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ABSTRACT
Background. Cecal intubation time is an important component for quality
colonoscopy. Cecum is the turning point that determines the insertion and withdrawal
phase of the colonoscope. For this reason, obtaining information related with location
of the cecum in the endoscopic procedure is very useful. Also, it is necessary to detect
the direction of colonoscope’s movement and time-location of the cecum.
Methods. In order to analysis the direction of scope’s movement, the Horn–Schunck
algorithm was used to compute the pixel’s motion change between consecutive frames.
Horn–Schunk-algorithm applied images were trained and tested through convolutional
neural network deep learning methods, and classified to the insertion, withdrawal and
stop movements. Based on the scope’s movement, the graph was drawn with a value of
+1 for insertion, −1 for withdrawal, and 0 for stop. We regarded the turning point as
a cecum candidate point when the total graph area sum in a certain section recorded
the lowest.
Results. A total of 328,927 frame images were obtained from 112 patients. The overall
accuracy, drawn from 5-fold cross-validation, was 95.6%. When the value of ‘‘t’’
was 30 s, accuracy of cecum discovery was 96.7%. In order to increase visibility, the
movement of the scope was added to summary report of colonoscopy video. Insertion,
withdrawal, and stop movements were mapped to each color and expressed with
various scale. As the scale increased, the distinction between the insertion phase and
the withdrawal phase became clearer.
Conclusion. Information obtained in this study can be utilized as metadata for profi-
ciency assessment. Since insertion and withdrawal are technically different movements,
data of scope’s movement and phase can be quantified and utilized to express pattern
unique to the colonoscopist and to assess proficiency. Also, we hope that the findings
of this study can contribute to the informatics field of medical records so that medical
charts can be transmitted graphically and effectively in the field of colonoscopy.
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INTRODUCTION
A polyp is an abnormal tissue growth and is commonly found in the intestine (Haggar
& Boushey, 2009). Since all colon and rectal cancers arise from a polyp, it is crucial to
detect polyps in the early stage and treat them before they progress to being cancerous
(Leslie et al., 2002). Colonoscopy is the most commonly used method to detect polyps and
most available method (Nishihara et al., 2013; Rex, 2002). For this reason, the demand for
colonoscopy continues to increase (Quintero et al., 2012).

Cecal intubation time (CIT) provides various data, which may be important
indicators (Marshall & Barthel, 1993; Bernstein et al., 2005). In addition, when performing
colonoscopy, the cecum is the turning point that determines the insertion phase and
withdrawal phase of the colonoscope, that is, the gastroenterologist inserts the colonoscope
close to the appendix and withdraws it from the cecum (Fatima et al., 2008). However,
there are individual (i.e., patient and gastroenterologist) differences in the sequence and
process of advancing the colonoscopy (Spier et al., 2010; Rex, 2001; Saifuddin et al., 2000).
Thus, obtaining information about the time-location of the cecum in the colonoscopic
procedure is very useful.

Information about the time-location of the cecum can also be helpful when checking
colonoscopy videos. Because analyzing a video requires much time and concentration, it
places a great burden on the physician, especially when the doctor re-watches the video
or shares the video due to change of doctor or hospital (Terada, 2015; Hu et al., 2016).
Knowing the time-location of the cecum can help physicians to distinguish the insertion
phase and the withdrawal phase of the colonoscope (Fatima et al., 2008), which can help
reduce the burden on video observation. In addition, because detailed examination was
undertaken mostly during the withdrawal phase of the scope after reaching the cecum,
knowing the time-location of the cecum and distinction between the insertion phase and
withdrawal phase of the colonoscope is important (Barclay et al., 2006; Barclay, Vicari &
Greenlaw, 2008; Moritz et al., 2012). Furthermore, the CIT and withdrawal phase can also
be useful as metadata (Taber & Romagnuolo, 2010; Lee et al., 2009). The location of other
anatomic sites such as the T-colon and S-colon can be inferred on the assumption that the
location of the cecum is known (Cherian & Singh, 2004).

