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ABSTRACT
Decision analysis often considers multiple lines of evidence during the decision mak-
ing process. Researchers and government agencies have advocated for quantitative
weight-of-evidence approaches in which multiple lines of evidence can be considered
when estimating risk. Therefore, we utilized Bayesian Markov Chain Monte Carlo to
integrate several human-health risk assessment, biomonitoring, and epidemiology
studies that have been conducted for two common insecticides (malathion and
permethrin) used for adult mosquito management to generate an overall estimate of
risk quotient (RQ). The utility of the Bayesian inference for risk management is that
the estimated risk represents a probability distribution from which the probability of
exceeding a threshold can be estimated. The mean RQs after all studies were incorpo-
rated were 0.4386, with a variance of 0.0163 for malathion and 0.3281 with a variance
of 0.0083 for permethrin. After taking into account all of the evidence available on
the risks of ULV insecticides, the probability that malathion or permethrin would
exceed a level of concern was less than 0.0001. Bayesian estimates can substantially
improve decisions by allowing decision makers to estimate the probability that a risk
will exceed a level of concern by considering seemingly disparate lines of evidence.
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Keywords Decision analysis, Uncertainty analysis, Mosquito management, Pesticide,
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INTRODUCTION
Modeling and decision theory are being used increasingly for comparative and uncer-

tainty analysis in risk management (Ascough et al., 2008). Researchers have advocated

for a quantitative weight-of-evidence approach for estimating environmental risks

from stressors such as contaminated sites and pesticides so that decision makers can

comprehensively consider all evidence (Dale et al., 2008; Weed, 2005). The U.S. National

Research Council (NRC) found that the U.S. Environmental Protection Agency (USEPA)

needs to develop methods to address and communicate uncertainty and variability in

all phases of the risk assessment process (National Research Council, 2009). The NRC

stated that “Uncertainty forces decision makers to judge how probable it is that risks will

be overestimated or underestimated for every member of the exposed population. . . ”

(National Research Council, 1994). In particular, the NRC reports found that, depending on
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the risk-management options, a quantitative treatment of uncertainty and variability

is needed to discriminate between management options to make informed decisions

(National Research Council, 1994; National Research Council, 1996; National Research

Council, 2009).

When making decisions regarding risk, there are often multiple lines of evidence that

need to be considered. Information often is generated and gathered from different sources,

so risk analysts and managers are confronted with the issue of combining data from

these sources to improve the decision-making process. However, the ability of people to

make precise and significant statements about risks diminishes with increasing amounts

of information and complexity (Zadeh, 1965). The incorporation of multiple lines of

evidence into a weight-of-evidence framework allows risk assessors and managers to

generate a single estimate of the risk (Dale et al., 2008). Currently, the most common

way to incorporate dissimilar lines of evidence is by determining the weight-of-evidence

estimate through qualitative risk assessments or through listing evidence (Chapman,

McDonald & Lawrence, 2002; Hull & Swanson, 2006; Linkov et al., 2009; Menzie et al.,

1996; Sanchez-Bayo, Baskaran & Kennedy, 2002; Suter II & Cormier, 2011; United States

Environmental Protection Agency, 2005a; Weed, 2005), which can have fundamental

mathematical limitations compared to quantitative estimates (Cox Jr, Babayev & Huber,

2005). These methods are important contributions to the decision making process, but

they do not provide a comprehensive and structured approach for integrating multiple

lines of evidence from different study types (Linkov et al., 2009).

Rather than testing for a specific relationship (e.g., the probability of obtaining values

as extreme or more extreme than the values observed in the study), decision makers may

ultimately be interested in making inferential conclusions about environmental health

risks (Assmuth & Hilden, 2008; Ellison, 1996; Hill, 1996). Bayesian inference can address

inferential conclusions by providing a framework, based on probability calculus, by

quantifying the uncertainty in parameter estimates and determining the probability that

an explicit endpoint is exceeded given a set of data (Ellison, 1996; Hill, 1996). Bayesian

inference is a way of updating prior knowledge given new information becoming available

to generate a posterior estimate of the parameters of interest (i.e., risk) (Ellison, 1996).

Currently there are few quantitative frameworks that integrate data into a framework

that can be utilized by risk managers (Assmuth & Hilden, 2008). A quantitative framework

for integrating and interpreting multiple lines of seemingly disparate evidence into an

overall risk estimate is critically needed for complex risk assessments (Dale et al., 2008).

Risk assessment, biomonitoring, and epidemiology studies quantitatively estimate

the likelihood that exposures to chemicals of interest exceed a threshold of observable

effect or increased exposure over background levels in a population (McKone, Ryan &

Ozkaynak, 2009). Epidemiological and biomonitoring data can play an important role in

hazard identification and can also be considered in the risk characterization phase of the

risk assessment process (Samet, Schnatter & Gibb, 1998). Therefore, the three seemingly

disparate study methods are deriving an estimate of risk given exposure to the chemical

of interest. Bayesian inference provides a quantitative framework for integrating these
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multiple lines of evidence into an overall estimate. Similar approaches have been used

for different applications in risk assessment, toxicology, and environmental modeling,

but they have not been utilized to update the risk estimates for anthropogenic chemical

stressors as new information becomes available (Bernillon & Bois, 2000; Brand & Small,

1995; Devine & Qualters, 2008; Schenker et al., 2009; Taylor, Evans & McKone, 1993).

