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ABSTRACT
Cyanobacteria are widely distributed in fresh, brackish, and ocean water environments,
as well as in soil and on moist surfaces. Changes in the population of cyanobacteria
can be an important indicator of alterations in water quality. Metabolites produced
by blooms of cyanobacteria can be harmful, so cell counts are frequently monitored
to assess the potential risk from cyanobacterial toxins. A frequent uncertainty in these
types of assessments is the lack of strong relationships between cell count numbers
and algal toxin concentrations. In an effort to use ion concentrations and other water
quality parameters to determine the existence of any relationships with cyanobacterial
toxin concentrations, we monitored four cyanobacterial toxins and inorganic ions in
monthlywater samples froma large reservoir over a 2-year period. Toxin concentrations
during the study period never exceeded safety limits. In addition, toxin concentrations
at levels above the limit of quantitation were infrequent during the 2-year sampling
period; non-detects were common. Microcystin-LA was the least frequently detected
analyte (86 of 89 samples were ND), followed by the other microcystins (microcystin-
RR, microcystin-LR). Cylindrospermopsin and saxitoxin were the most frequently
detected analytes. Microcystin and anatoxin concentrations were inversely correlated
with Cl−, SO−24 , Na+, and NH+4 , and directly correlated with turbidity and total P.
Cylindrospermopsin and saxitoxin concentrations in water samples were inversely
correlated with Mg+2 and directly correlated with water temperature. Results of our
study are expected to increase the understanding of potential relationships between
human activities and water quality.

Subjects Freshwater Biology, Natural Resource Management, Aquatic and Marine Chemistry,
Environmental Impacts
Keywords Freshwater lake, Algal toxins, Water quality

INTRODUCTION
Anthropogenic pollution of freshwaters has altered microbiota, leading to changes in
their functions, deterioration of water quality, and economic loss (Carpenter et al., 1998).
Algae are a vital group in aquatic ecosystems and a significant factor for monitoring water
quality. Algae are important indicators of ecosystem conditions because of their quick
response to physicochemical changes in freshwater systems. Loading of inorganic nitrogen
(N) and phosphorous (P) nutrients in aquatic systems contributes to increasing rates of
cyanobacterial hazardous algal blooms (cHABs). Negative effects of cyanobacterial toxins
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in rats, mice, and fish, as well as their detection in blue–green algae food supplements have
been reported (Kondo et al., 1996; Bruno et al., 2006; Drobac et al., 2016). The economic
loss due to cHABs in the United States are annually estimated at more than one billion
dollars (Dodds et al., 2009). Human-induced eutrophication and subsequent algal blooms
negatively impact recreational water use, waterfront property values, threatened and
endangered species, and drinking water.

Data from the Harmful Algal Bloom-Related Illness Surveillance System (HABISS) from
2007–2011, which were summarized in Backer et al. (2015) indicated that, among 2,323
samples, cyanobacteria (73%) were the most common type of organism reported followed
by Anabaena spp. (20% of samples), Aphanizomenon spp. (7% of samples), andMicrocystis
spp. (7% of samples). There are some reports available on factors affecting cyanobacterial
growth (Robarts & Zohary, 1987). These include: effects of temperature on algal growth
(Butterwick, Heaney & Talling, 2005), nitrate uptake capabilities of cyanobacteria (Flores
et al., 2005), effects of temperature on algal distribution (Breitbarth, Oschlies & LaRoche,
2007), temporal variations in the photosynthetic activity of cyanobacteria species (Hodoki
et al., 2011), and the influence of N, P, and other environmental factors on algal blooms
in freshwater and marine systems (Paerl, 2008). Gobler et al. (2016) reported reductions
of N and P were essential to reducing the intensity and toxicity of algal blooms in Lake
Erie, however, Harke et al. (2016) suggested that blooms in western Lake Erie were not
significantly reduced as a result of P nutrient management plans. Reports are also available
on cyanobacterial toxins in lakes, reservoirs, and recreational sites in other countries (Tsuji
et al., 1996; Lehman et al., 2005; Dos Anjos et al., 2006; Bullerjahn et al., 2016; Francy et al.,
2016; Loftin et al., 2016; Douma et al., 2017).

In an effort to understand the potential impact of man-made activities and
environmental conditions in the study location on water quality, we attempted to
correlate water quality parameters measured in our own laboratory or obtained from
the USEPA’s STOrage and RETrieval (EPA, 2016) and Water Quality eXchange databases
with cyanobacterial toxin concentrations in a reservoir.

