= 0.717). Calibration is
also an important indicator to assess prediction model; however, the three exiting models
fail to perform calibration curve (Shen et al., 2017b; Zhao et al., 2018a; Zhao et al., 2018b).
To assess the consistency of our prediction model, calibration curves were implemented
and the result of analysis indicated that our model performed well.

In addition, to test the importance of survival status prediction with this 3-mRNA
signature,machine learningmethod (XGBoost)was used to rank clinical parameters and the
3-mRNA signature. XGBoost is a gradient tree boosting algorithm with best performance
to solve the classification problems. (Ogunleye & Qing-Guo, 2019). In addition, XGBoost
has the advantage of assessing of parameter importance by calculating as the cumulative
average of the modality gain over all the constituent decision trees in the ensemble model
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Figure 7 (A) ROC curve based on the modelconstructed by machine learning; (B) risk factors contri-
bution to deathprediction.

Full-size DOI: 10.7717/peerj.7360/fig-7

Table 3 Parameters contribution to final survival status prediction.

Feature Gain Relative importance

Risk scores 0.4158 100%
Age 0.2885 69.38%
Pathological N: 2 0.0647 15.56%
Pathological T: 3 0.0454 10.92%
Pathological T: 4 0.0399 9.60%
Pathological N: 0 0.0325 7.82%
Pathological stage: IV 0.0292 7.02%
Gender: Male 0.0285 6.85%
Pathological T: 2 0.0194 4.67%
Histologic grade: G3 0.0187 4.50%
Pathological stage: 3 0.0083 2.00%
Histologic grade: G2 0.0069 1.66%
Gender: Female 0.0023 0.55%

(Livne et al., 2018). The results of machine learning verified that 3-mRNA signature was the
most important factor to OSCC survival with high accuracy (AUC = 0.927). This finding
again demonstrated that the identified 3-mRNA signature could better predict the survival
for OSCC patients and they may play important roles in the development of OSCC.

CLEC3B, a member of the C-type lectin superfamily, is located on human chromosome
3p21.31. The function ofCLEC3B depends on the location of the tumor. The gene acts as an
oncogene in colorectal cancer because CLEC3B is secreted by cancer-associated fibroblasts
promotes tumor cell migration (Zhu et al., 2019), whereas it could inhibit clear cell renal
cell carcinoma proliferation via mitogen-activated protein kinase (MAPK) pathway (Liu
et al., 2018). In our study, it may act as a tumor suppressor in that down-regulation of
CLEC3B indicates a poor prognosis. CLEC3B expression has negative correlation with
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Figure 8 Volcano plot of genes that are significantlydifferent based on the risk score of OSCC patients.
Red spots represent up-regulated genes, and green spots represent down-regulated genes.

Full-size DOI: 10.7717/peerj.7360/fig-8

GO:0005576~extracellular region

GO:0005615~extracellular space

GO:0034361~very−low−density lipoprotein particle

GO:0042627~chylomicron

GO:0072562~blood microparticle

0 20 40 60 80

6
9

12
15

−log10(PValue)

Cellular component

GO:0001523~retinoid metabolic process

GO:0010951~negative regulation of endopeptidase activity

GO:0033344~cholesterol efflux

GO:0033700~phospholipid efflux

GO:0044267~cellular protein metabolic process

0 3 6 9 12

3.75
4.00
4.25
4.50

−log10(PValue)

Biological processes

Molecular function
A B

C D KEGG pathway

Fat digestion and absorption
Tyrosine metabolism
Retinol metabolism

Steroid hormone biosynthesis
Cholesterol metabolism

Drug metabolism − other enzymes
Chemical carcinogenesis
PPAR signaling pathway

Salivary secretion
Metabolism of xenobiotics by cytochrome P450

Drug metabolism − cytochrome P450
Complement and coagulation cascades
Neuroactive ligand−receptor interaction

0.050 0.075 0.100 0.125
GeneRatio

0.02

0.01

p.adjust

Count
5
10
15
20

GO:0005198~structural molecule activity

GO:0005319~lipid transporter activity

GO:0008289~lipid binding

GO:0017127~cholesterol transporter activity

GO:0060228~phosphatidylcholine−sterol O−acyltransferase activator activity

0 5 10 15

3.5
4.0
4.5
5.0

−log10(PValue)

Count

Count

Count

Figure 9 GO and KEGG pathway analyses. (A, B, C) GO analyses of the differentially expressed mRNAs
based on the risk score of OSCC. (D) KEGG analysis of the differentially expressed mRNAs based on the
risk of OSCC.

Full-size DOI: 10.7717/peerj.7360/fig-9
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proliferation inducers and proliferative markers, while there is a positive correlation
between CLEC3B and proliferation inhibitors, indicating CLEC3B lowers cell proliferation,
and may explain why it may serve as a tumor suppressor in OSCC (Liu et al., 2018). In
addition, tetranectin coded byCLEC3B is significantly down-regulation inmetastaticOSCC
(Arellano-Garcia et al., 2010), indicating that CLEC3B may suppress OSCC development.
However, specific mechanism of CLEC3B needs to be further explored.

Similarly, C6, complement 6, encodes protein which formats the membrane attack
complex (MAC) with C5b, C7, C8 and C9. C6 is down-regulated in oesophageal carcinoma
and its reduction may result in a reduction in local complement components and MAC
and thus contribute to cancer resistance to the complement attack (Oka et al., 2001). When
tumor cells acquire resistance to complement attack, the deposition of sublytic MAC on
the cell membrane is increased. Sublytic doses of the MAC involved in various biological
processes of tumor, such as the promotion of angiogenesis, proliferation, differentiation
and the inhibition of apoptosis (Pio, Corrales & Lambris, 2014). That is a partial explanation
why C6 was down-regulated in OSCC but its high expression indicated a poor prognosis.

CLCN1 is a member of chloride channel genes family, encoding voltage-gated chloride
channel (CLC-1). Previous studies have indicated that CLC-1 determines up to 80%
of the resting membrane conductance in skeletal muscles and the mutation of CLCN1
reduces chloride conductance and then result in myotonia congenita (Peng et al., 2018;
Tsujino et al., 2011). However, the function of CLCN1 in tumors has not been studied. Its
down-regulation was observed to indicate a poor prognosis. This shows that CLCN1 may
serve as a tumor suppressor gene in OSCC which may be because chloride channels are
involved in the regulation of cell cycle (Peretti et al., 2015).

GO enrichment analysis indicated that the 3-mRNA signature may be involved in lipid
metabolism. Increasing studies have found that lipid metabolism plays an important role
in tumor development, including tumor cell migration (Byon et al., 2009), proliferation
and angiogenesis (Lu et al., 2017). In addition, lipid metabolism is associated with
oxidative stress which also influences tumor progression (Zablocka-Slowinska et al., 2019).
Neuroactive ligand–receptor interaction was found to be the most significant pathway in
this study, which participates in multiple biological processes, such as apoptosis and cell
proliferation (Zan & Li, 2019).

This study identified three valuable mRNAs that are associated with the prognosis of
OSCC. The 3-mRNA signature showed satisfactory performance in both training and
validation cohort, however, it is still needed to be further validated in cohort study. In
addition, biological function of the three prognostic value genes needs to be explored.

CONCLUSION
A novel 3-mRNA signature (CLEC3B, C6 and CLCN1) successful predicted the survival of
OSCCpatients in both training and test cohort. In addition, the signature is the independent
and the most important risk factor of OSCC.
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