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ABSTRACT
In river-lake systems, sediment and water column are two distinct habitats
harboring different bacterial communities which play a crucial role in
biogeochemical processes. In this study, we employed Phylogenetic Investigation of
Communities by Reconstruction of Unobserved States to assess the potential
functions and functional redundancy of the bacterial communities in sediment and
water in a eutrophic river-lake ecosystem, Poyang Lake in China. Bacterial
communities in sediment and water had distinct potential functions of carbon,
nitrogen, and sulfur metabolisms as well as phosphorus cycle, while the differences
between rivers and the lake were inconspicuous. Bacterial communities in
sediment had a higher relative abundance of genes associated with carbohydrate
metabolism, carbon fixation pathways in prokaryotes, methane metabolism,
anammox, nitrogen fixation, and dissimilatory sulfate reduction than that of water
column. Bacterial communities in water column were higher in lipid metabolism,
assimilatory nitrate reduction, dissimilatory nitrate reduction, phosphonate
degradation, and assimilatory sulfate reduction than that of sediment bacterial
communities. Furthermore, the variations in functional composition were closely
associated to the variations in taxonomic composition in both habitats. In general,
the bacterial communities in water column had a lower functional redundancy
than in sediment. Moreover, comparing to the overall functions, bacterial
communities had a lower functional redundancy of nitrogen metabolism and
phosphorus cycle in water column and lower functional redundancy of nitrogen
metabolism in sediment. Distance-based redundancy analysis and mantel test
revealed close correlations between nutrient factors and functional compositions.
The results suggested that bacterial communities in this eutrophic river-lake system
of Poyang Lake were vulnerable to nutrient perturbations, especially the bacterial
communities in water column. The results enriched our understanding of the
bacterial communities and major biogeochemical processes in the eutrophic
river-lake ecosystems.
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INTRODUCTION
Lakes and their tributaries are highly linked ecosystems in multiple ways, especially
through materials transported from the watershed to the lake through river systems
(Cole et al., 2006;Marcarelli & Wurtsbaugh, 2009; Jones, 2010; Ylla et al., 2013). Microbial
communities in lake and its tributaries have different taxonomic compositions (Ren et al.,
2017a, 2019). In lake ecosystems, water and sediment are two distinct realms and
interact closely through biogeochemical processes (Parker et al., 2016). These two habitats
host tremendous diversity of microorganisms (Lozupone & Knight, 2007; Röeske et al.,
2012; Huang et al., 2016), which constitute distinct microbial communities in sediment
and water column (Briée, Moreira & López-García, 2007; Nishihama et al., 2008; Ren et al.,
2019). However, the functional differences of bacterial communities in sediment and
water column of lake-river systems were not well studied.

In aquatic ecosystems, bacterial communities play an extremely important role in
transformation, accumulation, and migration of nutrients and other elements, as well as
in energy conversion and material recycling (Cotner & Biddanda, 2002; Van Der Heijden,
Bardgett & Van Straalen, 2008; Newton et al., 2011). Bacterial communities exhibit
high compositional and functional variability (Newton et al., 2011). Functional traits are
valuable ecological markers to understand the bacterial community assembly (Barberan
et al., 2012). Moreover, microbial metabolic activities can influence water quality through the
storage and release of nutrients (Nielsen et al., 2006; Hupfer & Lewandowski, 2008). Thus,
it is crucial to understand the roles of bacterial communities in biogeochemical cycling
and elucidate their responses to environmental changes by unraveling their functional
potentials (Green, Bohannan & Whitaker, 2008; Fierer et al., 2012; Freedman & Zak, 2015;
Ren et al., 2017b). In addition, previous studies suggested that distinct taxa can share specific
functional attributes while closely related taxa may exhibit distinct functional features
(Allison & Martiny, 2008; Philippot et al., 2010; Fierer et al., 2012; Dopheide et al., 2015).
Thus, the relationships between taxonomic and functional differences can help to elucidate
functional redundancy and stability of bacterial communities.