There are many advantages of using Bayesian techniques for weighing evidence,

including full allowance for all parameter uncertainty in the model, the ability to include

other pertinent information that would otherwise be excluded, and the ability to extend

the models to accommodate more complex models (Hill, 1996; Sutton & Abrams, 2001).

Studies utilizing Bayesian approaches have considered separate studies with the same study

type to estimate an overall value for the parameter of interest (Smith, Lipkovich & Ye,

2002; Wheeler & Bailer, 2009). Therefore, to address the need for a quantitative approach

for environmental health, we utilized Bayesian Markov Chain Monte Carlo (MCMC) to

provide a logical and consistent method for estimating the risk of chemicals when multiple

studies are available. To demonstrate how Bayesian statistics can be used for decisions

regarding environmental and public health risks, we chose insecticides used for adult

mosquito management as our case study.

CASE STUDY
To effectively manage infection rates, morbidity, and mortality due to mosquito-borne

pathogens, there must be a reduction in contact between infected mosquitoes and

humans and animals (Marfin & Gubler, 2001). One of the more effective ways of

managing high densities of adult mosquitoes that vector human and animal pathogens

is ultra-low-volume (ULV) aerosol applications of insecticides. Since West Nile virus

(WNV) was introduced into the U.S., more areas of the country have been experiencing

large-scale insecticide applications. Consequently, there has been greater public attention

on human-health and environmental risks associated with ULV insecticide applications

(Peterson, Macedo & Davis, 2006; Reisen & Brault, 2007; Roche, 2002; Thier, 2001).

A decade after the initial response to WNV, several quantitative human-health and

ecological risk assessments have been conducted to estimate the magnitude of risks

associated with the insecticides (Davis, 2007; Davis, Peterson & Macedo, 2007; Gosselin

et al., 2008; Macedo, Peterson & Davis, 2007; New York City Department of Health, 2005;

Peterson, Macedo & Davis, 2006; Schleier III, 2008; Schleier III et al., 2009a; Schleier III et al.,

2008a; Schleier III et al., 2009b; Schleier III et al., 2008b; Suffolk County, 2006; United States

Environmental Protection Agency, 2005b; United States Environmental Protection Agency,

2005c; United States Environmental Protection Agency, 2005d; United States Environmental

Protection Agency, 2006a; United States Environmental Protection Agency, 2006b; United

States Environmental Protection Agency, 2006c; Valcke, Gosselin & Belleville, 2008). Also,

there have been epidemiology and biomonitoring studies measuring the health effects after

potential exposure to mosquito adulticides (Currier et al., 2005; Duprey et al., 2008; Karpati

et al., 2004; Kutz & Strassman, 1977; O’Sullivan et al., 2005). Most studies suggest negligible

public health risks from exposure to adulticides; however, no study has quantitatively
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Table 1 Risk quotient estimates for each study.

Malathion Permethrin

Karpati et al. (2004)c NAa 0.99b

United States Environmental Protection Agency (2005c)d and
United States Environmental Protection Agency (2005d)d

0.018 0.025

Currier et al. (2005)e NAa 0.99b

O’Sullivan et al. (2005)c 0.99b NAa

Peterson, Macedo & Davis (2006)d 0.0076 0.0021

Suffolk County (2006)d 0.015 0.013

Macedo, Peterson & Davis (2007)d NAa 0.023

Valcke, Gosselin & Belleville (2008)d 0.64 NAa

Schleier III (2008)d NAa 0.00025

Schleier III et al. (2009a)d 0.02 NAa

Schleier III et al. (2009b)d 0.0017 0.000068

Notes.
a Not applicable because the chemical was not assessed.
b A risk quotient of 0.99 was used because it provides a conservative estimate of the risk for biomonitoring and

epidemiology studies and due to a lack of knowledge about the true value, which must be below 1 if no effect is seen.
c Epidemiological study.
d Risk assessment.
e Biomonitoring study.

combined the results from risk assessment, epidemiology, and biomonitoring studies, and

their seemingly disparate data metrics, to obtain an overall estimate of the risk.

DATA AND METHODS
In environmental and human health risk assessments of pesticides, risk quotients (RQ) are

often used to quantitatively express risk (Peterson, 2006). Risk quotients are calculated by

dividing the potential exposure (PE) by its respective toxic endpoint value. Estimated RQs

are compared to a RQ level of concern (LOC) or other threshold which is set by the USEPA

or another regulatory agency to determine if regulatory action is needed. The RQ LOC

used in our assessment was 1.0. An RQ > 1.0 means that the estimated exposure is greater

than the relevant toxicological endpoint. If an RQ breaches a regulatory LOC (RQ ≥ 1) at a

lower tier, then risk managers decide to restrict the product use, progress to higher tier risk

assessments, or use field-verified models (United States Environmental Protection Agency,

2006d).

We chose two pesticides for our case study, malathion (O,O-dimethyl dithio-

phosphate of diethyl mercaptosuccinate) and permethrin ([3-phenoxyphenyl]methyl

3-[2,2-dichloroethenyl]-2,2-dimethylcyclopropane carboxylate), because biomonitoring,

epidemiology, and risk assessments have been performed with respect to ULV applications

for adult mosquito management (Table 1). We chose adult human males for our case study

because it is the only common group assessed by all studies. To ensure that we possessed

all publically available studies, a literature review was performed and all relevant studies

were pulled from government reports and academic journals from 1900 to 2014 using

the Google and Thomas Reuters Web of ScienceTM search engines. All studies that we
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found that contained mosquito ULV risk assessments, biomonitoring, or epidemiological

measurements for permethrin or malathion were included in this assessment.