MATERIALS AND METHODS
Chemicals and consumables
Methanol, acetonitrile, formic acid, ammonium formate, and water (all LC/MS or Optima
grade) were obtained from Fisher Chemicals (Fair Lawn, NJ, USA). Ammonium hydroxide
(NH3 content 28–30%; analytical grade) was from Sigma-Aldrich (St. Louis, MO). Solid
phase extraction (SPE) cartridges were 60-mg Oasis HLB with 30-µm particle size (Waters,
Milford, MA). Borosilicate glass tubes, autosample vials, and polypropylene centrifuge
tubes were purchased from Fisher Scientific. Milli Q water (>18 M�) was produced
from a water purification system (Barnstead Nanopure). Multi-anion standards were
from Sigma-Aldrich (St. Louis, MO, USA) and multi-cation standards were from Alltech
(USA). Anatoxin-a, microcystin-LA, -LR, and -RR standards, as well as saxitoxin and
cylindrospermopsin ELISA kits were all from Abraxis (Warminster, PA, USA). The 25-mm
glass microfiber GF/A syringe filters were obtained from Whatman (GE Healthcare UK
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Limited, UK) and B-D 10-mL disposable syringes were from Becton Dickinson & Co
(Franklin Lakes, NJ, USA). The IC eluents were sodium hydroxide (50%, w/w) for anion
analysis and methanesulfonic acid for cation analysis.

Sample collection
Water samples were collected from nine different locations within a recreational reservoir
in the southwest US at monthly intervals from September 2015 to September 2017. The
lake is 89,000 acres in area and holds >2.5 million acre-ft of water. The minimum distance
between sample locations was one mile. The collected 500-mL water samples were stored
in airtight amber containers and kept on dry ice until transport to our laboratories in
Lubbock, TX within 24 h.

Sample pre-treatment
The analysis of algal toxins in collected water was initiated immediately after receipt of
samples. Frozen water samples were thawed, then sonicated for 3 h. An aliquot of each
sample was collected for use while the remaining sample volume was stored in the freezer
at −20 ◦C prior to inorganic ion analysis.

Saxitoxin and cylindrospermopsin analysis by ELISA
For the ELISA tests, we followed the methods provided by the manufacturer (Abraxis
Inc, 2019a; Abraxis Inc, 2019b). The 96-well plates were tested using a UV–VIS
spectrophotometer (Spectra Max Plus; Molecular Devices, San Jose, CA, USA) at 450 nm.

Anatoxin-a, Microcystin-LR, -LA, and -RR determination by LC-MS/MS
20 mL of pre-filtered water sample was aliquoted into a 50-mL polypropylene tube. In
parallel, a laboratory blank sample (Milli-Q water), a laboratory control sample (LCS;
spiked Milli-Q water), and a matrix-spike sample (MS) were also prepared for quality
control. LCS and MS were spiked with Anatoxin-a, Microcystin -LR, -LA, and -RR each
at 0.5 ng/mL. 0.5 mL of methanol and 0.1 mL of ammonium hydroxide were added to
samples. Samples were vortexed and centrifuged at 3,000 rpm for 15 min. Oasis HLB
cartridges (Waters) were conditioned using 5 mL of methanol followed by 5 mL of water.
Samples were passed through the cartridges at a flow rate of 2–3 mL/min. HLB cartridges
were then dried under high vacuum for 20 min. Cartridges were eluted 3X with 0.7 mL
of 2% formic acid in methanol. Eluates were collected in glass tubes, evaporated under
nitrogen, and reconstituted to 0.2 mL with 0.19 mL of methanol and 0.01 mL of 10 µg/mL
simeton as an internal standard. The method used in this study followed Cong et al. (2006)
and Waters Corporation (2014). Spike-recovery tests with algal toxins met QA criteria
(50%–150%) as described by Shoemaker, Tettenhorst & De la Cruz (2015).

Algal toxins in samples were analyzed using a Thermo Scientific Accela ultra–high–
performance liquid chromatography (UHPLC) system equipped with a Thermo Scientific
TSQQuantumAccessMax triple stage quadrupolemass spectrometer (MS/MS) operated in
heated electrospray ionization (HESI probe) mode with positive polarity. One µg/mL algal
toxin standards were used for optimization to achieve consistent counts per second (cps) in
MS (Q1) and MS/MS (Q3) scans. The parent and product ion transitions and other mass
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spectrometry operating parameters are in Tables S1 and S2. Chromatographic separation
was carried out using an Accela 1,250 binary pump, a CTC PAL autosampler system, a
Phenomenex Nx 3 µ 150 mm × 2 mm diameter analytical column with a SecurityGuard
ULTRA guard column. The column oven temperature was set to 30 ◦C. Elution solvents
were 5 mM ammonium formate and 0.1% formic acid in water:acetonitrile (95:5) (A) and
5 mM ammonium formate and 0.1% formic acid in acetonitrile:methanol (50:50) (B).
The mobile phase composition (A:B; v/v) was 90:10 at 0 min, 90:10 at 3 min, 10:90 at 6
min, 10:90 at 10 min, and 90:10 from 12 to 15 min with a flow rate of 300 µL/min and
an injection volume of 20 µL. The LC-MS/MS instrument software was Xcalibur version
2.1.0.