Changes in water quality and sediment properties drive the variation of bacterial
communities which regulate the core biogeochemical processes such as carbon and
nitrogen metabolisms in aquatic ecosystems (Liu et al., 2018;Wang et al., 2018; Yao et al.,
2018). As the largest freshwater lake in China, Poyang Lake is fed by five tributaries and
is experiencing aggravated nutrient loading from agriculture and urbanization of the
catchment in recent decades (Wang & Liang, 2015; Liu, Fang & Sun, 2016). The increase
in nutrient inputs caused by agriculture, urbanization, and industry has significantly
degraded water quality and ecological integrity of Poyang Lake with serious eutrophication
(Wang et al., 2015; Zhang et al., 2015; Liu, Fang & Sun, 2016). In the river-lake systems
of Poyang Lake, our previous study has shown that the taxonomic composition of
bacterial communities in lake sediment (SL), river sediment (SR), lake water (WL), and
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river water (WR) had distinct spatial distribution patterns and close relationships with
nutrients (Ren et al., 2019). However, our understanding of the functions mediated by the
bacterial communities in the sediment and water of this linked river-lake ecosystem is
still limited. To reveal the functional potentials of bacteria, metagenomic sequencing has
been used in a growing number of studies (Mackelprang et al., 2011; Fierer et al., 2012;
Llorens-Marès et al., 2015). Alternatively, Phylogenetic Investigation of Communities by
Reconstruction of Unobserved States (PICRUSt) is cheaper, faster, and reliable (Wilkinson
et al., 2018) and has been widely used to infer the functional profile of the bacterial
communities using 16S rRNA genes and a reference genome database to predict the
functional composition of a metagenome (Langille et al., 2013). In this study, we predicted
metagenomes from 16S rRNA gene sequences and classified into Kyoto Encyclopedia of
Genes and Genomes (KEGG) Orthologs (KOs) using PICRUSt. The KOs associated
with carbon, nitrogen, and sulfur metabolisms as well as phosphorus cycle were identified
from KEGG database (Kanehisa & Goto, 2000). We aimed to reveal the functional
properties of bacterial communities in SL, SR, WL, and WR in the river-lake system of
Poyang Lake, including (1) metabolism pathways of major functions, (2) influences of
nutrient variables on functional compositions, and (3) functional redundancy.

MATERIALS AND METHODS
Study area and field sampling
Poyang Lake is located in the lower reach of Yangtze River. With a surface area over
4,000 km2 (in summer), it is the largest freshwater lake in China. There are five rivers
(Fuhe, Ganjiang, Xinjiang, Raohe, and Xiushui) feeding Poyang Lake and one outlet
connecting to Yangtze River (Fig. 1). The annual runoff of Poyang Lake is 152.5 billion m3,
accounting for 16.3% annual runoff of Yangtze River. Poyang Lake is a shallow seasonal
lake and a typical water-carrying and throughput lake restricted by the water level of
Yangtze River and the inflows of the five tributaries (Fang et al., 2011; Zhao et al., 2011).
The high and low water levels of Poyang Lake are 20.69 and 9.82 m above the sea level,
respectively (Liao, Yu &Guo, 2017). The average water depth is 8.4 m (Wang& Liang, 2015).
Poyang Lake has been suffering persistent eutrophication (Liao, Yu & Guo, 2017).
Previous research shown that cyanobacteria blooms have been observed in Poyang Lake
since 2000 (Liu et al., 2016) but only occur periodically and regionally (Liu & Fang, 2017).
We did not find cyanobacteria bloom during our sampling in early August 2017.

We collected samples from Poyang Lake and its tributaries in 10 and 24 sample sites,
respectively (Fig. 1). In each sample site, a handheld meter (YSI Professional Plus, Yellow
Springs, OH, USA) was used to measure water temperature (Temp), dissolved oxygen
(DO), pH, and conductivity (Cond) in situ. Secchi disk depth was measured as well. Water
samples were collected at the depth of 0.5 m using a Van Dorn water sampler. A total
of 200 mL water was filtered onto a 0.2-mm Polycarbonate Membrane Filter (Whatman,
UK), which was immediately frozen in liquid nitrogen in the field and stored at -80 �C in
the lab until DNA extraction. Another 500 mL water was acid fixed in the field and
transported to the laboratory at 4 �C for chemical analyses. Sediment samples were
collected using a Ponar Grab sampler at the depth of 5.5–6.5 m in Poyang Lake and of

Ren et al. (2019), PeerJ, DOI 10.7717/peerj.7318 3/21

http://dx.doi.org/10.7717/peerj.7318
https://peerj.com/


3.9–5.8 m in the tributaries. The top five-cm sediment was homogenized by stirring
with a spatula, collected in a sterile centrifuge tube, and immediately frozen in liquid
nitrogen in the field for DNA extraction. The remaining sediment was collected in a clean
Ziploc bag for chemical analyses.