Moreover, the movement data of the colonoscope can be utilized for proficiency
assessment (Lee et al., 2009; Snyder et al., 2010). Since insertion and withdrawal
are technically different movements, the pattern, combination, and repetition of
insertion/withdrawal/stop can be utilized to express individual features of the colonoscopist
and to assess proficiency (Marshall, 1995; Benson et al., 2010;Anderson et al., 2001). Thus, it
is necessary to detect the direction of the scope’s movement and time-location information
of the cecum.
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Recently, with advances in computer technology and equipment, gastroenterologists
do not need to record these data anymore (Denny et al., 2010; Leiman et al., 2016). In
various medical fields, systems that automatically record medical reports are being
developed (Münzer, Schoeffmann & Böszörmenyi, 2018; Yuan, Li & Meng, 2016;Greenhalgh
et al., 2010; Taira, Soderland & Jakobovits, 2001). In our previous study, we developed a
useful system that automatically extracts meaningful information (namely, bleeding,
polypectomy, tool, residue, thin wrinkle, folded wrinkle) from colonoscopy videos using
support vector machine (SVM) and provides such information on the summary report
with color-coded timeline visualization (Cho et al., 2018).

Horn–Schunk algorithms are the most popular differential algorithms that have been
used for many applications and have been referenced for many performance evaluation
models (Meinhardt-Llopis, Pérez & Kondermann, 2013). The Horn–Schunk algorithm is a
technique used to identify the image velocity or motion vector based on spatial temporal
gradient technique that computes the image velocity from spatiotemporal derivatives of the
image intensity (Gong & Bansmer, 2015; Horn & Schunck, 1981). Through this algorithm,
we can compute the pixel’s motion change between consecutive frames (Bruhn, Weickert
& Schnörr, 2005). In other words, it is possible to know the movement direction of the
pixels in the current frame relative to the previous frame; thus, it is possible to determine
the direction in which the current frame is moving.

Therefore, in this study, we aimed to provide more useful information to physicians by
recording the direction of the scope’s movement and time-location of the cecum using
Horn–Schunk algorithm by applying convolutional neural network (CNN).

MATERIAL & METHODS
This study was approved by the institutional review board of the Seoul National University
Hospital (IRBNo. 1509-062-703), and it was conducted in accordance with the Declaration
of Helsinki. Informed consent was obtained from all participants before any study-related
procedures were performed. This prospective, single-center trial enrolled patients aged
19 to 75 years who underwent colonoscopy for screening, surveillance, or therapy such
as polypectomy at Seoul National University Hospital, a tertiary referral center in Korea,
from August 2016 to December 2016.

Acquisition of colonoscopy video
In this study, colonoscopy was performed using a high-resolution colonoscopy device
(CV260SL, Olympus, Tokyo, Japan). Colonoscopy videos were acquired using a video
capture card (SkyCaputre U6T; Skydigital, Seoul, Korea), after signal branching from the
CV260SL.

The video was converted to an MP4 format to avoid alteration of the resolution, and
the resolution was 1920*1080, 30fps. Videos were acquired from 112 patients, and the play
time was about 20-40 min. The colonoscopy video was decomposed into frames. A frame
was extracted as a PNG file per 0.5 s using Virtualdub software. All frames were cropped
to 850*750 pixels to extract only the colonoscopy area, excluding patient information and
the settings.
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Figure 1 Horn and Schunk algorithm application. (A) Original image frame, (B) Horn and Schunk
algorithm applied image, (C) motion vector and its color expression.

Full-size DOI: 10.7717/peerj.7256/fig-1

Classification of informative frames
As the play time of the colonoscopy videos was long and had much noise, it was inefficient
to use the whole video (Vilariño et al., 2007). Thus, frames were extracted to select only
meaningful information or applied to image processing. In the colonoscopy video, the
frame that has meaningful information is called informative frame, and the other is called
non-informative frame (Vilariño et al., 2007). Since non-informative frames are frames
that do not have meaningful information in the image itself, they have had a negative effect
on training (Ballesteros et al., 2016). In this study, only informative frames were used. The
classification accuracy of the informative frame used in this study was 99.4%.

Horn–Schunk algorithm
As the Horn–Schunk algorithm can only estimate small motions and compares the current
frame with the previous frame to calculate the motion vector, the time interval between the
two frames has a significant effect on the outcome (Meinhardt-Llopis, Pérez & Kondermann,
2013; Horn & Schunck, 1981). If the interval is too large, the calculation error will increase
beyond the small motion, and if the interval is too small, the movement of the scope will
not be considered sufficiently. Considering this limitation, we extracted the frame per 0.5 s.

