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ABSTRACT
The octopus fauna from the southern Caribbean is an understudied field. However,
recent taxonomic work in the Colombian Caribbean has led to the discovery of
several new species in the family Octopodidae. To provide molecular evidence for
recent descriptions in the area (i.e., Octopus taganga, O. tayrona and Macrotritopus
beatrixi) and contribute to the systematics of the family, we reconstructed the first
molecular phylogenies of the family including Colombian Caribbean octopus species.
Using cytochrome c oxidase subunit I and rhodopsin sequences from specimens collected
in three sites (Santa Marta, Old Providence and San Andrés Islands) we inferred
maximum-likelihood trees and delimited species with PTP. Ourmitochondrial analysis
supported the monophyly of species found in the area (i.e.,O. taganga,O. hummelincki
and O. briareus). The genetic distinction of the species O. tayrona and O. insularis was
not resolved, as these were found in one clade together with Caribbean O. vulgaris
and O. aff. tayrona species (O. spB) and delimited as a single species. Additionally,
our results suggest a distant relationship of the Type I O. vulgaris group (Caribbean
region) from the other forms of the species complex (Old World and Brazil). Lastly,
the third newly described species M. beatrixi emerged as an independent lineage and
was delimited as a single species. However, its relationship to other species of its genus
remains unknown due to the lack of sequences in databases. Altogether, our molecular
approach to the octopus fauna from the southern Caribbean adds on information to the
relationship of Octopodidae species world-wide by providing sequences from recently
described species from an understudied region. Further studies employing higher taxon
sampling andmoremolecular information are needed to fill taxonomic gaps in the area
and account for single-locus resolution on the systematics of this group.

Subjects Biodiversity, Genetics, Molecular Biology, Taxonomy
Keywords Octopodidae, Molecular phylogeny, Rhodopsin, Southern Caribbean, Species
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INTRODUCTION
The Caribbean region represents a global-scale hotspot of marine biodiversity, which
includes the greatest concentration of marine species in the tropical Atlantic Ocean (Roberts
et al., 2002). However, many gaps in biodiversity studies remain and need to be filled in
order to define conservation priorities and design regional-scale management strategies
(Miloslavich et al., 2010). An accurate evaluation of marine biodiversity in the Caribbean
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needs comprehensive identification guides and taxonomic expertise. This phenomenon
has also been called taxonomic impediment (see Wheeler, 2004; Wheeler, Raven & Wilson,
2004; Crisci, 2006) and, together with poor sampling efforts, represents an enduring issue
for many invertebrates (e.g., Coleman, 2015), including cephalopods (Norman & Hochberg,
2005).

All of the major cephalopod lineages contain taxa with unstable systematics (Allcock,
Strugnell & Johnson, 2008). In 2005, Norman and Hochberg reported 186 resolved octopus
species names in the family Octopodidae d’Orbigny. Until then, around 50% of the
described species were lumped in the genus Octopus Cuvier, 1798 (Allcock, Strugnell &
Johnson, 2008). This genus, sensu stricto, has only 11 accepted species, all other belong to
different genera and most still need to be defined (Norman, Finn & Hochberg, 2014). This
has led to an underestimation of several genera within Octopodidae. Regional surveys
around the globe additionally revealed a higher octopod diversity, with a recent increase
in discovery of new species (Norman & Hochberg, 2005). Moreover, in recent years, studies
of cryptic species complexes have increased the number of putative species in the family
(e.g., Amor et al., 2016; Amor et al., 2014; Leite et al., 2008). Despite these improvements to
octopod systematics, some regions around the globe remain understudied. For instance,
within the highly diverse Caribbean, its southern area (Panama, Venezuela and Colombia)
represents a remarkable taxonomic gap of theOctopodidae (Guerrero-Kommritz & Camelo-
Guarin, 2016).

