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ABSTRACT
Necrotizing enterocolitis (NEC) and late-onset sepsis (LOS) are two common prema-
ture birth complications with high morbidity and mortality. Recent studies in Europe
and America have linked gut microbiota dysbiosis to their etiology. However, similar
studies inAsian populations remain scant. In this pilot study, we profiled gutmicrobiota
of 24 Chinese preterm infants from birth till death or discharge from NICU. Four of
them developed NEC and three developed LOS. Unexpectedly, we detected highly-
diversified microbiota with similar compositions in all patients shortly after birth.
However, as patients aged, the microbial diversities in case groups differed significantly
from that of the control group. These differences emerged after the third day of life
and persisted throughout the course of both NEC and LOS. Using a Zero-Inflated
Beta Regression Model with Random Effects (ZIBR), we detected higher Bacillus
(p= 0.032) and Solibacillus (p= 0.047) before the onset of NEC and LOS. During
NEC progression, Enterococcus, Streptococcus and Peptoclostridium were the dominant
genera while during LOS progression; Klebsiella was the only dominant genus that was
also detected by the diagnostic hemoculture. These results warrant further studies to
identify causative microbial patterns and underlying mechanisms.
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INTRODUCTION
The gut microbiota is a crucial contributor to human health. Imbalance of the microbial
community, termed dysbiosis, is associated with various diseases, such as obesity and
diabetes (Bouter et al., 2017; Rosenbaum, Knight & Leibel, 2015; Winer et al., 2016; Cani,
2019; Zmora, Suez & Elinav, 2019), immunity-related diseases (Vogelzang et al., 2018;
Pronovost & Hsiao, 2019; Vatanen et al., 2016), neurodevelopmental disorders (Sampson &
Mazmanian, 2015; Pronovost & Hsiao, 2019), cardiovascular diseases (Tang, Kitai & Hazen,
2017; Jie et al., 2017; Jonsson & Bckhed, 2017) and cancers (Gagliani et al., 2014; Irrazábal et
al., 2014; Sears & Garrett, 2014).

The microbiota in newborn infants undergoes dynamic changes in composition,
abundance and diversity before reaching homeostasis at around three years of age
(Yatsunenko et al., 2012; Bäckhed et al., 2015; Stewart et al., 2018). Temporal colonization
pattern of the intestinal microbiota during early stages of life may have an important
contribution to the long term health of an individual. Early life microbiota disruption had
been associated with the development of metabolic and immunological diseases such as
Type I diabetes (Giongo et al., 2011; Vatanen et al., 2018), asthma (Stokholm et al., 2018)
and allergies (Madan et al., 2012a; Savage et al., 2018).

In preterm infants, common medical practices including Cesarean delivery, formula
feeding, sterile incubator nursing and extensive use of broad-spectrum antibiotics may
limit the normal microbiota acquisition and development (La Rosa et al., 2014; Shin et al.,
2015; Deweerdt, 2018). Resultant abnormal microbiota colonization in the gut may then
contribute complications such as necrotizing enterocolitis (NEC) and late onset sepsis
(LOS) (Sharon et al., 2015; Cernada et al., 2016).

Necrotizing enterocolitis is characterized by rapid ischemic necrosis of intestinalmucosa,
resulting in highmorbidity (2%–7%) andmortality (15%–30%) (Neu &Walker, 2011; Stoll
et al., 2015). Its etiology remains largely unknown and likely to be multi-factorial. Previous
studies in European and American countries have associated microbial dysbiosis to NEC
onset. Reduction in microbiota diversity and unusual species colonization were observed
in NEC patients (Jacquot et al., 2011; Warner et al., 2016). No causative species have been
identified so far. However, an increase in Proteobacteria phyla and a decrease in Firmicutes
were observed before NEC onset (Mai et al., 2011; Zhou et al., 2015). Besides, blooming
of Gammaproteobacteria and under-representation of Negativicutes were associated with
disease progression (Warner et al., 2016).

Late onset sepsis (LOS) is another common life-threatening disease for preterm infants.
It is commonly defined as a systemic infection with the isolation of pathogenic bacteria
from the bloodstream after 72 h of life (Rao, Ahmed & Hagan, 2016; Pickering, Baker &
Kimberlin, 2012). Preterm infants have immature gastrointestinal and immune systems.
Therefore, it is easier for pathogenic bacteria or bacterial toxins that can cause systemic
inflammation to enter the bloodstream (Schwiertz et al., 2003; Bezirtzoglou, Tsiotsias &
Welling, 2011; Cernada et al., 2016; Sharon et al., 2015; Korpela et al., 2018), thus making
the intestine a potential source of infections and inflammation. Previous studies showed
that the LOS patients’ gut microbiota was less diversified, and dominated by Staphylococci
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and Enterobacter but underrepresented by probiotic Bifidobacteria (Madan et al., 2012b;
Tarr & Warner, 2016; Stewart et al., 2017; Korpela et al., 2018; Ficara et al., 2018).

