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Pine moths, Dendrolimus spp. (Lepidoptera; Lasiocampidea), are serious economic pests of

conifer forests. Six closely related species (Dendrolimus punctatus, D. tabulaeformis, D.

spectabilis, D. superans, D. houi, and D. kikuchii) occur in China and cause serious damage

to coniferophyte. The complete mito genomes of Dendrolimus genus are significant to

resolve the phylogenetic relationship and provide theoretical support in pest control. The

complete mitogenomes of 3 species (  D. superans, D. houi and D. kikuchii)  were

sequenced based on PCR-amplified with universal primers, which were used to amplify

initial fragments. The phylogenetic analyses were carried out with 78 complete

mitogenomes of lepidopteran species from 10 superfamilies.The complete mitochondrial

genomes of these 3 species were 15,417 bp, 15,381 bp and15,377 bp in length,

separately. The phylogenetic analyses produced consistent results for six Dendrolimus

species based on complete mitogenomes, two major clades were formed, one containing

D. spectabilis clustered with D. punctatus + D. tabulaeformis, and D. superans as the

sister group to this three-taxon clade, the other containing D. kikuchii and D. houi.

Comparative analyses of the congeneric mitochondrial genomes were performed, which

showed that non-coding regions were more variable than the A+T rich

region. The mitochondrial nucleotide diversity were more variable when compared within

than among genus, and the concatenated tRNA region was the most conserved and the

nd6 genes was the most variable.
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16 Abstract

17 Backgroud. Pine moths, Dendrolimus spp. (Lepidoptera; Lasiocampidea), are serious economic 

18 pests of conifer forests. Six closely related species (Dendrolimus punctatus, D. tabulaeformis, D. 

19 spectabilis, D. superans, D. houi, and D. kikuchii) occur in China and cause serious damage to 

20 coniferophyte. The complete mitogenomes of Dendrolimus genus are significant to resolve the 

21 phylogenetic relationship and provide theoretical support in pest control. 

22 Methods. The complete mitogenomes of 3 species (D. superans, D. houi and D. kikuchii) were 

23 sequenced based on PCR-amplified with universal primers, which were used to amplify initial 

24 fragments. Phylogenetic analyses were carried out with 78 complete mitogenomes of lepidopteran 

25 species from 10 superfamilies.

26 Results. The complete mitochondrial genomes of these 3 species were 15,417 bp, 15,381bp 

27 and15,377bp in length, separately. The phylogenetic analyses produced consistent results for six 

28 Dendrolimus species based on complete mitogenomes, two major clades were formed, one 

29 containing D. spectabilis clustered with D. punctatus + D. tabulaeformis, and D. superans as the 

30 sister group to this three-taxon clade, the other containing D. kikuchii and D. houi. Comparative 
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31 analyses of the congeneric mitochondrial genomes were performed, which showed that non-coding 

32 regions were more variable than the A+T rich region. The mitochondrial nucleotide diversity was 

33 more variable when compared within than among genus, and the concatenated tRNA region was 

34 the most conserved and the nd6 genes was the most variable.

35 Keywords: Mitogenomic, Phylogeny, Dendrolimus superans, D. houi, D. kikuchii

36

37 Introduction 

38 Pine moths in the genus Dendrolimus (Lepidoptera: Lasiocampidae) are major economic pests of 

39 coniferous trees, such as Pinus, Larix, Picea and Abies, and especially the Masson’s pine (Pinus 

40 massoniana). The caterpillars feed extensively on conifer needles; the resulting damage may 

41 reduce the tree’s seed yield and can lead to heavy defoliation, dieback, and death (Hou, 1987; 

42 Chen, 1990; Zhang et al., 2003). During an outbreak period, a pine tree can be consumed in a few 

43 days, causing withering and death of pine forests on a large-scale. Furthermore, direct contact with 

44 living or dead caterpillars, even their pupae, results in poisoning known as caterpillar arthritis, with 

45 serious consequences for human health (Hou, 1987). Twenty-seven species of Dendrolimus are 

46 known to occur in China, six of them (D. houi, D. kikuchii, D. punctatus, D. spectabilis, D. 

47 superans, D. tabulaeformis) are widely distributed (Hou, 1987; Chen, 1990).

48 These six major pest species are closely related and their discrimination is challenging 

49 (Zhang, Kong & Li, 2004). Morphological diagnoses have proven difficult because many of the 

50 characters commonly used to distinguish pine moth species are non-discrete and overlapping 

51 amongst the species. Furthermore, some Dendrolimus species are sympatric coexistence and 

52 sharing similar host plants (Tsai & Liu, 1962). Hybridization experiments and several molecular 

53 studies have been conducted, but no consensus has been achieved regarding their species status 

54 (Zhao et al., 1992; Dai et al., 2012; Zhang et al., 2014).