Twenty-nine (29) cephalopod species have been reported from theColombianCaribbean
(Díaz, Ardila & Gracia, 2002; Díaz, Ardila & Gracia, 2000; Guerrero-Kommritz & Camelo-
Guarin, 2016; Guerrero-Kommritz et al., 2016) and 12 of them belong to the family
Octopodidae sensu Strugnell et al. (2014). Recent taxonomic work based on morphology
(Guerrero-Kommritz & Camelo-Guarin, 2016; Guerrero-Kommritz & Camelo-Guarin,
2016; Guerrero-Kommritz & Rodriguez-Bermudez, 2018) from the Taganga Bay at Santa
Marta, Colombia, revealed three newly described octopus species (i.e., Octopus tayrona
Guerrero-Kommritz & Camelo-Guarin, 2016; O. taganga Guerrero-Kommritz & Camelo-
Guarin, 2016, andMacrotritopus beatrixi Guerrero-Kommritz & Rodriguez-Bermudez, 2018)
and at least seven more remain undescribed (J G-K, pers. obs., 2018), which highlights
the currently unrecognized biodiversity of this understudied region. These morphological
studies performed in the country are the first step to understand the diversity of Colombian
octopod species, and molecular phylogenetic analyses comprise a next step to follow.
Therefore, the purpose of this study was to assess the biodiversity of benthic shallow-water
octopuses from three locations in the Colombian Caribbean using genetics by constructing
the first molecular phylogeny of the family Octopodidae that included Colombian samples.
Particular goals were to: (1) providemolecular evidence for recently described species in the
area (namely,O. tayrona,O. taganga andM. beatrixi); and (2) contribute to the systematics
of the Octopodidae family by adding data from an understudied area of the globe.
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Figure 1 Sampling locations at the Colombian Caribbean Sea. San Andrés Island (A), Old Providence
Island (B) and Taganga Bay at Santa Marta (C). Maps were generated with QGIS.

Full-size DOI: 10.7717/peerj.7300/fig-1

MATERIALS AND METHODS
Specimens
A total of 38 tissue samples and 36 specimens were obtained between February and March
of 2016 with the help of local fishermen by hand capture with aid of a hook or a shovel
(Guerrero-Kommritz & Camelo-Guarin, 2016; Guerrero-Kommritz & Rodriguez-Bermudez,
2018). The sampling was performed in three areas with depths less than 7 m near the shore
at the Caribbean Sea: San Andrés Island, Old Providence Island and Taganga Bay at Santa
Marta, Colombia (Fig. 1). Mantle tissues were stored in 90% ethanol at−20 ◦C until DNA
extraction. Voucher specimens were fixed in formalin 4% for 24 to 48 h, preserved in
ethanol 70% and identified by morphometries and counts following Guerrero-Kommritz
et al. (2016) catalogue for southern Caribbean octopod species. These were deposited
in the ANDES Natural History Museum at Los Andes University, Bogota, Colombia
(Table S1). The samples corresponded by morphological identifications (summarized in
Table S2) to four genera and six described species. Namely,O. tayrona (Guerrero-Kommritz
& Camelo-Guarin, 2016), O. taganga Guerrero-Kommritz & Camelo-Guarin, 2016, O.
briareus Robson, 1929, O. hummelincki Adam, 1936, Amphioctopus burryi Voss, 1950
and M. beatrixi (Guerrero-Kommritz & Rodriguez-Bermudez, 2018). Specimens belonging
to the O. aff. tayrona complex (O. spB and O. spD; Guerrero-Kommritz & Camelo-Guarin,
2016), which are currently being described as new species by J. G-K, and to the genus
Callistoctopus Taki, 1964 were also found.
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Research and collection were approved by the National Environmental Licensing
Authority (ANLA, Spanish acronym): Collection Framework Agreement granted to
Universidad de los Andes through resolution 1177 of October 9th, 2014 - IBD 0359.