NEC and LOS are two major causes of morbidity and mortality in preterm infants
worldwide and have been exerting economic burdens on healthcare costs (Johnson
et al., 2013; Johnson et al., 2014; Mowitz, Dukhovny & Zupancic, 2018). Although early
recognition and treatment regimen has improved clinical outcomes, both diseases still
account for morbidities in NICU survivors (Hintz et al., 2005; Zonnenberg et al., 2019;
Shah et al., 2015). In China, the rate of preterm birth is as high as 7.1% (Blencowe et al.,
2012) and continuous improvements in neonatal health care have greatly improved the
survival of preterm infants. However, the risk of developing NEC and LOS increases as well.
Elucidating their pathogenesis and developing preventive strategies would greatly benefit
the health of preterm infants. Motivated by this, we carried out this longitudinal pilot
study to profile the microbiota of Chinese preterm NEC and LOS patients, with the aim to
examine if similar alterations inmicrobiota correlate with the onset and progression among
Chinese patients. Consistent with previous studies inWestern countries, we observed lower
bacterial diversity among Chinese NEC and LOS patients. In contrast, we found that the
Chinese patients in our cohort showed different bacterial compositions.

METHODS
Ethics
This study was approved by the joint committee of ethics of Shanghai Children’s Medical
Center, Shanghai JiaoTongUniversity School ofMedicine (SCMCIRB-K2013022).Detailed
written informed consent was obtained from parents before enrolment.

Patients
Newly born preterm infants with a gestational age less than 33 weeks and birth weight over
950g were enrolled from Neonatal Intensive Care Unit (NICU) at Shanghai Children’s
Medical Center from July 2013 toDecember 2014. The exclusion criteria were (1) diagnosed
with early-onset sepsis, (2) hepatic diseases, (3) renal impairment (Cr > 88 µM), 4)
diagnosed with intestinal obstruction, (5) in foreseeable need of major cardiovascular
or abdominal surgeries (except for male circumcision or PDA ligation), (6) estimated
parenteral support to supply over 50% of daily caloric intake for more than four
days, (7) given intravenous antibiotics administration (except prophylactic regimen of
cefotaxime, piperacillin-tazobactam and/or metronidazole), (8) history of oral antibiotics
administration, (9) grossly bloody stools at admission, and (10) over five days old.

NEC cases were defined as infants who met the criteria for Stage II and Stage III NEC
diagnosis (Bell et al., 1978), including radiographic intestinal dilation, ileus, pneumatosis
intestinalis, and/or absent bowel sounds with or without abdominal tenderness, and/or
mild metabolic acidosis and thrombocytopenia. An LOS case was defined if an infant (1)
had a positive hemoculture or other suspicious loci of infection after 72 h of life, or (2)
presentedwith septic signs/symptoms reviewed and diagnosed independently by at least two
neonatologists, and had been responding well with advanced antibiotics (e.g., Meropenem)
after diagnosis. Infants with no infectious complications were regarded as controls.
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Sample collection and handling
Fecal sample collection started from neonatal meconium until death or discharge,
whichever came first. Although we intended to collect fecal samples every day, due to
working shifts and flexible clinical scheduling, we set seven days as the maximum interval
between two collections from every infant. Every sample was collected from infants’ diaper
with a sterile spatula into cryogenic vials within 30 min of defecation. Then the sample was
immediately placed on dry ice and stored at −80 ◦C within 30 min without additives. All
samples were collected and stored before knowing the diagnosis of respective patients.

DNA extraction and quality control amplification and 16s rRNA gene
sequencing
Microbial genomic DNA was isolated from each fecal specimen using the E.Z.N.A. Soil
DNA Kit (Omega Bio-Tek, Norcross, GA, U.S.) according to the manufacturer’s protocols.
The concentration and purity of the DNA were determined by NanoDrop 2000 UV-vis
spectrophotometer (Thermo Scientific, Wilmington, DE, USA), and the DNA quality was
checked by 1% agarose gel electrophoresis.