55 Mitochondrial genomes (mitogenomes) have been widely used in phylogenetic, population 

56 genetics and comparative genomics studies (Wilson et al., 2000; Simon et al., 2006; Salvato et al., 

57 2008; Cameron, 2014; Qin et al., 2015). Insect mitogenomes have relatively stable structure, such 

58 as double-stranded, circular DNA molecule, 14-20 kb in size, comprising 37 genes including 13 

PeerJ reviewing PDF | (2019:02:35083:0:1:NEW 19 Feb 2019)

Manuscript to be reviewed

Battisti
Comment on Text
see comment above

Battisti
Comment on Text
this should be better supported because Dendrolimus are very important also on other species (e.g. in Siberia)

Battisti
Comment on Text
I recommend to enlarge the analysis to include other Palaearctic species such as Dendrolimus sibiricus and Dendrolimus pini.
Especially D. sibiricus should be important for the authors because it is close to D. superans and has been already considered in a genetic survey based on mithocondrial genes. This paper is not cited here.
Kononov A, Ustyantsev K, Wang B, Mastro VC, Fet V, Blinov A and Baranchikov Y, 2016. Genetic diversity among eight Dendrolimus species in Eurasia (Lepidoptera: Lasiocampidae) inferred from mitochondrial COI and COII, and nuclear ITS2 markers. BMC Genetics, 17 (Suppl 3), 157, 173-191.
In addition, it includes a map with the distribution range that it should be useful for data discussion.

Battisti
Comment on Text
see previous comment for further information not cited here



59 protein-coding genes (Boore, 1999). Due to its nature of maternal inheritance, mitogenomes has a 

60 fast rate of evolution and is particularly useful in phylogenetic analysis (Hebert, Cywinska & Ball., 

61 2003). In addition, whole mitogenome sequences can also provide sets of genome-level characters, 

62 such as the relative position of different genes, structural genomic features and compositional 

63 features, which could be quite useful in phylogenetic analysis (Thao, Baumann & Baumann.,2004; 

64 Masta & Boore., 2008). 

65 Whole mitogenomes instead of several separated gene fragments have been used extensively 

66 to construct phylogenies (31, 32), which providing higher support levels (Boore, 2006; Yang et 

67 al., 2015). Within the order Lepidoptera, multiple studies have used mitogenomes to reconstruct 

68 the phylogenetic relationships among and within superfamilies (Whiting et al., 1997;Yang et al., 

69 2009; Timmermans, Lees & Simonsen., 2014). Technological advancements have triggered rapid 

70 increases in the amount of whole mitogenomes, up to 500 of insect mitogenome have been 

71 deposited in GenBank (Timmermans, Lees & Simonsen., 2014). However, one of the most recent 

72 report shows that only 140 complete Lepidoptera mitogenomes (28 families from 12 

73 superfamilies) have been sequenced, and only 64 are available for moth species (Ramírez-Ríos et 

74 al., 2016).

75 The ease and decreased cost of obtaining whole mitogenome sequences has provided the 

76 possibility of comparative genomic studies across short evolutionary distances (i.e., congeneric) 

77 (Curole & Kocher, 1999) providing an understanding of evolutionary dynamics and trends in a 

78 phylogenetic framework. 

79 In this study, six complete mitogenomes from three species (D. superans, D. houi and D. 

80 kikuchii, 2 individuals per species) were newly sequenced. These were combined with the 

81 complete mitogenomes of three other species (D. punctatus, D. tabulaeformis, D. spectabilis), 

82 which have been published previously (Qin et al., 2015), to investigate the taxonomic status of 

83 species in the genus Dendrolimus. To place the relationships within the genus Dendrolimus within 

84 a broader context, we also conducted phylogenetic analyses of mitogenomes from other 64 

85 lepidopteran species (mainly moth species). In order to investigate the evolutionary dynamics 

PeerJ reviewing PDF | (2019:02:35083:0:1:NEW 19 Feb 2019)

Manuscript to be reviewed

Battisti
Comment on Text
there is a problem with the full stop here and in other citations 

Battisti
Comment on Text
this is not your topic, it would be better to stress specific papers dealing with genera or smaller groups.


Battisti
Comment on Text
it should be specified why D. sibiricus, considered very close to D. superans and occurring also in northern China according to Kononow et al. 2016 was not included.
Or at least the authors can compare their sequences with those available for D. sibiricus, for the relevant part of the mitochondrial genome



86 among six Dendrolimus species, comparative analyses were conducted based on 14 mitogenomes 

87 (including 2 subspecies of D. punctatus), comparing nucleotide composition, codon usage, 

88 differences of overlap and non-coding regions.

89

90 Materials & Methods

91 Sample collection, DNA extraction, PCR amplification, sequencing, sequence assembly and 

92 annotation

93 Adult pine moth specimens were sampled at four locations in China (Supplemental Information 

94 1). All specimens were preserved in 95% ethanol in the field and stored at 4℃ in the laboratory 

95 until DNA extraction. The specimens were identified by Chun-sheng Wu, Institute of Zoology, 

96 Chinese Academy of Sciences, China, using morphological characters. Six individuals of three 

97 species (D. kikuchii, D. houi and D. superans, 2 individuals for each species) were selected for 

98 sequencing in this study. Total genomic DNA was extracted from thoracic muscle tissue and leg 

99 muscle tissue using a DNeasy BLOOD and Tissue kit (QIAGEN) following the manufacturer’s 

100 protocol. 