The estimated RQs for each study are summarized in Table 1 for each chemical. The

same toxicological endpoints were used for all of the risk assessments, which are based

on the U.S. EPA’s ingestion reference dose for mammals (Macedo, Peterson & Davis, 2007;

Peterson, Macedo & Davis, 2006; Schleier III, 2008; Schleier III et al., 2009a; Schleier III et al.,

2009b; Valcke, Gosselin & Belleville, 2008), and in the case of probabilistic risk assessments

we used the 95th percentile RQ for conservatism.

The literature search found two epidemiological studies and one biomonitoring study

for permethrin and malathion. Karpati et al. (2004) analyzed hospital admissions for

asthma in New York, NY three days before and after ground based ULV applications of

permethrin (n = 510 before spraying and 501 after spraying) and found no increase in

admissions for asthma. Currier et al. (2005) analyzed urine samples for metabolites of

permethrin in 125 persons in the treated area and 67 persons from two control areas

after ground-based ULV applications in Mississippi and found no increase in urinary

metabolites. The persons selected in the study were geographically random and were

verified by mapping the GPS location of the ground-based applications. O’Sullivan et

al. (2005) analyzed hospital admissions for asthma in New York, NY after ground-based

ULV applications of malathion in September of 1999, and compared those to September

1997 and 1998 when no malathion treatments occurred (n = 1,318 patients presented

with a diagnosis of asthma exacerbation). They found no statistical difference between

the 1999 asthma admissions and the asthma admission in 1997 and 1998. To incorporate

the epidemiology and biomonitoring studies, we assumed that if the researchers did not

observe an effect or increase in urinary metabolites of the pesticide, the RQ was assumed

to be 0.99 (Table 1). We assumed a RQ of 0.99 to be conservative because of a lack of

knowledge on the value, which must be below 1.0 if no effect is observed.

Bayesian inference treats statistical parameters as random variables, and uses a

likelihood function to express the plausibility of obtaining different values of the parameter

when the data have been observed (Ellison, 1996). To define a RQ for adult males we used

Bayes’ theorem:

p(θ |y) = p(y|θ)p(θ) (1)

where p is the probability mass, θ is the value of a random variable selected from the prior

distribution, y is the evidence being considered, p(θ) is the prior probability, p(y|θ) is the

likelihood function for the evidence (Congdon, 2006; Gelman et al., 2004). We assumed a

normal distribution for the likelihood function and used log-transformed risk quotients

from Table 1. The central limit theorem of classical statistics and the Bayesian analog justify

the normal density as an approximation for the posterior distribution of many summary

statistics, even when they are derived from non-normal data (Congdon, 2006). To estimate

the posterior density,

p

y|θ


=

1
√

2πσ
exp−

1

2σ 2
(y − θ)2 (2)
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Figure 1 Posterior probability distributions for malathion with all available studies and all studies
excluding epidemiological and biomonitoring.

where y is a single scalar observation from the RQ’s in Table 1 from a normal distribution

parameterized by a mean of θ and a variance of σ 2 (Gelman et al., 2004).

We have no knowledge of the prior distribution, so we assumed an uninformative or

diffuse prior which we defined as a normal distribution with a µ0 of 1 and a τ 2
0 of 1. We

chose an uninformative prior because the effect of the prior and data on the updated

beliefs depends on the precision of the density of p(θ) (Congdon, 2008). We used MCMC

simulation utilizing the Metropolis-Hasting algorithm to obtain the posterior distribution

for Eq. (2) using Matlab® R2010b (MathWorks, Natick, MA, USA). We sampled the

purposed posterior distributions using Eq. (2) by iterating 100,000 purposed values for

the posterior distribution and discarded the first 1,000 samples for burn in.

RESULTS AND DISCUSSION
The mean posterior RQs after all studies were incorporated were 0.4386 with a variance of

0.0163 for malathion and 0.3281 with a variance of 0.0083 for permethrin (Figs. 1 and 2).

The mean posterior RQs for all studies excluding the epidemiological and biomonitoring

studies slightly decreased the mean to 0.4119 with a variance of 0.0158 for malathion

and a mean of 0.302 with a variance of 0.0081 for permethrin (Figs. 1 and 2). Using the

posterior mean and variance from the normal distribution, the probability that exposure

to malathion or permethrin after ULV applications would exceed a level of concern

was less than 0.0001, regardless of whether all of the studies were incorporated or the

epidemiological and biomonitoring studies were held out (Figs. 1 and 2).

The risk assessments used different data and exposure scenarios to estimate the RQ. The

utility of the Bayesian inference for risk management is that the estimated RQ represents a

probability distribution from which we can obtain a probability of exceeding a threshold
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Figure 2 Posterior probability distributions for permethrin with all available studies and all studies
excluding epidemiological and biomonitoring.

(Figs. 1 and 2). The probability of exceeding a threshold is most likely more intuitive for

risk managers and the public to understand than an estimate of the 95th percentile of

exposure or risk, which is typically reported in probabilistic risk assessments (Hill, 1996).