Broad-range PCR and High-throughput Sequencing of 16s rRNA gene
amplicons
The V3-V4 hypervariable regions of the bacterial 16S rRNA gene were am-
plified by PCR from each sample using bacterialarchaeal primers 338F (5′-
ACTCCTACGGGAGGCAGCAG-3′) and 806R (5′-GGACTACHVGG GTWTCTAAT-3′)
using a thermocycler PCR system (GeneAmp 9700, ABI, USA). The PCR reactions were
as follows: 3 min of denaturation at 95 ◦C, 27 cycles of 30 s at 95 ◦C, 30 s annealing at
55 ◦C and 45 s elongation at 72 ◦C, and a final extension at 72 ◦C for 10 min. The PCR
reactions were performed in triplicate, with each 20 µL mixture containing four µL 5X
FastPfu Buffer, two µL 2.5 mM dNTPs, 0.8 µL of each primer (five µM), 0.4 µL FastPfu
Polymerase (TransGen Biotech, Beijing, China) and 10 ng template DNA. PCR products
were separated from impurities and genomic DNA by running in 2% agarose gels. The
PCR bands were further purified using the AxyPrep DNA Gel Extraction Kit (Axygen
Biosciences, Union City, CA, USA), and quantified using QuantiFluor-ST (Promega, USA)
according to the manufacturer’s protocols. Equimolar amounts of purified amplicons were
pooled and paired ended sequenced (2 × 300) on an Illumina MiSeq platform (Illumina,
San Diego, USA) according to the standard protocols of Majorbio Bio-Pharm Technology
Co. Ltd. (Shanghai, China). The reads were de-multiplexed using the Illumina software
and separate FASTQ files were generated for each specimen and deposited to the Sequence
Read Archive NCBI under the BioProject accession PRJNA470548. Another public archive
repository is available at Figshare doi: https://doi.org/10.6084/m9.figshare.7205102.

Raw data processing
Raw data were processed according to the standard protocols provided by Majorbio
Bio-Pharm Technology Co. Ltd. (Shanghai, China) as previously described (Liu et al.,
2018; Wang et al., 2018). In short, raw sequencing data was first de-multiplexed. Sequence
reads were then subjected to quality filtering utilizing Trimmomatic software (Bolger,
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Lohse & Usadel, 2014) and were truncated at any site with a Phred score < 20 over a 50
bp-sized window. Barcode matching with the primer mismatch from 0 to 2 nucleotides was
adopted and reads containing ambiguous characters were removed. After trimming, FLASh
(Fast Length Adjustment of Short Read) (Magoč & Salzberg, 2011), a read pre-processing
software, assembled and merged the paired-end reads from fragments and generated > 10
bp overlapped, with the dead match ratio of 0.2. Unassembled reads were discarded. From
the 192 fecal samples sequenced, a total of 7,472,400 optimized V3-V4 tags of 16s rRNA
gene sequences were generated (Table S1).

To unbiasedly compare all the samples at the same sequencing depth, the ’’sub.sample’’
command of mothur program (version1.30.1) (Schloss et al., 2009) was used for
normalization to the smallest sample size. Chimera was detected and removed by UCHIME
Algorithm. The effective reads were then sorted by cluster size and processed using
Operational TaxonomicUnits (OTUs) with 97% similarity cutoff UPARSE-OTU algorithm
(implementing ‘‘cluster_otus’’ command) (Edgar, 2013) in USEARCH(v10)(UPARSE
version 7.1). The taxonomy of each 16S rRNA gene sequence was analyzed by RDP
Classifier algorithm (Wang et al., 2007) against the Silva (SSU128) 16S rRNA database
(Quast et al., 2012) using confidence threshold of 70%. Each sequence was assigned the
taxonomy by QIIME (Caporaso et al., 2010). The representative sequences were allocated
phylogenetically down to the domain, phylum, class, order, family, and genus levels (Table
S2). The relative abundance of a given taxonomic group was calculated as the percentage
of assigned sequences over total sequences.

Within-sample diversity (alpha diversity), including Shannon index and observed
species richness (Sobs), was obtained using the ‘‘summary.single’’ command of mothur
program (version1.30.1) (Schloss et al., 2009). Between-sample diversity (beta diversity)
was obtained by calculating weighted UniFrac distances between samples.

Statistical and bioinformatics analyses
Demographics and clinical sample comparisons
Kruskal–Wallis test and Wilcoxon rank-sum test were used to identify statistically
significant differences in continuous variables, including gestational age, birth weight,
age at diagnosis and length of hospitalization. The χ2, or Fisher’s exact test was used to
identify differences in gender composition. α level was considered 0.05 for all statistical
tests. Other statistical analyses not involving microbiome 16s rRNA sequencing data were
performed using the ‘‘stats’’ package in R (v.3.5.1).