101 Mitochondrial genomes were PCR-amplified and sequenced as described in our previous 

102 study (Qin et al., 2015). In brief, universal primers were used to amplify initial fragments. Specific 

103 fragments were then designed to amplify overlapping regions (i.e. primer walking) (Salvato et al., 

104 2008; Gissi, Iannelli & Pesole., 2008). PCR recipes and conditions followed Qin et al. (2015). All 

105 reactions were performed using Takara LA taq (TaKaRa Co., Dalian, China). PCR fragments 

106 containing the control region were cloned into the pEASY-T3 Cloning Vector (Beijing TransGen 

107 Biotech Co., Ltd., Beijing, China) and then sequenced by using tailed primers, M13-F 

108 (CGCCAGGGTTTTCCCAGTCACGAC) and M13-R (GAGCGGATAACAATTT 

109 CACACAGG) primers. 

110 Raw sequences were checked manually and assembled on the basis of overlapping regions 

111 with the Bioedit V7.0.5 (Caredata.com, Inc.). The tRNA genes were identified by tRNAscan-SE 

112 Search Server v.1.21 (Simon et al., 1994). Protein-coding and rRNA genes were determined by 
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113 comparing homologous sequences with other published Lepidoptera mitochondrial genomes 

114 (following (Qin et al., 2015)). The sequence data have been deposited in GenBank under accession 

115 numbers (KY000409 - KY000414).

116 Phylogenetic analysis 

117 Phylogenetic analyses were carried out with 78 complete mitogenomes mined from Genbank 

118 representing lepidopteran species from 10 superfamilies (Supplemental Information 2). Four 

119 mitogenomes of Diptera species were selected as outgroups: Anopheles darlingi (NC_014275) 

120 (Lowe & Eddy, 1997), Culex quinquefasciatus (NC_014574) (Moreno et al., 2010), Cydistomyia 

121 duplonotata (NC_008756) (Behura et al., 2011) and Drosophila yakuba (NC_001322) (Cameron 

122 et al., 2007). 

123 Nucleotide sequences of the 13 protein-coding genes were aligned based on the translated 

124 amino acid sequences using a customized perl script. Non-protein coding region were aligned 

125 using MUSCLE with default settings (Edgar, 2004). The separated genes and partitions were 

126 concatenated with SequenceMatrix software (Vaidya, Lohman & Meier, 2011). The concatenated 

127 sets of nucleotides were organized into two datasets: dataset 1 representing the 13 protein-coding 

128 genes (PCG) only and dataset 2 representing 37 genes (13 PCGs + 22 transfer RNA genes (tRNA) 

129 + 2 ribosomal RNA genes (rRNA)). Substitution saturations of 2 datasets were tested with software 

130 DAMBE (Xia & Xie, 2001), and both datasets were used in phylogenetic analyses, under the 

131 optimality criteria of maximum likelihood (ML) and Bayesian inference (BI) (Ronquist & 

132 Huelsenbeck, 2003). 

133 In order to standardize the partitioning strategy as recommended for phylogenetic analyses 

134 with mitogenomes (Zardoya & Meyer, 1996), PartitionFinder v1.1.1software was used to select 

135 the optimal partitioning scheme and to find the best-fitting substitution model for each partition 

136 under the Bayesian Information Criterion (Lanfear et al., 2012). Not only that, optimized 

137 nucleotide substitution models could avoid being affected by the long branch attraction to some 

138 extent (Bergsten, 2005). The maximum possible partition scheme was 15 partitions: each protein-

139 coding gene as a separate partition, the concatenated 22 tRNA genes and the concatenated rRNA 
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140 genes). 

141 ML analysis was performed with RAxML v7.9.6 and BI analysis with a parallel version of 

142 MrBayes v 3.2.2 (Stamatakis, 2006; Ronquist et al., 2012). The GTR+G+I model was selected for 

143 each partition in the two datasets. Support values for the ML topologies were evaluated via 

144 bootstrap tests with 1000 iterations (in RaxML). BI analysis was conducted with two sets of four 

145 independent Markov chains run for 10 million Metropolis-coupled (MCMC) generations, with tree 

146 sampling occurring every 1000 generations, and burn-in set to 25% of the trees. After 10 million 

147 generations, all runs reached stationary as determined by the program Tracer v1.5.0 (Rambaut & 

148 Drummond, 2007). 

149 Genetic distance analysis among closely related species of Dendrolimus

150 In order to test the intraspecific and interspecific differentiation of Dendrolimus, 14 mitogenomic 

151 were used to calculate the genetic distance across the two datasets described above, which 

152 including two subspecies of D. punctatus (D. punctatus punctatus and D. punctatus wenshanensis) 

153 and other 5 species. Genetic distances were calculated using the GTR model selected as the best 

154 model by AIC (Akaike information criterion) which performed with Modeltest 3.7 (Posada & 

155 Buckley,2004; Ronquist et al., 2012). Genetic distances were calculated using a custom C++ script 

156 that uses the bio++ function library (Guéguen et al., 2013). A correlation matrix was also estimated 

157 according to obtained genetic distance matrix. Correlation values ranged from -1 to 1, where values 

158 closer to 1 are indicative of a closer relationship. A graphical visualization of the genetic distances 

159 and correlation matrix was drawn using the corrplot.mixed function in R package (Wei, 2013). 