In fact, risk can be defined as the probability and severity of adverse effects (Aven & Renn,

2009), which Bayesian statistics directly addresses. The majority of weight-of-evidence

studies do not quantify both a risk estimate and variability or uncertainty around that

estimate, but Bayesian MCMC methods quantify both (Linkov et al., 2009).

The USEPA provides guidance on how to perform risk assessments that address

variability and uncertainty (National Research Council, 2009; United States Environmental

Protection Agency, 1989; United States Environmental Protection Agency, 2004), but they do

not provide a simple method for integrating multiple lines of evidence. Our case study

directly addresses the need for a standard approach by which multiple lines of evidence

can be interpreted in a framework that ecologists, risk assessors and managers, and

NRC have highlighted (Dale et al., 2008; Linkov et al., 2009; National Research Council,

1994; National Research Council, 1996; National Research Council, 2009). Our method

also could be utilized by the Network Reference Laboratories for Monitoring of Emerging

Environmental Pollutants in the European Union for integrating risk assessments and

biomonitoring to prioritize pollutants (Tilghman et al., 2009).

The USEPA and other regulatory agencies potentially could benefit from using a

value-of-information approach that takes advantage of Bayesian inference to determine if

generating new data will significantly improve the risk estimate, similar to approaches used

for toxicological studies (National Research Council, 2009; Taylor, Evans & McKone, 1993).

Our analysis showed that the addition of epidemiological and biomonitoring studies

using conservative estimates did not drastically change the estimate of risk. Biomonitoring
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assessments could provide a refined RQ estimate if the amount of chemical the person is

exposed to is calculated. Bayesian inference can also incorporate expert knowledge of a

system which can be used as prior information that is updated by data (Gargoum, 2001;

Morris, 1977).

In ecotoxicology and other disciplines, there are multiple estimates of values like the

lethal concentration that kills 50% of a population (LC50) (Wheeler & Bailer, 2009).

This technique could be used to estimate an overall LC50 for use in risk assessments or

setting total maximum daily load limits. Stauffer (2008) showed that in natural resource

management there are often multiple estimations for a population of interest. Therefore,

Bayesian MCMC methods can be used to estimate the probability of the population being

above or below a given threshold.

Bayesian analysis provides a systematic approach for guiding the decision-making

process by incorporating new knowledge in the estimate of risk, which directly addresses

NRC recommendations (National Research Council, 1994; National Research Council,

2009). However, Bayesian inference does not address the uncertainties inherent in each risk

assessment. For example, there is large uncertainty surrounding the estimate of insecticide

air concentrations and deposition on surfaces after ULV applications for adult mosquito

management (Schleier III et al., 2009a; Schleier III et al., 2009b). Models used by the USEPA

and other researchers to estimate concentrations are either over- or under-estimating

depending on the model (Schleier III & Peterson, 2010; Schleier III et al., 2008b). In

addition, probabilistic risk assessments demonstrated that the estimated air concentration

and deposition of insecticides are contributing the largest amount of variance to the

potential exposure (Schleier III et al., 2009a; Schleier III et al., 2009b). However, the

estimate presented here most likely is robust against these uncertainties because the studies

used a variety of models, exposure pathways, and monitoring techniques which were not

dependent on a standardized assessment protocol.

We recognize that the assumptions about RQ distributions may affect the final results;

however, we attempted to reduce the potential biases by making conservative assumptions

erring on the side of safety, which is common practice in risk assessment. In addition,

probability distributions other than normal can be utilized if enough is known about

the underlying distribution of the population, like those used for toxicological studies.

Bayesian MCMC also can be utilized with the current data and the incorporation of expert

judgments to aid in the determination of risk estimates (Grist et al., 2005).

Bayesian analysis techniques have been underutilized with respect to environmental

and public health, risk assessment, ecology, and environmental sciences (Clark, 2005).

Our method is a quantitative approach to statistically derive risk estimates from multiple

lines of evidence, which is a relatively simple way of integrating multiple lines of evidence

into a framework that can be used by assessors and managers (Assmuth & Hilden, 2008;

Linkov et al., 2009). In addition to insecticide risk, this approach can be used for other

anthropogenic agents such as dioxins and polychlorinated biphenyls, which in many cases

have risk assessment, biomonitoring, and epidemiology studies performed for a site. The

method presented here can also be utilized for probabilistic ecological risk assessments to
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derive a distribution for the toxicological endpoints like LC50 or no-effect concentration

when multiple values are available for the same species. Future refinements to our Bayesian

model would be the development of a method to convert epidemiological study results

into a RQ to reduce the uncertainty and conservatism. In addition, biomonitoring studies

can quantify the exposure (if exposures are above background levels) and convert those

estimates to RQ.

ACKNOWLEDGEMENT
We thank K Irvine (U.S. Geological Survey) for reviewing an earlier version of the

manuscript.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
This research was supported by grants and fellowships from the USDA Western

Regional IPM grant program (2009-34103-20034), Montana State University Institute

on Ecosystems National Science Foundation Final Year Ph.D. Fellowship, the U.S. Armed

Forces Pest Management Board’s Deployed War Fighter Protection Research Program

(W911QY-11-1-0005), and by the Montana Agricultural Experiment Station, Montana

State University, Bozeman, Montana, USA. The funders had no role in study design, data

collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures
The following grant information was disclosed by the authors:

USDA Western Regional IPM grant program: 2009-34103-20034.