Because the image inside the large intestine had varied shapes and colors depending
on the conditions of position, health status, and patient’s condition, it is advantageous to
remove other information from the frame image for training, leaving only information
about the position using Horn-Schunck algorithm. After Horn-Schunck algorithm
application, we acquired the image shown in Fig. 1 by expressing the direction change
of the pixels inside the frame in color. Since all elements inside the frame do not move
in the same direction consistently, various colors appear mixed, as shown in Fig. 1. To
understand the pattern of colors according to these positions, we used CNN deep learning
in the next step.

Three-direction classification of informative frame
In this paper, Horn-Schunck algorithm-applied color images were classified into three
types: insertion, withdrawal, and stop. Therefore, frames from colonoscopy images of 112
patients were classified as insert, withdrawal, and stop as the standard for deep training set.
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Figure 2 Overview and process of the proposed system. After extracting the frame from the video, only
the informative frame is extracted by the SVM. In the informative frame, the motion vector is expressed
in color by Horn and Schunk algorihm. Through the CNN deep learning method, these color images were
classified into three types: insertion, withdrawal, and stop.

Full-size DOI: 10.7717/peerj.7256/fig-2

To make a standard setting, a colonoscopy video was reproduced at a speed of 0.7 times,
and a user observing it pressed the direction key of the keyboard in real time. The up,
down, and space buttons were matched to insert, withdrawal, and stop, respectively, and
the frames were classified based on the input keyboard values. Five gastroenterologist with
more than 5 years experience participated in this work, and the values selected by more
than three were used as the standard (Fallah & Niakan Kalhori, 2017). An overview of the
entire process is shown in Fig. 2.

CNN machine learning for three-direction classification
CNN deep learning was applied based on the standard created above (Le, Ho & Ou, 2017;
Ho & Ou, 2018; Taju et al., 2018). Horn-Schunck algorithm-applied color images were
used as training data and test data. Unlike previous research using SVM, we used CNN, a
deep learning technique, because it was difficult to select features from the Horn-Schunck
algorithm-applied color image (Rajaraman et al., 2018).

The CNN structure and training procedure are described in Fig. 3. The network
architecture consisted of an input stage, a feature extraction stage with three convolutional
layers, and an output classification stage (Nagasawa et al., 2018; Jang et al., 2018). The input
stage received the Horn-Schunck algorithm applied color image which was converted to
170*150 pixels. The feature extraction stage that followed a triple ternary convolution
block structure was composed of convolution, pooling, and activation functions. The
rectified linear unit (ReLU) activation function and max polling layer were placed after
each convolutional layer. The classification stage included fully connected layers and a
dropout function (drop rate of 0.5) and provided an output from a Softmax function. Fully
connected layer were classified into three classes using the Softmax function.
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Figure 3 Overall architecture of the convolutional neural network (CNN) deep learning model. All im-
age were reduced to 170× 150 and were input into the model. Next, it was passed through all convolution
layers and the entire binding layer, and it was classified into three classes.

Full-size DOI: 10.7717/peerj.7256/fig-3

The learning was carried out with batch size 128 (set by experimental trials) images. The
model is optimized for hyper-parameters by a randomized grid search method (Bergstra &
Bengio, 2012). We initialized search ranges to be [1e–7 1e–2], [0.8 0.99], and [1e–10 1e–2]
for the learning rate, SGD, and L2-regularization parameters, respectively.

Finally, the trained network was validated using the 5-fold cross-validation method (Ou,
2016; Ou, 2017; Le, Sandag & Ou, 2018). Five groups of data were established such that
four groups were used for training and the remaining groups were used for validation. Each
group was designed to participate in validation in turn. The performance was measured
using the mean of the validation results for each group.

The model was trained and tested on a Windows 10 Pro system with Intel i9-9900K
CPU 3.6-GHz processor, 2TB SDD, 64 GB RAM, GeForce RTX 2070 Gaming OC D6 8GB.