Microbiota and bioinformatics analyses
Disease-related time interval definition. Considering that the sampling and disease onset
time for each patient were not identical, to illustrate the continuous longitudinal and
repeated nature of the sampling and its relationship with onset and progression of diseases,
we divided the sampling span into seven time intervals:
1. early post-partum(EPP): within 3 days after birth;
2. early pre-onset(EPO): from the end of EPP to at least four days before disease onset;
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3. late pre-onset(LPO): from the end of EPO to the disease onset; for control group
patients, the equivalent onset time is set at the 16th day of life, as is the average
diagnosis age of NEC and LOS groups;

4. early disease(ED): the first third interval of the whole disease span; for the control
group, the equivalent ED interval is from day 16 to discharge;

5. middle disease(MD): the middle third interval of disease span;
6. late disease(LD): the last third interval of disease span;
7. post disease(PD): from the end of disease to discharge time-point.

Modeling strategies for comparisons. To compare the dynamics of microbiota diversity and
relative taxonomic abundance preceding the disease, we applied the EPP, EPO, LPO and
ED interval among all patients into our model or comparisons.

Diversity analyses. Kruskal–Wallis tests were used to compare the differences in overall
alpha diversity. The Mann–Whitney U test was then applied to compare two adjacent time
intervals. Differences in alpha diversity over time were analyzed by a two-way repeated
measures ANOVA, with the time interval (EPP, EPO, LPO, ED, MD, LD, PD) as a
within-subject factor and the group (NEC, LOS, control) as a between-subject factor. If
more than one sample of a patient were collected within a time interval, the average of the
α diversity indices was used as one data point.

Taxonomy comparisons. Zero-Inflated Beta RegressionModel with RandomEffects (ZIBR)
and Linear Mixed-effects Model (LME) were used to test the association between OTU
relative abundance and clinical covariates (diseases-related time intervals) for longitudinal
microbiome data (Chen & Li, 2016). ZIBR and nlme (Pinheiro et al., 2018) R packages
were utilized for each model. If more than one sample of a patients were collected within
a time interval, the average of relative abundance of each genus was used.

Scripts and figures archiving
Figures were generated with the ‘‘ggpubr’’ (Kassambara, 2017), ‘‘ggplot2′′ (Wickham, 2016)
and ‘‘ggsci’’ (Xiao, 2018) packages using R (v.3.5.1). RScripts for analyses as well as input
and output files are available at our GitHub repository.

RESULTS
Patients characteristics
From July 2013 to December 2014, a total of 130 preterm infants admitted to the neonatal
intensive care unit (NICU) of Shanghai Children’s Medical Center met the criteria of our
study and a total of 1698 samples were collected. 192 fecal samples from 24 well-sampled
preterm infants were sequenced. Four subsequently developed NEC (2 in stage IIA and 2 in
stage IIB) and three developed LOS (2 with positive hemoculture of Klebsiella pneumoniae;
the other one was diagnosed upon sepsis-related signs and symptoms, lab test of white
blood cells> 20 cells/microL and her effective reaction to vancomycin). The remaining 17
served as matched controls (Fig. 1, Table S3). Fecal samples were collected between days 1
and 69 of life. Numbers of samples collected and interval of sampling varied among patients
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130 Preterm Infants Enrolled 
- Gestational Age <= 33 weeks
- Birth weight > 950g

x 17 control

x 4 NEC

x 3 LOS 

Collection of the longitudinal  
fecal samples 
- started right after birth
- ended at discharge/decease

x 45 NEC samples 
- NEC#1: 18 samples
- NEC#2: 8 samples
- NEC#3: 13 samples
- NEC#4: 6 samples

x 44 LOS samples 
- LOS#1: 15 samples
- LOS#2: 16 samples
- LOS#3: 13 samples

x 103 control samples

Sequencing & Analysis 
- 16s rRNA gene sequencing
- QC, OTU clustering
- Diversity analysis
- Composition analysis

24 Well Sampled Infants

Figure 1 Schematic of study design. Longitudinal fecal samples were collected over from birth to decease
or discharge from preterm infants in the NICU. Bacterial diversity and compositions were then character-
ized. Image credit: Icons made by Freepik from http://www.flaticon.com.

Full-size DOI: 10.7717/peerj.7310/fig-1

Table 1 Demographic characteristics of PretermNEC, LOS and control groups. There was no statistical differences in gestational age, birth
weight, gender and age when diagnosed among NEC, LOS and Control group. The mean length of stay differs among the three groups, which is
within our expectation because it takes longer time for NEC or LOS patients to recover.