Montana State University Institute on Ecosystems National Science Foundation.

U.S. Armed Forces Pest Management Board’s Deployed War Fighter Protection Research

Program: W911QY-11-1-0005.

Montana Agricultural Experiment Station, Montana State University.

Competing Interests
Ryan S. Davis is an employee of Electrical Consultants, Inc.

Author Contributions
• Jerome J. Schleier III conceived and designed the experiments, performed the

experiments, analyzed the data, contributed reagents/materials/analysis tools, wrote

the paper, prepared figures and/or tables, reviewed drafts of the paper.

• Lucy A. Marshall analyzed the data, contributed reagents/materials/analysis tools, wrote

the paper, reviewed drafts of the paper.

• Ryan S. Davis conceived and designed the experiments, contributed

reagents/materials/analysis tools, reviewed drafts of the paper.

• Robert K.D. Peterson conceived and designed the experiments, wrote the paper,

reviewed drafts of the paper.

Schleier III et al. (2015), PeerJ, DOI 10.7717/peerj.730 9/14

https://peerj.com
http://dx.doi.org/10.7717/peerj.730


REFERENCES
Ascough JC, Maier HR, Ravalico JK, Strudley MW. 2008. Future research challenges for

incorporation of uncertainty in environmental and ecological decision-making. Ecological
Modelling 219:383–399 DOI 10.1016/j.ecolmodel.2008.07.015.

Assmuth T, Hilden M. 2008. The significance of information frameworks in integrated
risk assessment and management. Environmental Science and Policy 11:71–86
DOI 10.1016/j.envsci.2007.07.006.

Aven T, Renn O. 2009. On risk defined as an event where the outcome is uncertain. Journal of Risk
Research 12:1–11 DOI 10.1080/13669870802488883.

Bernillon P, Bois FY. 2000. Statistical issues in toxicokinetic modeling: a Bayesian perspective.
Environmental Health Perspectives 108:883–893 DOI 10.1289/ehp.00108s5883.

Brand KP, Small MJ. 1995. Updating uncertainty in an integrated risk assessment: conceptual
framework and methods. Risk Analysis 15:719–731 DOI 10.1111/j.1539-6924.1995.tb01344.x.

Chapman PM, McDonald BG, Lawrence GS. 2002. Weight-of-evidence issues and frameworks for
sediment quality (and other) assessments. Human and Ecological Risk Assessment 8:1489–1515
DOI 10.1080/20028091057457.

Clark JS. 2005. Why environmental scientists are becoming Bayesians. Ecology Letters 8:2–14
DOI 10.1111/j.1461-0248.2004.00702.x.

Congdon P. 2006. Bayesian statistical modelling. West Sussex: John Wiley and Sons, Ltd.

Congdon P. 2008. Bayesian statistics in quantitative risk assessment. In: Everitt B, Melnick E, eds.
Encyclopedia of quantitative risk analysis and assessment. Hoboken, NJ: John Wiley and Sons
Inc., 119–136.

Cox Jr LA, Babayev D, Huber W. 2005. Some limitations of qualitative risk rating systems. Risk
Analysis 25:651–662 DOI 10.1111/j.1539-6924.2005.00615.x.

Currier M, McNeill M, Campbell D, Newton N, Marr JS, Perry E, Berg SW, Barr DB, Luber GE,
Kieszak SM, Rogers HS, Backer SC, Belson MG, Rubin C, Azziz-Baumgartner E, Duprey ZH.
2005. Human exposure to mosquito-control pesticides—Mississippi, North Carolina, and
Virginia, 2002 and 2003. MMWR Morbidity and Mortality Weekly Report 54:529–532.

Dale VH, Biddinger GR, Newman MC, Oris JT, Suter GW, Thompson T, Armitage TM,
Meyer JL, Allen-King RM, Burton GA, Chapman PM, Conquest LL, Fernandez IJ,
Landis WG, Master LL, Mitsch WJ, Mueller TC, Rabeni CF, Rodewald AD, Sanders JG, Van
Heerden IL. 2008. Enhancing the ecological risk assessment process. Integrated Environmental
Assessment and Management 4:306–313 DOI 10.1897/IEAM 2007-066.1.

Davis RS. 2007. An ecological risk assessment for mosquito insecticides. Master’s Thesis, Montana
State University.

Davis RS, Peterson RKD, Macedo PA. 2007. An ecological risk assessment for insecticides used in
adult mosquito management. Integrated Environmental Assessment and Management 3:373–382
DOI 10.1002/ieam.5630030308.

Devine OJ, Qualters JR. 2008. Bayesian updating of model-based risk estimates using
imperfect public health surveillance data. Human and Ecological Risk Assessment 14:696–713
DOI 10.1080/10807030802235094.

Duprey Z, Rivers S, Luber G, Becker A, Blackmore C, Barr D, Weerasekera G, Kieszak S,
Flanders WD, Rubin C. 2008. Community aerial mosquito control and naled exposure. Journal
of the American Mosquito Control Association 24:42–46 DOI 10.2987/5559.1.

Ellison AM. 1996. An introduction to Bayesian inference for ecological research and environmental
decision-making. Ecological Applications 6:1036–1046 DOI 10.2307/2269588.