Molecular techniques
DNA was obtained from tissues by phenol-chloroform extraction and ethanol
precipitation following the Coffroth et al. (1992) protocol. Genomic DNA was stored
in ultrapure water at −20 ◦C until polymerase chain reaction (PCR) amplification.
The mitochondrial gene cytochrome c oxidase subunit I (COI) was amplified using
the primers LCO1490 and HC02198 (Folmer et al., 1994) and the nuclear gene
Rhodopsin (Rho) with the primers 5′-TTGCCTGTACTGTTTGCTAAAGC-3′ and 5′-
GCCATCATTTCTTTCATTTGTGCGGCAT -3′(Strugnell, Norman & Drummond, 2004).

Each 15 µl PCR reaction contained the following reagents: 9.2 µl of ddH2O, 1.5 µl of
10x buffer, 2.1 µl of 25 mM MgCl2, 0.3 µl of 10 mM dNTPs, 0.3 µl of 5 U/ µl Taq DNA
polymerase (Promega), 0.3 µl of 10 mM of both the forward and reverse primers and 1 µl
of 20 ng/ µl DNA. PCR thermal cycling program for COI was: denaturation at 92 ◦C for 5
min; 35 cycles of 94 ◦C for 50 s, 54 ◦C for 1 min and 72 ◦C for 1 min; and final extension at
72 ◦C for 7 min completed each PCR. Thermal cycling program for Rho was: denaturation
at 94 ◦C for 2 min; 35 cycles of 94 ◦C for 40 s, 50 ◦C for 40 s and 72 ◦C for 90s; and final
extension at 72 ◦C for 10 min. PCR products were purified with the ExoSAP-IT protocol
(Thermo Fisher Scientific) and sequenced by Macrogen Inc (Korea) in both directions
using the same primers as for the PCR amplifications. Sequences generated in this study
are available under the GenBank accession numbers MG778037–MG778111 (Table S1).

Taxon sampling
To assess relationships between the individuals found in the three sampling sites and
their position within the Octopodidae, the dataset included COI and Rho sequences from
different sources (Table S3) of species of the family as the ingroup, and Enteroctopus
dofleiniWülker, 1910 andMuusoctopus Gleadall, 2004 sequences as outgroup. The ingroup
was selected taking into account the identification to genus of the specimens collected,
which belonged all to the family Octopodidae sensu Strugnell et al. (2014). The outgroup
species were selected because these were found to be part of the Octopodidae sister group,
following the latest Octobrachia phylogeny (Sanchez et al., 2018).

Phylogenetic analyses and species delimitation
Haplotypes of the COI and Rho datasets were firstly collapsed using the online fasta
sequence toolbox FaBox 1.41 (http://www.birc.au.dk/software/fabox). Sequences were
aligned with MAFFT v7 (multiple sequence alignment method based on fast Fourier
transform (FFT); Katoh & Standley, 2013) with default parameters. Alignments were
cleaned with trimAl v1.4 (automated trimming alignment tool; Capella-Gutierrez, Silla-
Martinez & Gabaldon, 2009) using a 0.5 gap threshold, 0.25 residue overlap and 90%
sequence overlap to erase non-informative sites and sequences. The best-fit model for
each dataset was selected with ModelFinder (Kalyaanamoorthy et al., 2017) implemented
in IQTree v1.6.2 (Nguyen et al., 2014) using the corrected Akaike Information criterion
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(AICc). For both COI and Rho datasets, the Generalized Time-Reversible plus Gamma
(GTR + G) model of nucleotide substitution was assigned. Best scoring maximum-
likelihood trees were constructed with RAxML v8.2.11 (Randomized AxeleratedMaximum
Likelihood; Stamatakis, 2014) using the rapid bootstrap algorithm, 1,000 bootstrap
replicates and 20 alternative runs on distinct starting trees. These resulting trees were
finally used as input for the species delimitation analysis with the maximum-likelihood
Poisson Tree Process method (PTP; Zhang et al., 2013) as implemented in the web server
(https://species.h-its.org/ptp/). Analyses were performed for each gene separately and
bootstrap supports >70% were considered significant. Final datasets (sequence files with
unique haplotypes), alignments and tree files are available in (Data S1).