For water samples, total nitrogen (TN), nitrate (NO3
-), ammonium (NH4

+), total
phosphorus (TP), and soluble reactive phosphorus (SRP) were analyzed according to the
CleanWater Act Analytical Methods (United States Environmental Protection Agency (EPA),
2017). DOC was analyzed using a TOC Analyzer (TOC-VCPH; Shimadzu Scientific
Instruments, Kyoto, Japan). Detailed information of water sample analyses was provided in
our previous study (Ren et al., 2019). For sediment samples, TN was analyzed using the
modified Kjeldahl method (HJ717-2014). NO3

- and NH4
+ were analyzed using UV

spectrophotometry method (HJ634-2012). TP was analyzed using alkali fusion-Mo-Sb Anti
spectrophotometric method (HJ632-2011). Total organic carbon (OC) was analyzed using
Potassium dichromate oxidation spectrophotometric method (HJ615-2011). Organic
nitrogen was analyzed using acid hydrolysis method (Bremner, 1965). Organic phosphorus
was analyzed using SMT method (Ruban et al., 1999).

DNA extraction, PCR, and sequencing
DNAwas extracted from the filter and sediment (0.5 g) samples using the TIANGEN-DP336
soil DNA Kit (TIANGEN-Biotech, Beijing, China) following manufacturer protocols.
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Figure 1 Study area and sampling sites. Samples were collected from the surface water and sediment of
Poyang lake and its fiver tributaries (Xiushui, Ganjiang, Fuhe, Xinjiang, and Raohe). This figure was
modified from Ren et al. (2019). Full-size DOI: 10.7717/peerj.7318/fig-1
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Extracted DNA samples were quantified using a Qubit 2.0 Fluorometer (Invitrogen,
Carlsbad, CA, USA). The V3 and V4 regions were amplified using the forward primer
347F 5′-CCTACGGRRBGCASCAGKVRVGAAT-3′ and the reverse primer 802R
5′-GGACTACNVGGGTWTCTAATCC-3′ (GENEWIZ, Inc., South Plainfield, NJ, USA)
(Ren et al., 2019). PCR was performed using the following program: initial denaturation
at 94 �C for 3 min, 24 cycles of denaturation at 94 �C for 30 s followed by annealing
at 57 �C for 90 s and extension at 72 �C for 10 s, and final extension step at 72 �C for
10 min. Amplified DNA was verified by electrophoresis of PCR mixtures in 1.0% agarose
in 1� TAE buffer and purified using the Gel Extraction Kit (Qiagen, Hilden, Germany).
DNA libraries were validated by Agilent 2100 Bioanalyzer (Agilent Technologies,
Palo Alto, CA, USA), and quantified by Qubit 2.0 Fluorometer (Invitrogen, Carlsbad,
CA, USA). DNA libraries were multiplexed and loaded on an Illumina MiSeq instrument
(Illumina, San Diego, CA, USA) according to manufacturer’s instructions.

Sequence analysis and functional gene prediction
Raw sequence data was processed using the software package QIIME 1.9.1 (Caporaso et al.,
2010). The forward and reverse reads were joined and assigned to samples based on
barcode and truncated by cutting off the barcode and primer sequence. Then the sequences
were quality filtered, and the chimeric sequences were removed. Sequences which did
not fulfill the following criteria were discarded: sequence length <200 bp, no ambiguous
bases, mean quality score �20 (Ren et al., 2019). The effective sequences were grouped
into operational taxonomic units (OTUs) at 97% sequence identity level against the
Greengenes 13.8 database (McDonald et al., 2012). Then the functional potentials of the
bacterial communities were predicted using PICRUSt 1.1.0 and the nearest sequence
taxon index (NSTI) was calculated to indicate the accuracy of PICRUSt prediction
(Langille et al., 2013). The average NSTI was 0.146, indicating high accuracy (Langille et al.,
2013). Then, the predicted metagenomes were further classified into KEGG KOs. The KOs
associated with carbon, nitrogen, and sulfur metabolism as well as phosphorus cycle
were identified from KEGG database (Kanehisa & Goto, 2000; Bergkemper et al., 2016).
The Raw sequence data are available at National Center for Biotechnology Information
(PRJNA436872, SRP133903).