NEC (N = 4) LOS (N = 3) Control (N = 17) Statistical test p value

Gestational age (weeks) 29(29–30) 30(29–31) 31(28–33) Kruskal–Wallis test 0.074
Birth weight (g) 1416.3 (773.4–2149.1) 1141.7 (633.4–1649.9) 1527.4 (1391.6–1663.1) Kruskal–Wallis test 0.111
Gender Fisher’s exact test 0.820

Female 3(75%) 2(67%) 9(53%)
Male 1(25%) 1(33%) 8(47%)

Diagnosis age (days) 16(11–19) 16(10–22) – Wilcoxon rank-sum test 0.629
Length of stay(days) 54.3 (13.5–95.0) 60.0 (24.8–95.2) 32.9 (26.3–39.5) Kruskal–Wallis test 0.046
Number of samples 45 44 103 – –

but met our preset criteria of less than 7 days between sampling. The average number of
sample collected for NEC, LOS and control patients was 11, 14 and six respectively. The
number of samples per patient was higher in the NEC and LOS groups because the severity
of the disease required longer hospitalization (p= 0.046).

All 24 infants profiled were delivered by Cesarean section, fed on infant formula and
prescribed with prophylactic antibiotics regimen (cefotaxime, piperacillin-tazobactam
and/or metronidazole) right after they were admitted to our NICU. No infant was
prescribed probiotics during the study. There was no significant difference in gestational
age (p= 0.074), birth weight (p= 0.111) or gender proportions (p= 0.822) among the
three groups. The average age at diagnosis for both disease groups was 16 days and there was
no statistical difference between the groups (p= 0.629) (Table 1). Therefore, we assigned
day 16 to discharge as early disease interval, day 4–8 as early pre-onset interval and day
9–15 as late pre-onset interval for the control group (Table S4).

Longitudinal Microbiome Diversity of NEC and LOS patients
To get an overview of gut microbiota in patients, we analyzed the microbial richness of the
NEC and LOS patients over time. Similar to the control group, the case groups showed a
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Figure 2 Trend in microbiome richness (Sobs) over time. Shows microbial evenness trend in stools
from cases and controls. (A) control group. (B) NEC group. (C) LOS group. Horizontal line shows me-
dian, box boundaries show 25th and 75th percentiles. Sobs index value of each sample is depicted as one
dot. Indices are analyzed using the Kruskal–Wallis test followed by the Mann–Whitney U test in compar-
isons between two adjacent intervals.

Full-size DOI: 10.7717/peerj.7310/fig-2

decreasing trend in observed species (Sobs) from early post-partum stage (EPP) to early
disease (ED) stage (Fig. 2 (A) control group, p< 0.01; (B) NEC group, p= 0.044; (C) LOS
group, p= 0.013; Dataset S1, Sheet ‘‘Sobs’’ two way RMANOVA, p< 0.0001). The greatest
decline in sobs was from early pre-onset (EPO) to late pre-onset (LPO). However, the
decrease in the disease groups was less significant than the control group (control group
p= 0.0004, NEC group p= 0.18, LOS group p= 0.066). The Sobs then stabilized from
LPO onward with no significant difference between adjacent time intervals.

Next, we analyzed gut microbiome evenness over time. Similar to Sobs, the Shannon
indices decreased significantly from the early post-partum (EPP) to early disease (ED) stage
(Fig. 3A control group 2.768 to 1.004, p= 0.04; (B) NEC group, 3.141 to 0.578, p= 0.01;
(C) LOS group, 2.641 to 0.470, p= 0.01).

Two way RM ANOVA showed significant Shannon index divergent among three groups
before disease onset (Dataset S1, sheet ‘‘Shannon’’, EPP to ED, p= 0.0017). Moreover,
during early disease stage, the Shannon indices were different among three groups (Fig. 4,
facet early disease, p= 0.0037), suggesting that microbiota distortion may precede NEC
and LOS onset. As diseases progressed, the NEC group differed significantly with the LOS
group during middle disease interval but insignificantly during late disease interval (Fig. 4,
facet middle disease, p= 0.034; facet late disease, p= 0.750). Upon alleviation of both
diseases, the Shannon indices rose back to the early pre-onset levels (Fig. 3B) NEC group.
early pre-onset at 1.925 vs. post disease at 1.320, p= 0.79; (C) LOS group, early pre-onset
at 2.473 vs. post disease at 1.463, p= 0.16).
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Figure 3 Post-partummicrobiome evenness (Shannon diversity) trend in each group. Shows micro-
bial richness trend in stools from cases and controls. (A) control group. (B) NEC group. (C) LOS group.
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Full-size DOI: 10.7717/peerj.7310/fig-3