Cecum time-location calculation
To determine the location of the cecum, we analyzed the direction of the scope’smovement.
Based on the results of the analysis, the graphwas drawnwith a value of+1 for insertion,−1
for withdrawal, and 0 for stop. Because the cecum is a large turning point that distinguishes
the insertion phase from the withdrawal phase, the turning point of transition from
insertion to withdrawal is the candidate for the cecum. However, some scopic insertion-
withdrawal repeat movements often occur during colonoscopy, and turning points can
be found very often. Therefore, in this study, the scope movement for a certain range
was analyzed to find the real turning point. All points that transitioned from insertion to
withdrawal were recorded. These turning points were referred to as a cecum candidate
point.

We set a certain range ‘‘t’’ and calculated the sum of the graph area ± t
2 around the

turning points. Since the value is+1 during insertion, the area of the graph will be positive,
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Figure 4 The movement of the scope. (A) Original curve graph of insertion and withdrawal movement,
(B) graph area calculation for cecal position prediction, (C) cecum candidate point.

Full-size DOI: 10.7717/peerj.7256/fig-4

and when the value is −1 during withdrawal, the area of the graph will be negative. At
the turning point with a certain range ‘‘t,’’ when the total sum of the graph areas is the
minimum value, that turning point is regarded as the cecum (Fig. 4). If the value ‘‘t’’ is
too small, light repetitive movements of insertion-withdrawal may have a minimum area
value, so ‘‘t’’ is set to a sufficiently large value. For several candidate points, the graph area
was calculated based on range ‘‘t.’’ The range ‘‘t’’ was set to 10, 20, and 30 s.

Focus group interview (FGI) for the proposed system
In this study, we proposed the system that can analyze the colonoscopy video and
provide meaningful direction information of endoscope’s movement and time-location
information of the cecum via visualized summary report. To ask for comments on the
system and reflect gastroenterologists’ requirements, we had implemented a FGI. Seven
gastroenterologists with more than 5 years experience participated in this FGI, and it was
conducted in the face-to-face meeting. The comments on necessity referred in this research
were selected by FGI, and ideas about visualization were also recruited and validated. This
FGI simply asked positive and negative opinions, and the results are as follows. All seven
doctors determined that this system would positively benefit physicians and patients. Six
doctors agreed that a visualized summary report based on this system would be helpful for
medical records management and data sharing. Five doctors agreed that the results could
be used for proficiency testing.

RESULTS
In this study, we trained and tested the CNN models using 328,927 frames from 112
colonoscopy videos. To facilitate physician’s diagnosis during colonoscopy, we recruited
most patients receiving colonoscopy for the second time.

Classification according to direction of scope’s movement
Since the features of Horn–Schunk-algorithm applied images were difficult to specify,
we applied the CNN deep learning method to the images for high accuracy. The overall
accuracy, drawn from 5-fold cross-validation, was 95.6%. Table 1 shows the classification
results in confusion matrix form. Each cell in the Table 1 represents the number of samples
classified by the trained CNN algorithm. The vertical title indicates the actual class (input
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Table 1 The confusionmatrix of classification results using the 5-fold cross-validation of the CNN
algorithm.

Target class Sum by row

Insertion Withdrawal Stop

Insertion 116,437 1,533 1,379 119,349
Withdrawal 1,586 107,336 1,757 110,679Output class

Stop 3,484 4,603 90,812 98,899
Sum by
column

121,507 113,472 93,948 328,927

Table 2 Performance indicators of the CNN and other algorithms for the three individual classes.

Class/Indicators Insertion Withdrawal Stop

Recall 0.958 0.946 0.967
Precision 0.976 0.969 0.918CNN
F1 score 0.967 0.958 0.942
Recall 0.95 0.916 0.964
Precision 0.953 0.959 0.911VGG-16
F1 score 0.952 0.937 0.937
Recall 0.907 0.833 0.872
Precision 0.874 0.909 0.83LeNET
F1 score 0.89 0.87 0.85
Recall 0.844 0.775 0.799
Precision 0.804 0.832 0.785SVM
F1 score 0.823 0.802 0.792

Table 3 Accuracy of cecum discovery according to the set certain range ‘‘t’’.

t = 10 t = 20 t = 30

Accuracy 83.9% 94.6% 96.4%

class of the algorithm), whereas the horizontal title indicates the classified results (output
class of the algorithm). Performance comparisons according to the indicators of recall,
precision, and f1 score for each class are presented in Table 2. These numbers can be used
for alternative algorithm assessments (Kainz, Pfeiffer & Urschler, 2017).