Schleier III et al. (2015), PeerJ, DOI 10.7717/peerj.730 10/14

https://peerj.com
http://dx.doi.org/10.1016/j.ecolmodel.2008.07.015
http://dx.doi.org/10.1016/j.envsci.2007.07.006
http://dx.doi.org/10.1080/13669870802488883
http://dx.doi.org/10.1289/ehp.00108s5883
http://dx.doi.org/10.1111/j.1539-6924.1995.tb01344.x
http://dx.doi.org/10.1080/20028091057457
http://dx.doi.org/10.1111/j.1461-0248.2004.00702.x
http://dx.doi.org/10.1111/j.1539-6924.2005.00615.x
http://dx.doi.org/10.1897/IEAM_2007-066.1
http://dx.doi.org/10.1002/ieam.5630030308
http://dx.doi.org/10.1080/10807030802235094
http://dx.doi.org/10.2987/5559.1
http://dx.doi.org/10.2307/2269588
http://dx.doi.org/10.7717/peerj.730


Gargoum AS. 2001. Use of Bayesian dynamic models for updating estimates of contaminated
material. Environmetrics 12:775–783 DOI 10.1002/env.499.

Gelman A, Carlin JB, Stern HS, Rubin DB. 2004. Bayesian data analysis. Boca Raton: CRC Press.

Gosselin N, Valcke M, Belleville D, Samuel O. 2008. Human exposure to malathion during
a possible vector-control intervention against West Nile Virus. I: methodological
framework for exposure assessment. Human and Ecological Risk Assessment 14:1118–1137
DOI 10.1080/10807030802493834.

Grist EPM, O’Hagan A, Crane M, Sorokin N, Sims I, Whitehouse P. 2005. Bayesian and
time-independent species sensitivity distributions for risk assessment of chemicals.
Environmental Science and Technology 40:395–401 DOI 10.1021/es050871e.

Hill RA. 1996. From science to decision-making: the applicability of Bayesian methods to risk as-
sessment. Human and Ecological Risk Assessment 2:636–642 DOI 10.1080/10807039609383641.

Hull RN, Swanson S. 2006. Sequential analysis of lines of evidence—an advanced
weight-of-evidence approach for ecological risk assessment. Integrated Environmental
Assessment and Management 2:302–311.

Karpati AM, Perrin MC, Matte T, Leighton J, Schwartz J, Barr RG. 2004. Pesticide spraying for
West Nile virus control and emergency department asthma visits in New York City, 2000.
Environmental Health Perspectives 112:1183–1187 DOI 10.1289/ehp.6946.

Kutz FW, Strassman SC. 1977. Human urinary metabolites of organophosphate insecticides
following mosquito adulticiding. Mosquito News 37:211–218.

Linkov I, Loney D, Cormier S, Satterstrom FK, Bridges T. 2009. Weight-of-evidence evaluation
in environmental assessment: review of qualitative and quantitative approaches. Science of the
Total Environment 407:5199–5205 DOI 10.1016/j.scitotenv.2009.05.004.

Macedo PA, Peterson RKD, Davis RS. 2007. Risk assessments for exposure of deployed
military personnel to insecticides and personal protective measures used for disease-vector
management. Journal of Toxicology and Environmental Health, Part A 70:1758–1771
DOI 10.1080/15287390701459049.

Marfin AA, Gubler DJ. 2001. West Nile encephalitis: an emerging disease in the United States.
Clinical Infectious Diseases 33:1713–1719 DOI 10.1086/322700.

McKone TE, Ryan PB, Ozkaynak H. 2009. Exposure information in environmental health
research: current opportunities and future directions for particulate matter, ozone, and
toxic air pollutants. Journal of Exposure Science and Environmental Epidemiology 19:30–44
DOI 10.1038/jes.2008.3.

Menzie C, Henning MH, Cura J, Finkelstein K, Gentile J, Maughan J, Mitchell D, Petron S,
Potocki B, Svirsky S, Tyler P. 1996. Report of the Massachusetts weight-of-evidence
workgroup: a weight-of-evidence approach for evaluating ecological risks. Human and
Ecological Risk Assessment 2:277–304 DOI 10.1080/10807039609383609.

Morris PA. 1977. Combining expert judgments: a Bayesian approach. Management Science
23:679–693 DOI 10.1287/mnsc.23.7.679.

National Research Council. 1994. Science and judgment in risk assessment. Washington D.C.:
National Academy Press.

National Research Council. 1996. Understanding risk: informing decisions in a domcratic society.
Washington, D.C.: National Academy Press.

National Research Council. 2009. Science and decisions: advancing risk assessment. Washington
D.C.: National Academies Press.

Schleier III et al. (2015), PeerJ, DOI 10.7717/peerj.730 11/14

https://peerj.com
http://dx.doi.org/10.1002/env.499
http://dx.doi.org/10.1080/10807030802493834
http://dx.doi.org/10.1021/es050871e
http://dx.doi.org/10.1080/10807039609383641
http://dx.doi.org/10.1289/ehp.6946
http://dx.doi.org/10.1016/j.scitotenv.2009.05.004
http://dx.doi.org/10.1080/15287390701459049
http://dx.doi.org/10.1086/322700
http://dx.doi.org/10.1038/jes.2008.3
http://dx.doi.org/10.1080/10807039609383609
http://dx.doi.org/10.1287/mnsc.23.7.679
http://dx.doi.org/10.7717/peerj.730


New York City Department of Health. 2005. Adult mosquito control programs: environmental
impact statement (EIS). New York: New York City Department of Health.