RESULTS
The COI (625 base pairs, 164 sequences) and Rho (235 base pairs, 40 sequences)maximum-
likelihood trees of the family Octopodidae are depicted in Figs. 2 and 3, respectively. The
COI tree recovered well-supported relationships (bootstrap/BS >70%) mainly at the
species level (Fig. 2), whereas deeper branches remain unresolved (BS < 70%). The Rho
tree (Fig. 3) included fewer sequences than the COI tree due to the limited availability of
this molecular marker in GenBank, resulting in a lower representation of species from the
family. Relationships in this analysis were found to be in general discrepant with the COI
tree, as detailed below. However, most of these topology inconsistencies were supported
below the 70% support level.

The maximum-likelihood approach with the mitochondrial gene (Fig. 2) recovered
the monophyly of three species found in the studied area, namely O. hummelincki,
O. briareus and O. taganga (BS = 100%). These were also delimited as single species
with the PTP analysis (92%, 77% and 92% BS support, respectively; detailed PTP results
in the Data S1). The recently described species M. beatrixi resulted as a sister lineage of a
well-supported clade (BS = 85%) containing Wunderpus photogenicus and Thaumoctopus
mimicus, although with a low bootstrap support (BS = 65%). The Callistoctopus sp.
specimen (SM1) was found to be a sister lineage to the two C. ornatus representatives from
Hawaii and Australia (BS = 85%) and the A. burryi sample (2017–01) was found within
its genus as a sister lineage to A. arenicola, A. aegina and A. marginatus (BS = 100%).
These three Colombian samples (i.e., M. beatrixi, Callistoctopus SM1. and A. burryi) were
delimited each as single species with PTP (BS = 100%).

Conversely, the monophyly of the species O. tayrona could not be resolved. This is
because O. vulgaris representatives of Puerto Rico and the Lesser Antilles (Caribbean
region), and O. insularis (Leite et al., 2008) from Brazil and the mid- Atlantic Islands
appeared nested in the same clade as O. tayrona sequences with a bootstrap support of
100% (Fig. 2). The undescribed speciesO. spD andO. spB proposed byGuerrero-Kommritz
& Camelo-Guarin (2016) and O.s sp. samples from Old Providence Island resulted within
this clade as well, in both mitochondrial and nuclear phylogenetic analyses (Figs. 2 and
3). The PTP analysis with COI delimited this clade as one single species (BS = 89%;
Fig. 2), whereas the Rho delimitation resulted in the delimitation of individual sequences
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within this clade as single species (Fig. 3). Moreover, this highly-supported clade resulted
in the COI tree (Fig. 2) as sister lineage of O. maya (BS = 45%), followed by O. taganga
(BS = 70%). In the Rho tree the latter resulted to be paraphyletic to the O. aff tayrona
complex (Fig. 3), thus not establishing two separate groups. However, this relationship
was supported below the 70% bootstrap level (55%). Other species relationships found
in the three sampling areas were found to be discordant between the COI and Rho tree.
For instance, in the nuclear analysis (Fig. 3) O. hummelincki appeared nested within the
O. tayrona clade (BS= 85%). Conversely, Callistoctopus SM1 was found, as in the COI tree,
in a clade with C. ornatus and O. kaurna (BS = 80%; Fig. 3). Moreover, the PTP analysis
with the nuclear marker resulted in the delimitation of 10 species supported over the 70%
bootstrap level (Fig. 3). However, many of these results were non-concordant with the
phylogenetic signal (e.g., delimitation of sequences within the O. aff tayrona/O. taganga as
single species; Fig. 3).
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DISCUSSION
Regional findings
Our study provides, for the first time, molecular data from octopods found in the
Colombian Caribbean and newly described species from this area. The mitochondrial
analysis (Fig. 2) resolved the monophyly (BS = 100%) and species delimitation (BS
= 92%) of O. taganga, the third ocellated species (with O. hummelincki and O. maya)
from the Atlantic. Morphologically, O. taganga is closely related to O. hummelincki and
appears to be related to the Pacific Ocean species Octopus oculifer (Hoyle, 1904), Octopus
bimaculoides Pickford and McConnaughey, 1994 and Octopus bimaculatus Verrill, 1883
(Guerrero-Kommritz & Camelo-Guarin, 2016). However, preliminary molecular results
showed it as more similar to O. maya than any other species present in the NCBI database
(Guerrero-Kommritz & Camelo-Guarin, 2016). We found in the COI tree (BS = 70%)
O. taganga as sister lineage of the O. tayrona/O. insularis clade and O. maya (Fig. 2). This
group, together with O. mimus and O. hubbsorum, showed a close relationship with the
ocellated species O. bimaculoides and O. bimaculatus (BS = 100%).