Cecum time-location calculation
We regarded the turning point as a cecum candidate point when the total area sum in a
certain section recorded the lowest. We checked the existence of the actual cecum within
a certain interval ± t

2 around the cecum candidate point. The accuracy according to ‘‘t’’
values is shown in Fig. 5 and Table 3. The position of the cecum recorded by three clinicians
was compared with the results of the proposed system.

Summary reports visualized in the timeline
The movement of the scope, shown in Fig. 4 as a graph, was changed to a color code to
increase visibility. Insertion, withdrawal, and stop weremapped to each color and expressed
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Figure 5 Accuracy and number of cases when cecum is detected according to ‘‘t’’ values ranging from
10 s to 30 s. If ‘‘t’’ is less than 10 s, light repetitive insertion-withdrawal movements may have a minimum
area value, so ‘‘t’’ is set to a sufficiently large value. Considering this, we analyzed the results when t values
were 10, 20, and 30 s.

Full-size DOI: 10.7717/peerj.7256/fig-5

in 1 s, as shown in Fig. 6A. Again, the scale was changed to a 10 s scale, 30 s scale to increase
visibility (Figs. 6B, 6C). One 10 s square represents 10 s. One 30 s square represents 30 s.

At the 1 s scale, the result was too microscopic and not suitable for intuitive observation.
However, since the outlier belonging to a small number was removed from the 10 s scale,
the movement of the scope and the position of the cecum could be intuitively grasped.
In addition, as the scale increased, the distinction between the insertion phase and the
withdrawal phase became clearer.

DISCUSSION
In this study, we developed and verified a system that can detect the direction of scope’s
movement from colonoscopy video using Horn–Schunk algorithm by applying CNN deep
learning methods. The motion change of the video is extracted through the Horn–Schunk
algorithm for calculating optical flow. Through this algorithm, we can compute the pixel’s
motion change between consecutive frames, and the direction of scope’s movement was
trained and determined through the CNN. The extracted information about the direction
of scope’s movement was visualized and added to the summary report of colonoscopy
video (SRCV). In addition, the time-location of the cecum was calculated based on the
results of direction of the scope’s movement and included in the SRCV. This proposed
system can assist physician’s observation of the colonoscopy video and provide helpful
information.

The videos used in this research were favorable for image acquisition and image
processing because skilled physician performed the colonoscopy. This may have resulted in
lowering the false-negative results when the system was applied to the video. In a previous
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Figure 6 Insertion, withdrawal, and stop were mapped to each color and expressed with various scale.
(A) 1 second per square, (B) 10 seconds per square, (C) 30 seconds per square, (D) recording the direction
of scope’s movement and cecum time-location information on SRCV.

Full-size DOI: 10.7717/peerj.7256/fig-6

study, we extracted 1 frame of images in 0.3 s from a colonoscopy video. The higher the
extraction frequency, the more frames can be extracted, so more images can be used in the
system. However, in applying the Horn-Schunck algorithm in this study, we extracted one
frame at 0.5 s. Note that the Horn-Schunck algorithm can only calculate motion vectors
for small changes (Meinhardt-Llopis, Pérez & Kondermann, 2013; Horn & Schunck, 1981).
Therefore, if the interval between frames is too large, Horn-Schunck algorithm is not
applicable. However, to calculate the motion vector based on the difference between the
previous frame and the current frame, there should be a proper change between the two
frames. In our colonoscopy video, a 0.5 s period yielded optimal results. As the standard
setting, observing the colonoscopy video at a speed of 0.7 times to avoid misreading
directions, participation of five fellow doctors, and selecting values more than three made
the accuracy of the gold standard more reliable (Cho et al., 2016; Fallah & Niakan Kalhori,
2017; Cho et al., 2017)

In previous studies, we have classified informative frames and non-informative frames
from the colonoscopy video with high accuracy (Cho et al., 2018). The SVM was used as it
is suitable for image classification (Park, Jang & Yoo, 2016). The criteria for classification
of informative frame and non-informative frame were as follows: presence of noise such
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as color separation phenomenon, blur caused by motion, and non-observable screen such
as excessive darkness, brightness, and enlarged screen (Ballesteros et al., 2016). The mean,
variance, skewness, correlation, contrast, energy of Laplacian, and energy of gradient
values were acquired from the decomposed frames, and these values were used as features
of the SVM model to classify the informative and non-informative frames (Sonka, Hlavac
& Boyle, 2014; Hua, Fu-Long & Li-Cheng, 2006). SVM modeling was performed with the
5-fold cross-validation method.