O’Sullivan BCY, Lafleur J, Fridal K, Hormozdi S, Schwartz S, Belt M, Finkel M. 2005. The effect
of pesticide spraying on the rate and severity of ED asthma. American Journal of Emergency
Medicine 23:463–467 DOI 10.1016/j.ajem.2004.12.017.

Peterson RKD. 2006. Comparing ecological risks of pesticides: the utility of a risk quotient
ranking approach across refinements of exposure. Pest Management Science 62:46–56
DOI 10.1002/ps.1126.

Peterson RKD, Macedo PA, Davis RS. 2006. A human-health risk assessment for West Nile virus
and insecticides used in mosquito management. Environmental Health Perspectives 114:366–372
DOI 10.1289/ehp.8667.

Reisen W, Brault AC. 2007. West Nile virus in North America: perspectives on epidemiology and
intervention. Pest Management Science 63:641–646 DOI 10.1002/ps.1325.

Roche JP. 2002. Print media coverage of risk–risk tradeoffs associated with West Nile encephalitis
and pesticide spraying. Journal of Urban Health 79:482–490 DOI 10.1093/jurban/79.4.482.

Samet JM, Schnatter R, Gibb H. 1998. Invited commentary: epidemiology and risk assessment.
American Journal of Epidemiology 148:929–936 DOI 10.1093/oxfordjournals.aje.a009569.

Sanchez-Bayo F, Baskaran S, Kennedy IR. 2002. Ecological relative risk (EcoRR): another
approach for risk assessment of pesticides in agriculture. Agriculture Ecosystems & Environment
91:37–57 DOI 10.1016/S0167-8809(01)00258-4.

Schenker U, Scheringer M, Sohn MD, Maddalena RL, McKone TE, Hungerbuhler K. 2009. Using
information on uncertainty to improve environmental fate modeling: a case study on DDT.
Environmental Science and Technology 43:128–134 DOI 10.1021/es801161x.

Schleier III JJ. 2008. Environmental concentrations, fate, and risk assessment of insecticides used
for adult mosquito management. Master’s Thesis, Montana State University.

Schleier III JJ, Davis RS, Barber LM, Macedo PA, Peterson RKD. 2009a. A probabilistic risk
assessment for deployed military personnel after the implementation of the “Leishmaniasis
Control Program” at Tallil Air Base, Iraq. Journal of Medical Entomology 46:693–702
DOI 10.1603/033.046.0337.

Schleier III JJ, Davis RS, Shama LM, Macedo PA, Peterson RKD. 2008a. Equine risk assessment
for insecticides used in adult mosquito management. Human and Ecological Risk Assessment
14:392–407 DOI 10.1080/10807030801934812.

Schleier III JJ, Macedo PA, Davis RS, Shama LM, Peterson RKD. 2009b. A two-dimensional
probabilistic acute human-health risk assessment of insecticide exposure after adult
mosquito management. Stochastic Environmental Research and Risk Assessment 23:555–563
DOI 10.1007/s00477-008-0227-5.

Schleier III JJ, Peterson RKD. 2010. Deposition and air concentrations of permethrin and naled
used for adult mosquito management. Archives of Environmental Contamination and Toxicology
58:105–111 DOI 10.1007/s00244-009-9353-4.

Schleier III JJ, Peterson RKD, Macedo PA, Brown DA. 2008b. Environmental concentrations,
fate, and risk assessment of pyrethrins and piperonyl butoxide after aerial ultralow-volume
applications for adult mosquito management. Environmental Toxicology and Chemistry
27:1063–1068 DOI 10.1897/07-532.1.

Smith EP, Lipkovich I, Ye KY. 2002. Weight-of-evidence (WOE): quantitative estimation of
probability of impairment for individual and multiple lines of evidence. Human and Ecological
Risk Assessment 8:1585–1596 DOI 10.1080/20028091057493.

Schleier III et al. (2015), PeerJ, DOI 10.7717/peerj.730 12/14

https://peerj.com
http://dx.doi.org/10.1016/j.ajem.2004.12.017
http://dx.doi.org/10.1002/ps.1126
http://dx.doi.org/10.1289/ehp.8667
http://dx.doi.org/10.1002/ps.1325
http://dx.doi.org/10.1093/jurban/79.4.482
http://dx.doi.org/10.1093/oxfordjournals.aje.a009569
http://dx.doi.org/10.1016/S0167-8809(01)00258-4
http://dx.doi.org/10.1021/es801161x
http://dx.doi.org/10.1603/033.046.0337
http://dx.doi.org/10.1080/10807030801934812
http://dx.doi.org/10.1007/s00477-008-0227-5
http://dx.doi.org/10.1007/s00244-009-9353-4
http://dx.doi.org/10.1897/07-532.1
http://dx.doi.org/10.1080/20028091057493
http://dx.doi.org/10.7717/peerj.730


Stauffer HB. 2008. Application of Bayesian statistical inference and decision theory to a
fundamental problem in natural resource science; the adaptive management of an endangered
species. Natural Resource Modeling 21:264–284 DOI 10.1111/j.1939-7445.2008.00007.x.

Suffolk County. 2006. Draft generic environmental impact statement. Southampton: Suffolk
County Department of Public Works and Department of Health Services.