160 Comparative mitogenome analyses of Dendrolimus

161 Nucleotide composition, codon usage (excluding stop codons) and Relative Synonymous Codon 

162 Usage (RSCU) were calculated across 14 mitogenomes of Dendrolimus with MEGA 5.0 (Tamura, 

163 2011). Composition skew was calculated using the formulae: AT skew = (A-T)/ (A+T) and GC 

164 skew = (G-C)/ (G+C) (Perna & Koche, 1995). Sliding window analyses were used to calculate 

165 nucleotide diversity values across protein-coding genes and regions, which executed with DnaSP 

166 software (Librado & Rozas, 2009). The window size and step size were set to 100bp and 25bp, 
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167 separately.

168

169 Results & Discussion

170 Phylogenetic analyses 

171 Phylogenetic analyses of Dendrolimus resulted in a fully resolved tree with robust support for 

172 nearly all nodes (Figure 1). Phylogenetic analyses inferred from different datasets exhibited the 

173 same topology. Six species formed two major clades: D. punctatus + D. tabulaeformis + D. 

174 spectabilis + D. superans (Clade 1) was the sister group to D. kikuchii and D. houi (Clade 2). 

175 Within ‘Clade 1’, D. spectabilis clustered with D. punctatus + D. tabulaeformis, and D. superans 

176 was the sister group to this three-taxon clade. 

177 The topology of our mitogenome Dendrolimus phylogeny showed some differences from the 

178 topology proposed by previous studies. Zhang et al. (2014) constructed a phylogeny of 

179 Dendrolimus based on one pheromone-binding proteins (PBPs) and two general odorant-binding 

180 proteins (OBPs) which D. houi was proposed as a basal species of Dendrolimus. But complete 

181 mitogenomes provide more information than OBPs (266 - 381bp). However, the relationships of 

182 D. tabulaeformis, D. punctatus, and D. spectabilis were verified with mitogenomes analysis, 

183 sharing a closer relationship to each other with respect to D. superans.

184 In the phylogenetic analyses of 78 moth mitogenomes the monophyly of each superfamily 

185 was generally well-supported and there was consistency with prior studies (Yang et al., 2009; 

186 Kawahara & Breinholt., 2014; Qin et al., 2015). In our study, Lasiocampoidea and Bombycoidea 

187 were monophyletic and clustered together as sister groups with high support. Previous studies have 

188 included Lasiocampidae within Bombycoidea (Brock, 1971; Scoble, 1992; Kawahara & 

189 Breinholt., 2014), while other studies have treated Lasiocampidae as a distinct superfamily 

190 Lasiocampoidea (Minet, 1991; Regier et al., 2009; van Nieukerken et al., 2011; Bazinet et al., 

191 2013).

192 Similar trees were obtained based on both datasets, the only difference was among the 

193 superfamilies Bombycoidea, Geometroidea, Lasiocampoidea and Noctuoidea, which altogether 
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194 constitute approximately 73 000 described species (Minet, 1991). The 13 PCG dataset phylogeny 

195 placed Geometroidea with Bombycoidea and Lasiocampoidea, and Noctuoidea as the sister group 

196 to this three-taxon clade (53% BP support and 0.78 posterior probabilities) (Figure 1), which 

197 revealed similar relationship with a prior study (van Nieukerken et al., 2011). Nonetheless, the 37 

198 gene dataset phylogeny (Supplemental Information 3) placed Bombycoidea + Lasiocampoidea as 

199 the sister group to Geometroidea + Noctuoidea with higher branch support (100% BP support and 

200 1.0 posterior probabilities). The latter relationship was demonstrated with morphological and 

201 multigenetic proofs (van Nieukerken et al., 1758; Regier et al., 2009; Bazinet et al., 2013; 

202 Kawahara & Breinholt, 2014). 

203 Within the Bombycoidea, the relationship among the families Bombycidae, Sphingidae and 

204 Saturniidae has been difficult to resolve in previous study (Regier et al., 2013). In our study, the 

205 analysis of both datasets placed the Bombycidae as the sister group to Saturniidae and Sphingidae 

206 with high support (100% bootstrap), which is consistent with the phylogenetic relationship based 

207 on transcriptomic data (2696 genes) (Breinholt & Kawahara, 2013). 

208 Genetic distance analyses 

209 The genetic distance analyses produced results which were consistent with the results of the 

210 phylogenetic analyses. The correlation values obtained from genetic distance analysis among 

211 specimens of Dendrolimus showed that in many cases intraspecific and interspecific values were 

212 very similar. Values for intraspecific and interspecific correlations in the group comprising D. 

213 tabulaeformis and two subspecies of D. punctatus were equal or very close to 1, which suggests 

214 these sequences all have quite a few differences, which would generally be regarded within the 

215 range of intraspecific variation. To illustrate the relationship of Dendrolimus more clearly, we re-

216 calculated genetic distance with considered D. punctatus and D. tabulaeformis as an integral taxon 

217 (Group A). The genetic distance between D. spectabilis and Group A were 0.05, whereas D. 

218 superans and Group A were 0.07 (Figure 2). Furthermore, both the correlation value between D. 