The species O. tayrona formed a monophyletic group with O. insularis, Caribbean
O. vulgaris, Octopus sp. B, and Octopus sp. sequences from Old Providence Island in the
COI analysis (Fig. 2, BS = 100%) and was delimited as one single species with PTP (BS =
89%). Until its description, O. tayrona and any other large octopus in the Caribbean were
identified as O. vulgaris (Guerrero-Kommritz & Camelo-Guarin, 2016). However, it can be
morphologically distinguished from European O. vulgaris by its smaller ligula (O. tayrona:
0.6 –1.6 mm; O. vulgaris: 1.2 –2.1 mm) and the absence of enlarged suckers in all arms,
both in males and females. O. tayrona can be additionally distinguished from other similar
species, such as O. insularis, mainly by its smaller size, the presence of large warts on the
arms’ base and the absence of enlarged suckers on arms II and III (Guerrero-Kommritz &
Camelo-Guarin, 2016). These features, together with other reproduction-related characters
(e.g., relative size of the hectocotylus, presence and form of the calamus) and internal
structures related to digestion (e.g., size of liver, teeth on radula, form of salivary glands
and structure of stomach), are the base for morphological octopod species delimitation due
to their role on ecological adaptation, reproductive isolation and, consequently, speciation.
Currently, O. tayrona is considered by morphology part of the O. vulgaris type I group
(Guerrero-Kommritz & Camelo-Guarin, 2016), the species complex form representing
the wider Caribbean area (Norman, Finn & Hochberg, 2014). The inclusion of sequences
identified as O. vulgaris from Puerto Rico and the Lesser Antilles within this clade in our
COI tree either supports this claim or, most probably, indicates misidentification of the
specimens, as already suggested by Lima et al. (2017). Regardless, these phylogenetic results
create a conflict with themorphological species delimitation based on reproduction-related
characters of O. tayrona and O. insularis. Moreover, the Rho tree consistently resulted on
a highly supported (BS = 85%) monophyletic group of O. tayrona, O. sp. B and O. sp.
from Old Providence. An O. insularis sequence from (González-Gómez et al., 2018) was
included in the analysis, but during trimming it was erased due to its low coverage in
the alignment. Therefore, together with the lack of rhodopsin sequences for Caribbean
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O. vulgaris, the mitochondrial results regarding O. tayrona could not be confirmed with
the nuclear marker. Future work using more molecular data would be necessary to follow
up these results. This would help to further evaluate the evolutionary relationship between
O. tayrona, O. insularis and Type I O. vulgaris and confirm or reject their taxonomical
distinction.

The newly described speciesMacrotritopus beatrixi resulted as an independent lineage in
our analyses (Figs. 2 and 3) and was delimited as a single species (COI, BS = 100%; Rho,
BS = 93%). So far, it represents the first published sequence of its genus. Thus, data from
otherMacrotritopus species are needed to resolve the genetic distinction of this new species.
Moreover, our COI phylogeny and PTP results suggest that Callistoctopus SM1 from Santa
Marta represents one independent lineage and a single species (BS = 100%), different
from all other representatives of this genus included in the analysis (Fig. 2). A new species
of Callistoctopus is currently under description by J. G-K., expected to be closely related
to C. macropus Risso, 1826 from the east Atlantic Ocean and Mediterranean Sea (due to
morphological similarities; J G-K, pers. obs., 2018). Callistoctopus macropus is also reported
for the southern Caribbean (Díaz, Ardila & Gracia, 2000; Guerrero-Kommritz & Camelo-
Guarin, 2016). However, after analyzing specimens from France the morphometrics and
counts were different, and we considered this a misidentification (research in process J.
G-K). Unfortunately, the sequence generated here was taken from an individual whose
whole body could not be collected. Therefore, its morphological identification to species
level was not possible to achieve. Moreover, due to the lack of sequences of C. macropus
in databases, their evolutionary relationship could not be molecularly assessed here and
warrants further investigation.