We did not consider real-time use in this study. This is because the movement of
the scope is meaningful when analyzed with the whole video. When the insertion and
withdrawal movements of the scope throughout the video are analyzed, a clear distinction
between the insertion phase and the withdrawal phase can be obtained. As a result, the
position of the cecum can be accurately calculated.

In the methods section, we used the certain range value ‘‘t’’ to find the real cecum
point accurately. When analyzing 112 patient images, we found numerous light insertion-
withdrawal repeat movements. With the exception of polypectomy, the scopes frequently
repeat insertion-withdrawal movements to find the polyps (Anderson et al., 2016). In
addition, withdrawal movement was often accompanied by smooth insertion (Simmons et
al., 2006). Most repetitive movements did not exceed 10 s. In other words, if ‘‘t’’ is less than
10 s, light repetitive insertion-withdrawal movements may have a minimum area value,
so ‘‘t’’ is set to a sufficiently large value. Considering this, we analyzed the results when t
values were 10, 20, and 30 s.

In this study, we used the CNN deep learning method to classify the movement of the
scope. The images used for deep learning input were the Horn-Schunck algorithm-applied
images, and the motion vector was expressed in color. In the images, the layer did not have
to be deep because the directions were classified according to the color distribution only.
The CNN architecture used in this study was developed with reference to LeNET and VGG,
and the layer structure was experimentally optimized. The trained network was validated
using the 5-fold cross-validation method, and overfitting did not occur. As a limitation
of this study, we did not test data from outside the hospital. In a future study, we plan to
conduct research and testing with independent data from other hospitals.

During colonoscopy, the CIT was recorded by a physician. However, as the technology
is under development today, the trend is to automatically store the data generated during
the medical procedure, and the information generated during colonoscopy also needs to
be automatically analyzed and stored (Münzer, Schoeffmann & Böszörmenyi, 2018; Yuan, Li
& Meng, 2016; Greenhalgh et al., 2010; Taira, Soderland & Jakobovits, 2001; Terada, 2015).
In our previous study, we have already developed a system that automatically analyzes and
records colonoscopy videos, and through the system, the video was classified by types and
visualized as summary report to communicate meaning effectively (Cho et al., 2018). In
addition to the previous research, it will be possible to provide more useful information
to physicians via recording the direction of scope’s movement and cecum time-location
information (Fig. 6D).

In this study, only the insertion, withdrawal, and stop phases were analyzed and
determined. Through FGI, gastroenterologists have expressed the need to identify and
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visualize the anatomical structure of the large intestine. In a future study, if left and right
movements can be recognized, the direction of the colonoscope can be recorded in more
detail. Based on this, it is expected that the anatomical structure of the large intestine can
be deduced and the anatomical position with time can be indicated.

CONCLUSIONS
Information obtained in this study can be utilized as metadata for proficiency assessment.
Since insertion and withdrawal are technically different movements, data of scope’s
movement and phase can be quantified and utilized to express pattern unique to the
colonoscopist and to assess proficiency (Taber & Romagnuolo, 2010; Snyder et al., 2010;
Benson et al., 2010). When viewed with reference to the SRCV, we thought that the
colonoscopist might have limited proficiency if there were repetitive insertion-withdrawal
movements or no movements at all, which was not related to polyps, bleeding, or
polypectomy.

With the proposed system, we believe that if the current handwritten medical records
can be automatically summarized together with more detailed, graphical information, it
will be useful for physicians and patients and will improve medical services (Ahn, Choi &
Kim, 2016; Denny et al., 2010). The results of this study may contribute to improving the
medical record after colonoscopy has finished. We hope that the findings of this study
can contribute to the informatics field of medical records so that medical charts can be
transmitted graphically and effectively in the field of colonoscopy.
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