Statistical analysis
To reveal the functional differences (overall metagenomic functions and the major
functions, including carbon metabolism, nitrogen metabolism, phosphorus cycle, and
sulfur metabolism) between the bacterial communities in different habitats of the
river-lake ecosystem of Poyang Lake, non-metric multidimensional scaling (NMDS)
and analysis of variance using distance matrices (ADONIS) were applied using the Vegan
package 2.4–6 (Oksanen et al., 2007) based on the relative abundance of KOs. Differences
of the major pathways associated to carbon metabolism, nitrogen metabolism,
phosphorus cycle, and sulfur metabolism between the bacterial communities in sediment
and water column were tested using analysis of variance and the P-values were adjusted
by FDR correction. Linear regression was used to assess the relationships between
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taxonomic and functional dissimilarities, revealing functional redundancy of the bacterial
communities (stronger linear regression indicates lower functional redundancy) (Yang
et al., 2017; Galand et al., 2018). Taxonomic and functional dissimilarities were calculated
as Bray–Curtis distances based on the phylogenetic and metagenomic compositions
(relative abundance of OTUs and KOs, respectively). The differences of linear regression
slopes were compared using analysis of covariance (ANCOVA). Distance-based
redundancy analysis (dbRDA) was conducted using Vegan package to reveal the
relationships between environmental variables (normalized using “normalize” method)
and overall functional compositions (relative abundance of KOs, Hellinger transferred) of
bacterial communities in sediment and water column, and the significance of the nutrient
variables was tested using Envfit function in R. Mantel tests were applied to assess the
relationships between nutrient factors and major functions and the P-values were adjusted
by FDR correction. All the analyses were conducted in R 3.4.4 (R Core Team, 2017).

RESULTS
Functional differences
In total, 6,295 and 6,187 KOs were detected in bacterial communities in sediment and
water column. Profound differences were detected in functional compositions between
sediment and water. NMDS and ADONIS showed that bacterial communities in LS and RS
were significantly (P < 0.05) different to LW and RW (LS vs. LW and RS vs. RW),
respectively (Fig. 2). However, there was no difference between Poyang Lake and its
tributaries (LS vs. RS and LW vs. RW, Fig. 2). For carbon metabolism, we detected 242 KOs
associated to central carbon metabolism pathways (ko01200) based on the KEGG
database. Carbohydrate metabolism, carbon fixation pathways in prokaryotes, and
methane metabolism had a higher relative abundance of associated genes in the bacterial
communities in sediment than in water (Fig. 3A). However, the lipid metabolism had a
higher relative abundance in water than in sediment (Fig. 3A). For the nitrogen
metabolism, we detected 41 KOs associated to nitrogen metabolism pathways (ko00910 in
KEGG database). Bacterial communities had a higher relative abundance of genes
associated to anammox and nitrogen fixation in sediment than in water (Fig. 3B).
However, assimilatory nitrate reduction to ammonia (ANRA) and dissimilatory nitrate
reduction to ammonia (DNRA) had a higher relative abundance in water than in sediment
(Fig. 3B). For phosphorus, we detected 43 KOs associated to phosphorus cycle.
Phosphonate degradation had a higher relative abundance in water than in sediment
(Fig. 3C). For sulfur metabolism, we detected 45 KOs associated to the sulfur metabolism
pathways (ko00920 in the KEGG database). Assimilatory sulfate reduction had a lower
relative abundance while dissimilatory sulfate reduction had a higher relative abundance in
sediment than in water (Fig. 3D).

Environmental influences
The results of dbRDA indicated that the overall functional compositions of bacterial
communities in sediment were significantly correlated with TP and NO3

- (Fig. 4A). The first
two axes explained 31.85% of the functional variation (dbRDA 1: 19.21%; dbRDA 2: 12.64%).
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For the bacterial communities in water column, the overall functional compositions were
significantly correlated with TN, NO3

-, TP, TN:TP, DOC:DIN, DIN:SRP, as well as
Cond, Temp, DO, and pH (Fig. 4B). The first two axes explained 67.03% of the functional
variation (dbRDA 1: 47.79%; dbRDA 2: 19.24%). Mantel tests further demonstrated
that the spatial variations of the major biogeochemical processes (C-metabolism,
N-metabolism, P-cycle, and S-metabolism) were significantly influenced by TP and NO3

-

in sediment, and by TN, TP, SRP, DOC:DIN, and DOC:SRP in water column (Fig. 5).