Anions and cations by ion chromatography (IC)
Water samples were diluted 1:5 with Milli-Q water, filtered (0.45 µ) and transferred to
IC poly vials with filter caps. Simultaneously, a laboratory blank sample (Milli-Q water)
and an LCS (Milli-Q water spiked with anions and cations) were prepared for quality
control. Samples were analyzed by Dionex IC 25 Ion Chromatograph (Chromeleon
software version CM 6.5 SP1) coupled with a conductivity detector (Hautman, Munch
& Pfaff, 1997). Target ions were fluoride (F−), chloride (Cl−), bromide (Br−), nitrate
(NO−3 ), sulfate (SO

2−
4 ), sodium (Na+), ammonium (NH+4 ), potassium (K+), magnesium

(Mg2+), and calcium (Ca2+). The column and instrumental parameters are presented
in Supplemental Information (Table S3). Spike-recovery tests with test analytes met QA
criteria (85%–115%) as described in U.S. EPA Method 300.1 (Hautman, Munch & Pfaff,
1997).

Data analysis
Inorganic ion data for water samples were normally distributed, however, data for algal
toxins were not normal and followed a typical pattern (logarithmic) for environmental
residues where non-detects are frequent. The p-values for correlation analyses were
determined by either ANOVA or the Mann–Whitney–Wilcoxon test in R.

RESULTS AND DISCUSSION
Cyanobacterial toxins in surface water
A summary of the results obtained from the analysis of freshwater lake samples for
cyanobacterial toxins is presented in Table 1. Toxin concentrations during the study
period never exceeded safety limits (0.3–1.6 µg/L for microcystins and 0.7–3 µg/L for
cylindrospermopsin). Toxin concentrations at levels above the limit of quantitation
were infrequent during the 2-year sampling period; non-detects (ND) were common.
Microcystin-LA was the least frequently detected analyte (86 of 89 samples were ND),
followed by the other microcystins (microcystin-RR: 80 of 89 samples were ND,
microcystin-LR: 77 of 89 samples were ND). Cylindrospermopsin and saxitoxin were
the most frequently detected analytes above the detection limit. Although saxitoxin was
frequently detected, it was never above the reporting limit or quantitation limit (0.025
µg/L) in any sample.
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Table 1 Summary data for cyanobacterial toxin concentrations (µg/L) in 89 water samples collected
from a reservoir in the southwest U.S. from September 2015 to September 2017.

Analyte Mean SD Max RL # non-detects # >RL # <RL

Anatoxin-Aa 0.013 0.021 0.14 0.02 53 9 27
M-RRb 0.002 0.010 0.07 0.05 80 3 6
M-LRb 0.004 0.011 0.06 0.05 77 5 7
M-LAb 0.003 0.025 0.24 0.05 86 1 2
Cylindrospermopsinc 0.044 0.032 0.10 0.10 24 15 50
Saxitoxind 0.017 0.012 NA 0.05 30 0 59

Notes.
SD, standard deviation; RL, reporting limit.

aIn calculating the mean, we used the detection limit (0.025µg/L) for samples containing anatoxin at <RL and 0 for non-
detect samples.

bIn calculating the mean, we used the detection limit (0.01µg/L) for samples containing microcystins at <RL and 0 for non-
detect samples.

cIn calculating the mean, we used 1
2 the RL (0.05µg/L) for samples containing cylindrospermopsin at <RL and 0 for non-

detect samples.
dIn calculating the mean, we used 1

2 the RL (0.025µg/L) for samples containing saxitoxin at <RL and 0 for non-detect samples.

Relationships between water quality parameters and cyanobacterial
toxins
Results of correlation analyses between water parameters and cyanobacterial toxin
concentrations are presented in Table 2. Anatoxin-A concentrations in water samples
were inversely related to F−, Cl−, Br−, NO−3 , SO

−2
4 , Na+, NH+4 , conductivity, total

dissolved solids (TDS), and dissolved oxygen (DO), but directly related to Ca+2, pH,
water temperature, turbidity, and total phosphorus. Microcystin-LR concentrations were
the least correlated with water parameters; M-LR was inversely related to alkalinity
and directly related to total suspended solids (TSS), turbidity, and total phosphorus.
Microcystin-LA concentrations in water samples were inversely related to F−, Cl−, SO−24 ,
Na+, and NH+4 , but directly related to turbidity, and total phosphorus. Microcystin-RR
concentrations in water samples were inversely related to Cl−, Br−, NO−3 , SO

−2
4 , Na+,

NH+4 , conductivity, alkalinity, and TDS, but directly related to Ca+2, water temperature,
TSS, and turbidity. Cylindrospermopsin and saxitoxin concentrations in water samples
were inversely correlated with Mg+2 and directly correlated with water temperature.