Kinetics of microbiome composition
To compare the beta-diversity of the three groups over time, we applied Principal
Component Analysis (PCoA) to weighted UniFrac distance matrix (Clarke, 1993). Bacterial
composition of three groups during early post-partum interval were the most similar
compared with other time intervals, with the first principal coordinates accounted for
33.01% (Fig. 5A). Then beta diversity continued to separate from one another. The
first principal coordinate one (PC1) increased from 33.01% at the early post-partum to
35.23% at the early pre-onset stage, 38.36% at the late pre-onset stage and eventually
reaching 42.32% at the early disease stage (Figs. 5B to 5D). This continuous increase in
beta-diversity suggested that the phylogenetic composition of the patients’ microbiome
started to deviate from the control group before the onset of diseases. As diseases progressed,
the phylogenetic similarity between the NEC and the LOS disease groups diverged further
and peaked at 59.53% in middle disease stage then came down gradually to 42.8% at post
disease stage (Fig. 5E to Fig. 5G). This trend in phylogenetic dissimilarity suggested that the
microbiome composition of the NEC and LOS patients might have deviated from normal
even before the onset of diseases. Also, the further separation between the NEC and the
LOS groups could be a result of different treatment strategies.

Colonization trend at the genus level
In the analyses of intestinal microbiome alpha (Figs. 2–4) and beta diversity (Fig. 5),
detectable differences were observed among the three groups, especially during the
transition from the LPO to ED stage. This indicated that the microbiota assembly
differences between the case groups and control group. To further investigate which
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microbiota composition was correlated with the onset and/or progression of NEC and
LOS, we tracked the longitudinal compositional changes in genera abundance. We filtered
the genus of over 10% relative abundance among all samples and plotted relative abundance
over time (Fig. 6).
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Figure 5 Beta diversity of the NEC, LOS and the control groups over time. (A) Early post partum;
(B) early pre-onset; (C) late pre-onset; (D) early disease; (E) middle disease; (F) late disease; (G) post
disease. Beta diversity of samples is depicted by principal coordinates analysis ‘PCoA’ plot showing
weighted UniFrac distance between samples. Each dot represents the microbiota of a single sample.
Samples from the same group is represented by the same colors. Scatter plot shows principal coordinate 1
(PC1) versus principal coordinate 2 (PC2). Percentages shown are percentages of variation explained by
the components. Samples that clustered closer together are considered to share a higher proportion of the
phylogenetic tree and represented by a higher percentage in PC1.

Full-size DOI: 10.7717/peerj.7310/fig-5

At the early post-partum stage, all three groups showed high proportion of Lactococcus,
Bacillus and Pseudomonas. However, ZIBR model the disease groups showed significantly
higher OTUs that matched to Bacillus (NEC 15.05% and LOS 15.97% compared to 6.02%
of control, p= 0.032) and Solibacillus (8.88% in NEC and 9.61% in LOS compared to
3.65% of control, p= 0.047) from the case groups (Dataset S2). Moreover, Enterococcus
proportion (Fig. 6B, purple area) was much higher in LOS patients (20.72%) than the
normal controls (6.66%, Fig. 6A, purple area) but almost absent in NEC patients (0.51%)
(Fig. 6B). While all three groups showed increases in Klebsiella and Escherichia-Shigella
and decrease in Lactococcus from EPP to ED, the rates of change were different among the
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three groups. The LOS group exhibited the most drastic changes, with a rapidly increase
of Klebsiella (from 4.71% to 58,90%), Escherichia-Shigella (from 2.02% to 18.16%) and
Streptococcus (from 1.22% to 12.68%) (Fig. 6C). Together, these three genera accounted
for almost 100% of all bacteria (Fig. 6C). In addition, Lactococcus decreased more rapidly
than the other groups, from 24.54% at EPP to 0.94% before LPO (Fig. 6C magenta area).
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Besides, the increase of Klebsiella was the most minimal in NEC patients (Fig. 6B grey
area, from 7.17% at EPP to 35.63% at ED). Moreover, a rapid surge of Enterococcus,
Staphylococcus and Streptococcus from EPO to ED was only observed in NEC patients (Fig.
6B, purple, dark and light blue area).

As NEC and LOS progressed with medical intervention, the genus in case groups
underwent another round of drastic changes. Most notably, the fluctuation of Enterococcus,
Klebsiella, Staphylococcus and Peptoclostridium during the disease stages (Figs. 6B and 6C
stage ED to LD), which might be resultant from different healthcare strategies applied
in two groups. Interestingly, as patients approached remission, the composition became
more balanced and resembled more to that of the normal control, except for a higher
level of Clostridium. In summary, relative to patients in the control group, we observed
different patterns of temporal alterations in bacterial composition among NEC and LOS
patients. Rapid changes in relative abundance of certain genera were revealed as early as
early pre-onset of stages and were the most notable in LOS patients.