219 houi - Group A and D. kikuchii - Group A were negative, highlighting the relatively distant genetic 

220 relationship with other four species (D. punctatus, D. tabulaeformis, D. spectabilis and D. 
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221 superans) (Figure 2).

222 Comparative mitochondrial genome characterization of Dendrolimus

223 (i) Mitochondrial genome organization 

224 The complete mitochondrial genomes of Dendromlius ranged from 15,370 to 15,417 bp in length 

225 (Table 1). The gene order was identical to other ditrysian lepidopterans with the standard trnM 

226 gene location type (trnM-trnI-trnQ), and all mitochondrial genomes exhibit similar sequence 

227 characteristics. The mitochondrial genes of three newly-sequenced Dendrolimus species (D. 

228 superans, D. houi and D. kikuchii) are coded on the majority strand, except for four protein-coding 

229 gene (nd5, nd4, nd4L and nd1) and eight tRNA genes (trnQ, trnC, trnY, trnF, trnH, trnP, 

230 trnL(CUN),and trnV) (Table 1). 

231 (ii) Base composition and skewness

232 Metazoan mitogenomes usually exhibit a clear strand bias toward adenine (A) and thymine (T) in 

233 nucleotide composition. Consistent with previous observations of Dendrolimus mitogenomes, the 

234 mitochondrial sequence of three newly-sequenced Dendrolimus species were biased toward A and 

235 T. The A+T content of the majority strand ranged from 78.7% and 78.8% for D. kikuchii, 80% and 

236 79.9% for D. houi, and 80.1% and 80.2% for D. superans (Supplemental Information 4). The 

237 strand bias also can be measured as AT- and GC-skews. The average AT-skew across all available 

238 Dendrolimus mitochondrial genomes was 0.028, ranging from 0.037 to 0.017, whereas the average 

239 GC-skew of the Dendrolimus mitochondrial genomes was -0.23, ranging from -0.26 to -0.22. 

240 (iii) Start and stop codon usage

241 Start and stop codon usage is an important characteristic in the annotation of protein-coding genes. 

242 We compared the start and stop codons across the six species of Dendrolimus (Table 2). All 

243 protein-coding genes started with the typical ATN codons except for cox1 which used CGA. Most 

244 of the start codon were consistent within the six species but a few were different (nd2, cox2, atp8, 

245 nd3, nd5, nd1). This was especially the case for atp8 and nad3, which were the most variable 

246 among the genes. It is noteworthy that atp8 and nad3 are the shortest protein-coding genes when 

247 compare to others in the mitochondrial genome, suggesting variability in start codon usage maybe 
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248 related to gene length. 

249 Nine genes (nd2, atp8, atp6, cox3, nd5, nd4l, nd6, cob, nd1) share the same complete stop 

250 codon TAA, and four genes use incomplete stop codons (cox1, cox2 and nd4, nd3) (Table2). 

251 Incomplete stop codons are common in lepidopteran mitogenomes and are presumed to be 

252 completed via post-transcriptional polyadenylation (Chen et al., 2016). Changes in stop codon 

253 usage among Dendrolimus were rarer than changes in start codon usage. Only in the cox2 and 

254 nad2 genes, did we observe changes in the stop codon used. Therefore, we can conclude that even 

255 within congeneric species, start and stop codons are variable in the mitochondrial genome.

256 (iv) Codon usage and RSCU

257 Condon usage and relative synonymous codon usage (RSCU) results were compared across all 

258 available Dendrolimus mitogenomes (Figure 3). The analysis showed that Leu2 (UUR), Ile, Phe, 

259 Met, Asn, Gly, Ser2 (UCN), Tyr are the eight most frequent amino acids and were represented by 

260 at least 50 codons per thousand codons. Two codon families, Leu2 and Ile, had at least 100 codons 

261 per thousand codons. Leu2, a hydrophobic amino acid, was significantly more frequent than other 

262 amino acids, which may relate to the function of chondriosomes in many transmembrane proteins. 

263 The rarest used codon family was Cys.

264 The usage of both two-fold and four-fold degenerate codons was biased towards the use of 

265 codons with A or T in third position (Figure 4). Codons which have relatively high G and C content 

266 are likely to be abandoned, reflecting a finding across other lepidopteran insects. Examination of 

267 the fourteen individual Dendrolimus mitogenomes showed that Leu2 (UUA), Ser2 (UCU), Arg 

268 (CGA), Ala (GCU), Ser1 (AGA) are the five most frequent relative synonymous codons.

269 (v) Non-coding regions, overlapping regions and A+T rich region

270 All fourteen mitogenomes had six overlapping regions and the size ranged from 1 to 8 bp (Table 

271 3). Nucleotide sequence of six mutual overlapping areas were almost identical, except for the 

272 overlap between nd2 and trnW in D. kikuchii which was 1bp shorter than other species of 

273 Dendrolimus. In addition to the control region, there were 17 non-coding regions in the 

274 mitogenomes of D. punctatus, D. tabulaeformis and D. spectabilis, 18 in D. superans, 16 in D. 
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275 kikuchii and 19 in D. houi (Table 3). It is noteworthy that there are 6 intergenic regions, trnQ-nad2 

276 (54 bp - 58 bp), trnY-cox1 (25 bp - 41 bp), atp6-cox3 (6 bp - 15 bp), trnA-trnR (9 bp - 20 bp), trnN-

277 trnS (AGN) (7 bp - 25 bp), nad4-nd4l (19 bp - 38bp), were longer than 15 bp. 