Functional redundancy
Linear regressions between taxonomic and functional dissimilarities showed that the
variations in metagenomic functional composition (overall, C-metabolism, N-metabolism,
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P-cycle, and S-metabolism) were closely associated with the variations in phylogenetic
composition (Fig. 6). However, sediment bacterial communities had significantly smaller
slopes than bacterial communities in water column (ANCOVA, P < 0.05, Fig. 6F).
For the major functions in sediment, nitrogen metabolism had a higher slope, followed by
sulfur metabolism, carbon metabolism, and phosphorus cycle (Fig. 6). In the water
column, however, nitrogen metabolism and phosphorus cycle had higher slopes than
carbon and sulfur metabolisms (Fig. 6). The results suggested that bacterial communities
in sediment had higher functional redundancy than in the water column. Moreover,
bacterial communities had lowest functional redundancy for nitrogen metabolism but
highest functional redundancy for phosphorus cycle in sediment, while had lowest
redundancy for both nitrogen metabolism and phosphorus cycle in the water column.

DISCUSSION
In this study, the functional composition of bacterial communities in the river-lake system
of Poyang Lake were different between water and sediment (LS vs. LW and RS vs. RW),
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while no different between tributaries and the lake itself (LS vs. RS and LW vs. RW).
In our previous study of the river-lake system of Poyang Lake (Ren et al., 2019), bacterial
communities were taxonomically different between sediment and water. It has been
well demonstrated that sediment and water had distinct bacterial communities (Jiang
et al., 2006; Nishihama et al., 2008; Lu et al., 2016), which might determine significant
functional differences (Fierer et al., 2012; Ren et al., 2017a). However, the taxonomical
differences of bacterial communities between Poyang Lake and its tributaries were
significant but smaller compared to the differences between sediment and water (Ren et al.,
2019). In generally, bacterial communities were more taxonomically different than
functional different (Louca et al., 2017; Ren et al., 2017a). Thus, the small differences
in taxonomic composition of bacterial communities did not lead to their functional
differences between Poyang Lake and its tributaries.
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This study showed that carbohydrate metabolism, carbon fixation pathways in
prokaryotes, and methane metabolism had a higher relative abundance in the bacterial
communities in sediment than in water, and the lipid metabolism had a higher relative
abundance in water than in sediment. The results suggested that bacterial communities in
sediment and water had distinct carbon metabolism pathways. Organic matter (OM)
transported by river provides fueling aquatic food webs as a major source of energy and is
also a significant component of the global carbon cycle (Cole et al., 2007; Battin et al.,
2008; Smith & Kaushal, 2015). In freshwater ecosystems, OM is a heterogeneous
mixture including allochthonous materials contributed by soil and plant litter inputs from
terrestrial ecosystems and autochthonous materials contributed by primary producers
in freshwater ecosystems (Webster & Meyer, 1997). OM is consisted of carbohydrates,
proteins, lipids, lignins, and other compounds in aquatic ecosystems (Thurman, 2012).
Microorganisms are key biogeochemical agents in the generation, transformation,
and mineralization of OM (Horvath, 1972).Variations of OM in its source and composition,
as well as the bioavailability of its components determine the spatial patterns of bacterial
composition and functional diversity (Hoostal & Bouzat, 2008;Wang et al., 2018). In aquatic
ecosystems, sediment and water column have distinct redox environments (Röeske et al.,
2012), and the OM derives from different sources with different compositions (Hedges,
Clark & Come, 1988). These differences might lead to the distinct carbon metabolisms
between water and sediment. For example, the reduction condition in sediment is benefit
to methane production (Koyama, 1963; He et al., 2015; Liu & Xu, 2016). In sediment,
methane-oxidizing and sulfate-reducing bacteria also play the roles in carbon fixation
(Kellermann et al., 2012).