DISCUSSION
In this pilot study, we intend to investigate the etiopathology of NEC and LOS in Chinese
preterm infants from the perspective of intestinal microbiota. We profiled the gut
microbiome of NEC and LOS preterm infants from birth to death or discharge. Some
of our findings are similar to previous larger-scale studies. Mainly, infants who developed
NEC or LOS exhibit a different gut microbiota colonization pattern relative to the controls.
Case groups showed a decline in diversity, although to a different extent. Moreover, NEC
and LOS infants’ intestines were prone to harbor potential pathogens prior to and after
disease onsets, such as Enterococcus, Staphylococcus, Peptoclostridium and Streptococcus.
There were also findings unique to this study will be discussed in the following paragraphs.

To our knowledge, few studies have analyzed stool bacterial alpha diversity in preterm
infants as early as three days after birth. Unexpectedly, within three days after birth (i.e.,
early post-partum interval), the bacterial diversity of all three groups was the highest
compared to the following stages. At this point, we do not know if this high bacterial
richness and evenness within three days of life are universal. More data, especially from
other countries, are needed to support this finding. After three days, the microbial alpha
diversity exhibited a declining trend in both disease groups and the control group. The
number of colonized species (sobs index) during this interval, in line with previous works
(Mai et al., 2011; Mai et al., 2013), remained similar before disease onset in both case and
control groups, suggesting a minor role of bacterial richness in the disease onset. Besides,
a rapid decline in alpha diversity during the pre-onset stages was observed. This could be
resultant from the standardized antibiotic regimen right after admission into our NICU.
However, previous studies showed that the pervasive effect of antibiotics in reducing
richness and evenness arose only after 1 week to 2 months of administration (DiGiulio et
al., 2008; Dethlefsen & Relman, 2011; Fouhy et al., 2012; Greenwood et al., 2014; Tanaka et
al., 2009). Thus, more research is needed to identify if additional factor(s) is involved in
this rapid decline.
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The role of empiric prophylactic antibiotics in NEC or LOS is controversial. In animal
models, antibiotics eliminating Gram-negative bacteria enhance gut function and diminish
mucosal injury to the bowel thus preventing necrotizing enterocolitis or bacterial leakage
into the bloodstream (Carlisle et al., 2011; Jensen et al., 2013; Birck et al., 2015). In clinical
practices, broad-spectrum antibiotics (the most commonly prescribed medications in
the NICU) are recommended to empirically prevent and treat both NEC and LOS (Bury
& Tudehope, 2001; Brook, 2008; Kimberlin et al., 2018). However, antibiotics can further
induce microbiome dysbiosis that may increase the risk of developing these diseases and
exacerbate the severity (Gibson, Crofts & Dantas, 2015; Kuppala et al., 2011; Martinez et
al., 2017; Cantey et al., 2018). Our results showed limited differences in bacterial diversity
and composition between two case groups and the control group despite continuously
antibiotics administration. Although our results are in line with the dysbiotic effect of
antibiotics, there was not enough evidence to support whether antibiotics per se induced or
prevented NEC and LOS. Further studies are needed to confirm the causative relationships.

Furthermore, microbiota beta-diversity, which measures the phylogenetic similarity,
drifted away continuously among three groups before the onset of both diseases. These
findings were inconsistent with a previous study where the microbiota of NEC patients
were shown to be similar to that of the healthy controls at three days before onset (Mai et
al., 2011). With regards to the LOS patients, it is also inconsistent with the previous study
where similar microbiota diversity was observed in LOS patients during the disease and
72 h before onset (Mai et al., 2013). These discrepancies could be a result of differences
in collection time points or differences in patients’ demographics. Further studies are
necessary to address these issues. As the diseases progressed, the beta-diversity of the
NEC group and the LOS group separated further but converged again when diseases
were alleviated. The exact cause of this divergence was not clear. It could be related to
different treatment strategies or some intrinsic pathophysiology differences between the
two diseases. Further studies should provide more insight.