278 The largest intergenic spacer of whole mitogenome is the A + T rich region, which not only 

279 has the characteristics of non-coding genes, but also contains important sites for the regulation of 

280 transcription and replication (Gissi et al., 2008). The A+T rich region and intergenic regions might 

281 contain useful phylogenetic signals, particularly for determining congeneric relationships and 

282 relationships among recently diverged species. To investigate the utility, we constructed a 

283 phylogenetic tree of Dendrolimus species using only the A + T rich region and intergenic regions 

284 (Supplemental Information 5). The phylogenetic analysis using the A+T rich region produced 

285 similar but slightly different topology comparing with the whole mitogenomes. This suggests the 

286 intergenic regions might be too variable to be useful for phylogenetic analyses, nevertheless, the 

287 A+T rich region might be an effective molecular tool in solving phylogenetic relationships among 

288 recently diverged species. 

289 Sliding-window analysis

290 Sliding-window analysis was conducted to compare nucleotide diversity among the mitochondrial 

291 protein-coding genes and non-coding regions of 14 individuals in Dendrolimus (Figure 5). The 

292 intergenic region has the highest nucleotide diversity which is likely attributable to the large indels 

293 in this region. This was followed by nd6, cytb, cox2, atp6, cox3, nd3, A+T rich region, nd1, cox1, 

294 nd2, nd5, nd4, nd4l, atp8, rRNA, tRNA. It is notable that the nucleotide diversity of the A+T rich 

295 region was moderate; lower than many protein-coding genes. The tRNA was the most conserved 

296 region and cox1 was the most conserved protein-coding gene. In contrast, sliding-window analyses 

297 using all 78 lepidopteran mitogenomes (same dataset as the phylogenetic analyses) produced 

298 substantially similar patterns: the nd6 gene had the highest level of divergence and tRNA was the 

299 most conserved region, while the cox1 was the most conserved than all protein-coding genes.

300

301 Conclusion
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302 In this study, both phylogenetic and genetic distance analyses obtained consistent results regarding 

303 the relationships among six closely related species. The whole mitogenomes failed to provide 

304 enough information to distinguish D. tabulaeformis from D. punctatus, which suggest there might 

305 not be a clear species boundary between these two species. This finding is consistent with the 

306 results of previous studies, in which D. tabulaeformis was regarded as ecological type of D. 

307 punctatus based on several DNA markers and experiments of interspecific hybridization. 

308 Meanwhile, D. spectabilis fell as sister to these two sibling species, and D. superans fell as sister 

309 to these three taxa. D. kikuchii and D. houi are sister species, having relatively close relationship 

310 comparing with other four species.

311 Congeneric species exhibit similar mitochondrial genome features, such as genome 

312 organization, nucleotide composition, codon usage and RSCU. Within the genus Dendrolimus, 

313 start and stop codons were variable in mitochondrial genome and the change of stop codons were 

314 rarer than start codons. Non-coding regions were the most variable regions in mitochondrial 

315 genomes. When comparing nucleotide diversity, the nad6 gene had the highest level of divergence 

316 and the tRNA region was the most conserved. 

317
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Figure 1

Phylogenetic relationship of six Dendrolimus species

Figure 1: (A) Cladogram (ML and BI) depicting six Dendrolimus species constructed with

Maximum Likelihood and Bayesian inference analyses of (i) 13 protein coding genes

(13PCGs); (ii) 37 genes (13 protein-coding genes+22 transfer RNA genes+2 ribosomal RNA

genes, 37gene). Numbers above or below branches indicate posterior probabilities and

bootstrap percentages across the difference analyses and datasets (13PCGs-BI / 13PCGs-ML /

37gene-BI / 37gene-ML). (B) Cladogram constructed using Bayesian inference analysis of

nucleotide sequences of 13 mitochondrial protein-coding genes of Lepidopteran (moth)

species, plus outgroups. Numbers above or below branches indicate posterior probabilities.
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Figure 2

Genetic distance of six Dendrolimus species

Figure 2 Genetic distance (below diagonal) and correlation relationship (above diagonal) of

13 concatenate protein coding genes (Left) and 37 concatenate genes (Right). The size of

circle stands for the correlation values, which range from -1 to 1. Values closer to 1 indicate a

closer relationship. Species names were abbreviated: D. spectabilis (CS02 and CS13), D.

tabulaeformis (YS06 and YS08), D. punctatus punctatus (MW04 and MW05), D. punctatus

wenshanensis (WS03 and WS06), D. superans (LY04 and LY08), D. kikuchii (SM12 and SM22), 

D. houi (YN05 and YN11).
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Figure 3

Relative synonymous codon usage (RSCU) of 14 Dendrolimus mitochondrial genomes.

Figure 3 Relative synonymous codon usage (RSCU) of fourteen Dendrolimus mitochondrial

genomes. Codon Families are provided on the x axis. Codons that are absent in the

mitochondrial genomes are marked at the top of columns. Leu1 stands for Leu (CUN); Leu2

stands for Leu (UUR); Ser1 stands for Ser (AGN); Ser2 stands for Ser (UCN).
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Figure 4

Codon usage of 14 Dendrolimus mitochondrial genomes.