Our study also showed that sediment and water column were significantly different
in nitrogen metabolism, suggesting different nitrogen use strategies. In the past century,
the nitrogen entering freshwater ecosystem has been increased more than twofold by
anthropogenic activities (Schlesinger, 2009; Meunier et al., 2016), contributing to
eutrophication in lake and coastal ecosystems (Nixon, 1995; Smith, 2003). Poyang Lake
has been facing serious threat of eutrophication (Wang et al., 2015; Zhang et al., 2015;
Liu, Fang & Sun, 2016) because of the aggravated nutrient loading from agriculture and
urbanization of the catchment in recent decades (Wang & Liang, 2015; Liu, Fang &
Sun, 2016). Nitrogen has many different chemical forms from the oxidation state of nitrate
(+5) to the reduction state of ammonia (-3) and is cycled by a suite of biogeochemical
processes (Ollivier et al., 2011), including four reduction pathways (denitrification, nitrogen
fixation, ANRA, and DNRA) and two oxidation pathway (anammox and nitrification)
(Lamba et al., 2017). In aquatic ecosystems, denitrification is the main biological process
turning nitrate to dinitrogen and nitrous oxide (Tiedje et al., 1983; Seitzinger, 1988)
and anammox is another important pathway turning nitrite and ammonia to dinitrogen
(Dalsgaard et al., 2003; Kuypers et al., 2003). Both denitrification and anammox play
important roles in removing nitrogen from aquatic ecosystems. In our study, bacterial
communities in both sediment and water had a high relative abundance of the genes
associated to denitrification, suggesting strong potentials in nitrogen removal. Many
previous studies have demonstrated that rivers and lakes are hot spots to remove N inputs
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to surface waters from terrestrial environments (Wollheim et al., 2008; Harrison et al.,
2009; Beaulieu et al., 2011). Denitrification can be limited by the supply of NO3

- and OC,
as well as redox potential (Van Kessel, 1977; Seitzinger, 1988). Furthermore, nitrification
is also an important process in the N cycle and couples with denitrification (Jenkins &
Kemp, 1984; Nils, 2003), especially in the shallow lakes. In the eutrophic river-lake
system of Poyang Lake, the high contents of OM and NO3

- in water and sediment can
facilitate denitrification. Moreover, the respiration in sediment can provide an anoxic
environment and promote sediment denitrification. On the other hand, it has also been
supported by many studies that aerobic denitrification can be performed by a broad range
of bacterial organisms under an aerobic environment (Ji et al., 2015; Lv et al., 2017).
In our study, the high potential denitrification (potential NO3

- reductions) in water might
be performed through aerobic denitrification with the facilitation of high supplement
of OM and NO3

-. In addition to denitrification, bacterial communities in sediment had a
significantly higher relative abundance of the genes associated to anammox than in water.
It was found that anammox can coupled to nitrate reduction to contribute substantially
to produce dinitrogen in sediments (Thamdrup & Dalsgaard, 2002). These results
suggested that the bacterial communities in water and sediment of this eutrophic river-lake
system had strong functional potentials but different strategies in nitrogen removal.
In contrast to nitrogen removal, bacterial communities in sediment also had a higher
relative abundance of genes associated with nitrogen fixation. In fact, the genetic
potential of nitrogen fixation is pervasive among the domains of Bacteria and Archaea
(Zehr et al., 2003). Nitrogen fixation and denitrification can co-occur in sediments through
heterotrophic nitrogen fixation (Newell et al., 2016). We have underestimated the
importance of heterotrophic sediment nitrogen fixation in the past, which can be an
important source of nitrogen even under higher inorganic nitrogen concentrations
(Fulweiler & Heiss, 2014; Newell et al., 2016). Examining the expression of the genes
encoding for nitrogenase (such as nifD, nifH, nifK, and anfG) in the bacterial communities
can help us understand the nitrogen fixation potential in freshwater ecosystems. In our
study, the high relative abundance of genes associated to nitrogen fixation suggested a
significant nitrogen fixation potential in sediment in Poyang Lake and its tributaries.
In nitrogen metabolism pathways, both ANRA and DNRA had a higher relative abundance
in water than in sediment, suggesting strong potentials of nitrate reduction to ammonia
for bacterial communities in water column. ANRA and DNRA serve distinct cellular
functions (Lamba et al., 2017): ANRA consumes energy and provides ammonium for cell
to synthesize amino acids and nucleotides, while NDRA generates ATP in absence of
oxygen and retains the nitrogen in the form of NH4

+ for further biological processes
(Zumft, 1997).