Contributions to the Octopodidae systematics
Our COI and Rho phylogenies help to fulfill the taxonomic gap in the Octopodidae
family of species previously lacking molecular information and thus not considered
in the phylogenetic systematics of the family (i.e., O. tayrona, O taganga, A. burryi
and M. beatrixi). For instance, the Macrotritopus beatrixi sample contributes the first
sequences of its genus, providing new insights on the Octopodidae genus-level systematics.
Additionally, the inclusion of O. tayrona in our COI analysis, considered morphologically
as part of the Type IO. vulgaris group, allowed the inference of the evolutionary relationship
of this species with other forms of the species complex. Our results suggest that O. tayrona
is more closely related to other species also found in the New World (e.g., O. taganga from
Colombia, O. hubbsorum, O. bimaculatus and O. maya fromMexico, O. mimus from Chile
and Peru, O. bimaculoides from California, USA) than to the O. vulgaris forms from the
Old World and Brazil (Fig. 2). Moreover, its genetic distinction with O. insularis remains
unresolved.

Our mitochondrial analysis showed a better-resolved topology, with less polytomies
and more significantly-supported branches (BS > 70%) than the Rho tree. This could
be explained by the general smaller effective population size of mitochondrial DNA
compared to nuclear genes (Moore, 1995). This leads to a higher probability of coalescence
in short internodes and can result on a more accurate recovery of the species-tree topology.
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However, even awell-resolved gene tree can hardly resemble a species tree due to incomplete
lineage sorting and DNA barcodes are known to decrease their performance on poorly
sampled groups (Meyer & Paulay, 2005). Moreover, recent genome-wide findings on
the O. vulgaris species complex (Amor et al., 2019) highlight that phylogenetic analyses
using only mitochondrial DNA underestimate octopus species diversity. Thus, despite the
better performance of our COI analysis, more informative nuclear markers are needed to
complement our results.

The number of cephalopod species in the Caribbean should increase as more surveys
are made (Judkins et al., 2010; Miloslavich et al., 2010). Here we show a first attempt to
fulfill taxonomic gaps on the octopod species of an understudied area of the highly diverse
Caribbean. However, more sampling and taxonomic efforts are still needed to contribute to
the local and the world-wide picture of the Octopodidae systematics. Therefore, for future
studies we suggest the inclusion of more taxa poorly represented in databases to account
for incomplete taxon sampling and further tests using more molecular information to
account for insufficient single-locus resolution.

CONCLUSIONS
Here we present the first molecular approach to the octopus fauna from the southern
Caribbean in Colombia. Our mitochondrial analysis supports the monophyly of species
found in the Colombian Caribbean, like Octopus taganga, O. hummelincki and O. briareus.
The genetic distinction of the species O. insularis and O. tayrona was not resolved, as
these were found in one unresolved clade and delimited as one species together with
Caribbean Octopus vulgaris and Octopus aff. tayrona species (O. spB). Moreover, our
results suggest a distant relationship of the O. vulgaris-like species from the Caribbean
region (e.g., O. tayrona and O. insularis) from the O. vulgaris species complex forms of
the Old World and Brazil. Lastly, the newly described species Macrotritopus beatrixi was
delimited as a single species but its relationship to other species of its genus remains
unknown. Altogether, our work contributes to the fulfilment of taxonomic gaps in the
Octopodidae family and adds molecular evidence for recent descriptions in this area. We
suggest for future studies to use more molecular markers to compensate for insufficient
single-locus resolution. Furthermore, molecular data of poorly represented species should
be amended to databases to improve taxon sampling.
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