Figure 4 Codon usage of fourteen Dendrolimus mitochondrial genomes. Numbers above the

column refer to the number of codons. CDspT stands for codons per thousand codons. Codon

Families are provided on the x axis. Leu1 stands for Leu (CUN); Leu2 stands for Leu (UUR);

Ser1 stands for Ser (AGN); Ser2 stands for Ser (UCN).
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Figure 5

Sliding-window analyses of 13 protein coding genes.

Figure 5 Sliding-window analyses of 13 protein coding genes, concatenated tRNA and rRNA

genes, intergenic and A+T rich region among six Dendrolimus species. The X-axis represents

sequence length, the Y-axis nucleotide diversity. The red dotted line indicates the average

nucleotide diversity.
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Table 1(on next page)

Genome organization of Dendromlius kikuchii, D. houi and D. superans.

Table 1. Genome organization of Dendromlius kikuchii (SM12 and SM22), D. houi (YN05 and

YN11) and D. superans (LY04 and LY08).
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1

2 Table 1. Genome organization of Dendromlius kikuchii (SM12 and SM22), D. houi (YN05 and YN11) and D. 

3 superans (LY04 and LY08).

Location
Gene Strand

SM12 SM22 YN05 YN11 LY04 LY08

trnM F 1-67 1-67 1-67 1-67 1-68 1-67

trnI F 71-134 71-134 69-132 69-132 72-135 72-135

trnQ R 132-200 132-200 130-198 130-198 133-201 133-201

nad2 F 257-1264 255-1262 254-1264 254-1264 256-1266 256-1266

trnW F 1264-1334 1262-1332 1263-1332 1263-1332 1265-1336 1265-1335

trnC R 1327-1392 1325-1390 1325-1391 1325-1391 1329-1394 1328-1393

trnY R 1393-1460 1391-1458 1393-1463 1393-1463 1395-1460 1394-1459

cox1 F 1501-3031 1500-3030 1492-3022 1492-3022 1493-3023 1492-3022

trnL(UUR) F 3032-3098 3031-3097 3023-3089 3023-3089 3024-3090 3023-3089

cox2 F 3099-3780 3098-3779 3090-3773 3090-3773 3091-3772 3090-3771

trnK F 3781-3851 3780-3850 3775-3845 3775-3845 3773-3843 3772-3842

trnD F 3852-3919 3851-3918 3847-3913 3847-3913 3847-3914 3846-3913

atp8 F 3920-4081 3919-4080 3914-4075 3914-4075 3915-4076 3914-4075

atp6 F 4075-4752 4074-4751 4069-4746 4069-4746 4070-4747 4069-4746

cox3 F 4759-5547 4760-5548 4762-5550 4762-5550 4760-5548 4759-5547

trnG F 5550-5616 5551-5617 5553-5618 5553-5618 5551-5616 5550-5615

nad3 F 5617-5970 5618-5971 5619-5970 5619-5970 5617-5970 5616-5969

trnA F 5973-6039 5974-6039 5971-6038 5971-6038 5975-6041 5974-6040

trnR F 6058-6123 6058-6123 6048-6112 6048-6112 6055-6118 6054-6117

trnN F 6145-6211 6145-6211 6118-6184 6118-6184 6120-6185 6119-6184

trnS(AGN) F 6226-6293 6219-6286 6210-6277 6210-6277 6202-6269 6201-6268

trnE F 6293-6357 6286-6350 6277-6345 6277-6345 6269-6333 6268-6333

trnF R 6371-6437 6364-6430 6354-6420 6354-6420 6346-6412 6346-6412

nad5 R 6442-8181 6435-8174 6425-8167 6425-8167 6416-8158 6416-8158

trnH R 8182-8246 8175-8239 8168-8231 8168-8231 8159-8226 8159-8226

nad4 R 8247-9585 8240-9578 8232-9570 8232-9570 8227-9565 8227-9565

nad4l R 9620-9913 9611-9904 9602-9895 9602-9895 9604-9897 9604-9897

trnT F 9918-9982 9909-9973 9900-9964 9900-9964 9905-9970 9905-9969

trnP R 9983-10047 9974-10038 9965-10029 9965-10029 9971-10035 9970-10034

nad6 F 10056-10586 10047-10577 10038-10568 10038-10568 10044-10574 10043-10573

cob F 10590-11738 10581-11729 10574-11722 10574-11722 10579-11727 10578-11726

trnS(UCN) F 11737-11802 11728-11793 11726-11791 11726-11791 11731-11797 11730-11796

nad1 R 11802-12755 11793-12746 11791-12744 11791-12744 11797-12750 11796-12749

trnL(CUN) R 12757-12827 12748-12818 12746-12813 12746-12813 12752-12820 12751-12819

rrnL R 12828-14210 12819-14204 12814-14220 12814-14220 12821-14253 12820-14253

trnV R 14211-14275 14205-14268 14221-14286 14221-14286 14254-14319 14254-14319

rrnS R 14276-15058 14269-15051 14287-15062 14287-15063 14320-15101 14320-15100

AT region F 15059-15377 15052-15370 15063-15381 15064-15382 15102-15417 15101-15417
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Table 2 Start codon and stop codon of 13 protein coding genes in six Dendrolimus species. 