Overall, water turbidity appeared to be the best predictor of cyanobacterial toxin
concentrations; cylindrospermopsin concentrations were lower with increases in turbidity
and microcystins and anatoxin were higher with increases in turbidity. The direct
relationship between toxin concentrations and turbidity is surprising given that increases
in turbidity would reduce light penetration and presumably cyanobacterial growth (Ota
et al., 2015; Wells et al., 2015; Ashraful Islam & Beardall, 2017). Perhaps toxin-producing
cyanobacteria are out-competing other species under the reduced light conditions. Increases
in anatoxin, M-RR, cylindrospermopsin, and saxitoxin concentrations also correlated with
increases in water temperature, consistent with higher cyanobacterial growth rates at higher
water temperatures (Butterwick, Heaney & Talling, 2005; Watkinson, O’Neil & Dennison,
2005).
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Table 2 Correlation ( p values) between water parameters and cyanobacterial toxin concentrations in 89 water samples collected from a reser-
voir in the southwest U.S. from September 2015 to September 2017.

Parameter Anatoxin-A M-LR M-LA M-RR Cylindrospermopsin Saxitoxin

F− ↓ (9.3E−05) NS ↓ (0.05) NS NS NS
Cl− ↓ (1.8E−05) NS ↓ (0.03) ↓ (0.03) NS NS
Br− ↓ (8.7E−05) NS NS ↓ (5.0E−05) NS NS
NO −3 ↓ (2.4E−05) NS NS ↓ (0.01) NS NS
SO 2−

4 ↓ (5.6E−07) NS ↓ (0.02) ↓ (0.01) NS NS
Na + ↓ (1.4E−06) NS ↓ (0.02) ↓ (0.003) NS NS
NH +4 ↓ (5.8E−09) NS ↓ (0.04) ↓ (0.01) NS NS
K + NS NS NS NS NS NS
Mg 2+ NS NS NS NS ↓ (0.03) ↓ (0.01)
Ca 2+

↑ (4.9E−08) NS NS ↑ (0.02) NS NS
pH ↑ (0.01) NS NS NS NS NS
Temperature ↑ (2.6E−05) NS NS ↑ (0.03) ↑ (0.01) ↑ (0.004)
Conductivity ↓ (2.4E−08) NS NS ↓ (0.03) NS NS
Alkalinity NS ↓ (0.05) NS ↓ (0.03) NS NS
TDS ↓ (3.3E−10) NS NS ↓ (0.01) NS NS
TSS NS ↑ (5.0E−05) NS ↑ (0.02) NS NS
Turbidity ↑ (0.002) ↑ (5.7E−05) ↑ (0.01) ↑ (0.01) ↓ (0.02) NS
True color NS NS ↓ (0.01) ↑ (0.03) ↑ (0.01) NS
DO ↓ (0.02) NS NS NS NS NS
Total P ↑ (0.03) ↑ (2.3E−05) ↑ (0.01) NS NS NS
Location NS NS NS NS NS NS
Season NS NS NS NS NS NS

Notes.
NS, not significant.
Significant correlation if p≤ 0.05.
↑ indicates direct (positive) correlation.
↓ indicates indirect (negative) correlation.

Nutrients appear to play an important role in cyanobacterial blooms, particularly N
and P (Filstrup & Downing, 2017). Unfortunately, the relationship between blooms and
the presence of cyanobacterial toxins in the water is less consistent. Complicating these
relationships (and attempts at correlations) are observations indicating that factors such
as salinity not only influence the uptake of P by cyanobacteria (Markou, Vandamme &
Muylaert, 2014), salinity may also stimulate the release of extracellular toxins (Preece et al.,
2017).

Water levels, which are affected by seasonal weather changes, also influence
cyanobacterial growth and the potential for toxin formation in freshwater ecosystems.
In our study, water levels in the lake were 90–100% of capacity; water inputs favoring
algal growth were continuous, although inorganic ions did not significantly vary among
season and sampling locations. In freshwater lakes, microcystin peaks and toxin transport
frequently occur in receiving waters during high flow periods (Gobler et al., 2016). Uneven
rainfall patterns due to climate change (prolonged droughts followed by intense rainfall)
can lead to increased freshwater inputs.
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CONCLUSIONS
Cyanobacterial toxin concentrations during the study period never exceeded safety limits.
In addition, toxin concentrations at levels above the limit of quantitation were infrequent.
Cylindrospermopsin and saxitoxin were the most frequently detected analytes above the
detection limit; their concentrations were directly related to water temperature in the lake
and inversely related to Mg+2 concentrations in lake water. Microcystin and anatoxin
concentrations were inversely correlated with Cl−, SO−24 , Na+, and NH+4 , and directly
correlated with turbidity and total P.
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