Phosphorus is an essential element in all ecosystems used by all living organisms.
Bacteria plays a pivotal role in natural phosphorus cycles on the earth (Ohtake et al., 1996;
Kononova & Nesmeyanova, 2002). In this study, the results showed that phosphonate
degradation had a higher relative abundance in water than in sediment. Phosphonates
are characterized by direct carbon-to-phosphorus bonds, which are resistant to chemical
hydrolysis and thermal degradation (Ohtake et al., 1996; Kononova & Nesmeyanova, 2002).
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In polluted freshwater ecosystems, large quantities of phosphonates are xenobiotics, such
as pesticides, antibiotics, and detergent additives (Schowanek & Verstraete, 1990). It has
been revealed that phosphonates are significantly removed from marine basin due to
rapid release and remineralization (Benitez-Nelson et al., 2004). Our study suggested that
bacterial communities in water column are important in phosphonates removal.

For sulfur metabolism in the eutrophic river-lake system of Poyang Lake, our study
showed that the assimilatory reduction is more common than dissimilatory reduction
and the bacterial communities in water had a higher assimilatory sulfur reduction
potential while lower dissimilatory sulfate reduction than in sediment. Sulfur is an
important element required for some cellular components related to proteins. In the sulfur
metabolism of bacteria, assimilatory sulfate reduction commences with the incorporation
of sulfide radical for the biosynthetic cycle. Thus, during assimilatory sulfate reduction,
there is no sulfide produced. For some microorganisms, sulfur compounds are utilized
in dissimilatory and energy-yielding metabolic processes, which takes place in anaerobic
respiration. During dissimilatory sulfate reduction, sulfate ion is used as the terminal
electron acceptor and is reduced to produce sulfide, in the meantime, OC is mineralized
with producing of carbon dioxide. In SLs, dissimilatory sulfate reduction can account
for a significant fraction of OC mineralization, especially in eutrophic lakes with
high availabilities of OM and sulfate (Holmer & Storkholm, 2001). The differences of sulfur
metabolism between water and sediment shed light on sulfur use strategies of bacterial
communities in these two distinct habitats.

As discussed above, biogeochemical cycles of C, N, P, and S are important ecological
functions in freshwater ecosystems. In our study, mantel tests showed significant
correlations between taxonomic and functional dissimilarity matrixes (beta diversities),
suggesting that the overall changes in potential functions, as well as the changes of
potential metabolisms of C, N, P, and S were closely associated with changes in taxonomic
compositions of the bacterial communities. Functional redundancy always exists in
natural ecosystems (Cardinale, Nelson & Palmer, 2000; Rosenfeld, 2002; Allison &Martiny,
2008) and is measured by the correlation between taxonomic and functional gene
diversities (Fierer et al., 2013; Yang et al., 2017). Functional redundancy occurs when
different organisms execute a similar function, remaining functional stabilization of
communities upon species loss (Rosenfeld, 2002; Nyström, 2006). Our results showed
that the bacterial communities in water column had a lower redundancy of overall
functions than in sediment. Moreover, compared to overall functions, sediment
bacterial communities had lower functional redundancy of N metabolism, and bacterial
communities in water column had lower functional redundancy of N metabolism and
P cycle. In bacterial communities, functional redundancy is expected to allow bacterial
communities to have a certain extent of resistance and resilience in facing environmental
perturbations (Allison & Martiny, 2008; Bowen et al., 2011). The results suggested that
the bacterial communities in water column were less stable than bacterial communities
in sediment. Moreover, N metabolism and P cycle was more vulnerable to environmental
perturbations than C and S metabolisms, influencing nutrient biogeochemical processes in
the eutrophic river-lake system of Poyang Lake.
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CONCLUSIONS
In this study, we assessed the functional properties of bacterial communities in SL, SR,
WL, and WR in the river-lake system of Poyang Lake. In general, the results showed that
bacterial communities in sediment and water had distinct potential functions in the
biogeochemical processes of carbon, nitrogen, phosphorus, and sulfur. However, there was
no difference between tributaries and the lake itself. Moreover, bacterial communities in
water column had a lower functional redundancy than in sediment. Comparing to the
overall functions within systems, bacterial communities had lower functional redundancy
of nitrogen metabolism in sediment, and lower functional redundancy of nitrogen
metabolism and phosphorus cycle in water column. In this eutrophic river-lake system,
functional compositions of the bacterial communities were vulnerable to nutrient
perturbations especially in water column. By revealing the metabolism pathways of major
functions, the influences of nutrient variables on functional compositions, and functional
redundancy, this study can provide insights into the microbial community structures
and ecological processes in this river-lake system.
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