Samples nad2 cox1 cox2 atp8 atp6 cox3 nad3 nad5 nad4 nad4l nad6 cob nad1 

D. spectabilis02 ATT/TAA CGA/T ATA/T ATC/TAA ATG/TAA ATG/TAA ATC/TA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 

D. spectabilis13 ATT/TAA CGA/T ATA/T ATC/TAA ATG/TAA ATG/TAA ATC/TA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 

D. tabulaeformis06 ATT/TAA CGA/T ATA/T ATT/TAA ATG/TAA ATG/TAA ATG/TA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 

D. tabulaeformis38 ATT/TAA CGA/T ATA/T ATC/TAA ATG/TAA ATG/TAA ATT/TA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 

D. punctatus04 ATT/TAA CGA/T ATA/T ATT/TAA ATG/TAA ATG/TAA ATG/TA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 

D. punctatus05 ATT/TAA CGA/T ATA/T ATT/TAA ATG/TAA ATG/TAA ATA/TA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 

D. punctatus_ws03 ATT/TAA CGA/T ATA/T ATT/TAA ATG/TAA ATG/TAA ATG/TA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 

D. punctatus_ws06 ATT/TAA CGA/T ATA/T ATT/TAA ATG/TAA ATG/TAA ATG/TA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 

D. kikuchii12 ATT/TAA CGA/T ATA/T ATA/TAA ATG/TAA ATG/TAA ATT/TAA ATA/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA GTG/TAA 

D. kikuchii22 ATT/TAA CGA/T ATA/T ATA/TAA ATG/TAA ATG/TAA ATT/TAA ATA/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA GTG/TAA 

D. houi05 ATT/TAA CGA/T ATA/TAG ATT/TAA ATG/TAA ATG/TAA ATT/T ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 

D. houi11 ATT/TAA CGA/T ATA/TAG ATT/TAA ATG/TAA ATG/TAA ATT/T ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 

D. superans04 ATC/TAA CGA/T ATA/T ATT/TAA ATG/TAA ATG/TAA ATC/TAA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 

D. superans08 ATC/TAA CGA/T ATA/T ATT/TAA ATG/TAA ATG/TAA ATC/TAA ATT/TAA ATG/T ATG/TAA ATA/TAA ATG/TAA ATG/TAA 
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1 Table 3 Sequence length of non-coding and overlapping regions between two genes among 14 individuals of Dendrolimus species.

D. spectabilis D. tabulaeformi D. punctatus punctatus D. punctatus wenshanensis D. superans D. kikuchii D. houi

Location* CS02 CS13 YS06 YS38 MW04 MW05 WS03 WS06 LY0

4

LY0

8

SM12 SM22 YN05 YN1

1

trnM-trnI 3 3 3 3 3 3 3 3 3 4 3 3 1 1

trnI-trnQ -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3 -3

trnQ-nad2 58 58 58 58 58 58 58 58 54 54 56 54 55 55

nd2-trnW -2 -2 -2 -2 -2 -2 -2 -2 -2 -2 -1 -1 -2 -2

trnW-trnC -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8 -8

trnC-trnY 0 0 0 0 0 0 0 0 0 0 0 0 1 1

trnY-cox1 25 25 34 34 27 34 34 34 32 32 40 41 28 28

cox2-trnK 0 0 0 0 0 0 0 0 0 0 0 0 1 1

trnK-trnD 3 3 3 3 3 3 3 3 3 3 0 0 1 1

atp8-atp6 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7 -7

atp6-cox3 11 11 15 15 15 14 15 15 12 12 6 8 15 15

cox3-trnG 2 2 2 2 2 2 2 2 2 2 2 2 2 2

nad3-trnA 0 0 0 0 0 0 0 0 4 4 2 2 0 0

trnA-trnR 20 20 15 15 15 15 15 15 13 13 18 18 9 9

trnR-trnN 4 4 4 4 4 4 4 4 1 1 21 21 5 5

trnN-trnS(AGN) 18 18 11 11 11 13 11 11 16 16 14 7 25 25

trnS(AGN)-trnE -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

trnE-trnF 8 8 4 4 4 4 4 4 12 12 13 13 8 8

trnF-nad5 3 3 2 2 2 3 2 2 3 3 4 4 4 4

nad4-nd4l 23 23 24 24 24 19 24 24 38 38 34 32 31 31

nad4l-trnT 7 7 7 7 7 7 7 7 7 7 4 4 4 4

trnP-nad6 8 8 8 8 8 8 8 8 8 8 8 8 8 8

nad6-cytb 4 4 4 4 4 4 4 4 4 4 3 3 5 5

cytb-trnS(UCN) 3 3 3 3 3 3 3 3 3 3 -2 -2 3 3

trnS(UCN)-nd1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1 -1

nad1-trnL(CUN) 1 1 1 1 1 1 1 1 1 1 1 1 1 1

2 Location*：Sequence length between two genes, positive value stands for non-coding regions, negative value stands for overlapping regions.
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