In addition to bacterial diversity, we also tracked longitudinal changes in composition
at the genus level by plotting the relative abundance over time. Overall, the control group
exhibitedmore stable microbiota assembly, without drastic fluctuation in genus abundance
and with less dominance of facultative anaerobes such as Enterococcus and Staphylococcus
(Gibson, Crofts & Dantas, 2015; La Rosa et al., 2014; Grier et al., 2017). Based on our ZIBR
model, an over-represented Bacillus and Solibacillus were detected during the pre-onset
stages in case groups. However, both genera diminished after disease onset suggesting that
the initial microbiota composition in preterms might contribute to their future health
outcomes. Previous studies also observed a surge in Proteobacteria phyla (Mai et al., 2013;
Mai et al., 2011) preceding LOS andNEC onset. In line with this, LOS patients in our cohort
were also characterized by a higher abundance of Klebsiella in their intestinal communities.
On the contrary, NEC infants presented overgrowth of Streptococcus and Staphylococcus
(both belong to phyla Firmicutes) before disease onset. Further work is warranted to identify
specific genera and trends in association with the onset of NEC and/or LOS.

Diarrhea is one of the typical symptoms in NEC patients and Peptoclostridium is
conventionally regarded as a causative pathogen of hospital-acquired infectious diarrhea
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(Rodriguez et al., 2016; Pereira et al., 2016). In our study, we identified a transient bloom
of Peptoclostridium in late NEC stage that coincided with the diarrhea symptom, possibly
explaining the mechanism of common diarrhea symptom in NEC patients. Moreover,
mucosal-adhering bacteria such as Enterococcus and Streptococcus were highly represented
in pediatric enterocolitis (Normann et al., 2013; Zhou et al., 2016). Consistent with this,
NEC patients from our cohort exhibited a higher abundance of Enterococcus during disease
stage.

In contrast, the composition of our LOS patient samples was very different from previous
studies where Enterobacteria and Staphylococcuswere identified as themost prevalent genera
(Stewart et al., 2017;Mai et al., 2013). In our cohort of LOS patients,Klebsiellawas themost
dominated genus. LOS is frequently caused by organisms, mostly bacteria, that translocate
from the intestinal tract to the bloodstream. Consistently, Klebsiella was detected in
hemoculture in two out of two of our LOS patients (hemoculture was not performed for
the third patient). In addition, Klebsiella pneumoniae is one of the most common causes
of sepsis in preterm patients of our hospital (JL and LH personal observation), suggesting
that the most dominant and eventually infectious bacteria may be more specific to the
environment.

Another notable point in our cohort was almost absent Bifidobacteria, an anaerobe
that can ferment milk oligosaccharides (Gomez-Gallego et al., 2016) and thus commonly
detected among breastfed infants (Murphy et al., 2017). We speculate that this extremely
low level in our cohort was due to the lack of breastfeeding in the sterile hospital
environment, being nurtured in the sterile NICU environment, continuous administration
of antibiotics or the combinations of the above. Although Bifidobacteria has been generally
considered a probiotic that serves to protect neonates against necrotizing enterocolitis and
systemic infection (Nakayama et al., 2003; Khodayar-Pardo et al., 2014; Hermansson et al.,
2019), recent randomized controlled trials are showing paradoxical results (Hays et al.,
2016; Singh et al., 2019). Further studies on the role of probiotics in optimizing preterm
infants’ microbiota should address their effectiveness in preventing NEC and LOS.

This study was limited to only one hospital in one specific region (Shanghai) in China
so how far these findings can be extrapolated remains to be determined. In addition,
our sample size was relatively small since both diseases are rare (Neu &Walker, 2011;
Cohen-Wolkowiez et al., 2009). Among the 1,148 preterm infants admitted from July 2013
to December 2014, only five developed NEC and seven developed LOS. Nevertheless, this
pilot study has provided essential information about NEC and LOS preterm patients within
the Chinese population and serves as a starting point for future investigations into the
etiology and pathogenesis of both diseases in the nation.

CONCLUSIONS
In this longitudinal study, we used next generation-sequencing to profile the microbiota
of 24 Chinese preterm infants from birth to discharge. Among them, four developed NEC
and three developed LOS. To our knowledge, this is the first profiling of gut microbiota
in NEC and LOS patients among the Asian population. Reduction in intestinal microbiota

Liu et al. (2019), PeerJ, DOI 10.7717/peerj.7310 15/25

https://peerj.com
http://dx.doi.org/10.7717/peerj.7310


diversity and divergence of phylogenetic similarity from the control infants over time
associated with both NEC and LOS onset. Overgrowth of potentially pathogenic genus
Enterococcus, Streptococcus and Peptoclostridiumwere observed inNEC cases whileKlebsiella
was recognized as the dominant genus in LOS cases. In summary, our findings suggest
that both NEC and LOS are dynamic processes involving abnormal microbiota assembly.
This study is a starting point for further studying of microbial factors involved in preterm-
associated complications in China. Accumulation of more data within China and perhaps
from neighboring countries will allow us to build microbial signatures that can assist early
diagnosis and development of novel treatment.
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