Suter II GW, Cormier SM. 2011. Why and how to combine evidence in environmental
assessments: weighing evidence and building cases. Science of the Total Environment
409:1406–1417 DOI 10.1016/j.scitotenv.2010.12.029.

Sutton AJ, Abrams KR. 2001. Bayesian methods in meta-analysis and evidence synthesis. Statistical
Methods in Medical Research 10:277–303 DOI 10.1191/096228001678227794.

Taylor AC, Evans JS, McKone TE. 1993. The value of animal test information in environmental
control decisions. Risk Analysis 13:403–412 DOI 10.1111/j.1539-6924.1993.tb00740.x.

Thier A. 2001. Balancing the risks: vector control and pesticide use in response to emerging illness.
Journal of Urban Health 78:372–381 DOI 10.1093/jurban/78.2.372.

Tilghman A, Coquery M, Dulio V, Garric J. 2009. Integrated chemical and biomonitoring
strategies for risk assessment of emerging substances: report on the 4th thematic workshop
of the EU Project NORMAN, Lyon, France, 17–18 March 2008. TrAC Trends in Analytical
Chemistry 28:1–9 DOI 10.1016/j.trac.2008.11.002.

United States Environmental Protection Agency. 1989. Risk assessment guidance for superfund.
Volume I. Human health evaluation manual (Part A). Washington D.C.: Environmental
Protection Agency.

United States Environmental Protection Agency. 2004. Risk assessment principles and practices:
staff paper. Washington D.C.: Environmental Protection Agency.

United States Environmental Protection Agency. 2005a. Guidelines for carcinogen risk assessment.
Washington D.C.: Environmental Protection Agency.

United States Environmental Protection Agency. 2005b. Memorandum from B. Davis, Health
Effects Division, to C. Rodia, Special Review and Registration. Re: occupational and residential
exposure assessment and recommendations for the reregistration elegibility decision (RED) for
piperonyl butoxide. Washington D.C.: Environmental Protection Agency.

United States Environmental Protection Agency. 2005c. Memorandum from S.L. Kinard, Health
Effects Division, to T. Moriarty, Special Review and Reregistration Division. Malathion: updated
revised human health risk assessment for the reregistration eligibility decision document (RED).
Washington D.C.: Environmental Protection Agency.

United States Environmental Protection Agency. 2005d. Memorandum from S.L. Kinard, Y. Yang
and S. Ary, Health Effects Division, to J. Guerry, Special Review and Reregistration Division.
Re: Permethrin. HED Chapter of the Reregistration Eligibility Decision Document (RED).
Washington D.C.: Environmental Protection Agency.

United States Environmental Protection Agency. 2006a. Interim reregistration eligibility decision
for naled, Case No. 0092. Washington D.C.: Environmental Protection Agency, 1–130.

United States Environmental Protection Agency. 2006b. Reregistration eligibility decision (RED)
for permethrin. Washington D.C.: Environmental Protection Agency, 1–95.

United States Environmental Protection Agency. 2006c. Reregistration eligibility decision for
malathion. Washington D.C.: Environmental Protection Agency, 1–101.

United States Environmental Protection Agency. 2006d. Technical overview of ecological risk
assessment. Available at http://www.epa.gov/oppefed1/ecorisk ders/toera risk.htm (accessed 1
November 2006).

Schleier III et al. (2015), PeerJ, DOI 10.7717/peerj.730 13/14

https://peerj.com
http://dx.doi.org/10.1111/j.1939-7445.2008.00007.x
http://dx.doi.org/10.1016/j.scitotenv.2010.12.029
http://dx.doi.org/10.1191/096228001678227794
http://dx.doi.org/10.1111/j.1539-6924.1993.tb00740.x
http://dx.doi.org/10.1093/jurban/78.2.372
http://dx.doi.org/10.1016/j.trac.2008.11.002
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://www.epa.gov/oppefed1/ecorisk_ders/toera_risk.htm
http://dx.doi.org/10.7717/peerj.730


Valcke M, Gosselin N, Belleville D. 2008. Human exposure to malathion during a possible
vector-control intervention against West Nile Virus. II: evaluation of the toxicological
risks using a probabilistic approach. Human and Ecological Risk Assessment 14:1138–1158
DOI 10.1080/10807030802493891.

Weed DL. 2005. Weight of evidence: a review of concept and methods. Risk Analysis 25:1545–1557
DOI 10.1111/j.1539-6924.2005.00699.x.

Wheeler MW, Bailer AJ. 2009. Benchmark dose estimation incorporating multiple data sources.
Risk Analysis 29:249–256 DOI 10.1111/j.1539-6924.2008.01144.x.

Zadeh L. 1965. Fuzzy sets. Information and Control 8:338–353
DOI 10.1016/S0019-9958(65)90241-X.

Schleier III et al. (2015), PeerJ, DOI 10.7717/peerj.730 14/14

https://peerj.com
http://dx.doi.org/10.1080/10807030802493891
http://dx.doi.org/10.1111/j.1539-6924.2005.00699.x
http://dx.doi.org/10.1111/j.1539-6924.2008.01144.x
http://dx.doi.org/10.1016/S0019-9958(65)90241-X
http://dx.doi.org/10.7717/peerj.730

	A quantitative approach for integrating multiple lines of evidence for the evaluation of environmental health risks
	Introduction
	Case Study
	Data and Methods
	Results and Discussion
	Acknowledgement
	References


