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ABSTRACT

Background. The overall anatomy of the genus Syllis (Annelida: Syllidae) has been
largely studied; however, an integrative approach considering different anatomical tech-
niques has never been considered. Here, we use micro-computed X-ray tomography
(micro-CT) to examine the internal anatomy of Syllis gracilis Grube, 1840, along with
other widely available techniques.
Methods. We studied the anatomy of the marine annelid S. gracilis through an
integrative approach, including micro-CT along with stereo and light compound
microscopy (STM, LCM), scanning electronmicroscopy (SEM), confocal laser scanning
microscopy (CLSM) and histological sectioning (HIS). In this manner, we evaluated
the applicability of micro-CT for the examination of annelid anatomy by testing
whether the images obtained make it possible to visualize the main body structures,
in comparison with other current techniques, of the various elements of its internal
anatomy.
Results. Overall external and internal body elements are clearly shown by the integrative
use of all techniques, thus overcoming the limitations of each when studied separately.
Any given method shows disparate results, depending on the body part considered.
For instance, micro-CT provided good images of the external anatomy, including
relevant characters such as the shape, length and number of articles of dorsal parapodial
cirri. However, it is especially useful for the examination of internal anatomy, thus
allowing for 3D visualization of the natural spatial arrangement of the different organs.
The features best visualized are those of higher tissue density (i.e., body musculature,
anterior parts of the digestive tract), particularly in 3D images of unstained specimens,
whereas less electrodense tissues (i.e., the peritoneal lining of septa and nervous system)
are less clearly visualized. The use of iodine stain with micro-CT has shown advantages
against non-staining for the adequate observation of delicate elements of low density,
such as the segmental organs, the connective between the ganglia, the ventral nerve
cord and segmental nerves.
Discussion. Main external anatomical elements of S. gracilis are well shown with
micro-CT, but images show lesser optical resolution and contrast when compared to
micrographs provided by SEM and CLSM, especially for fine structural features of
chaetae. Comparison of micro-CT and HIS images revealed the utility and reliability of
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the former to show the presence, shape and spatial disposition of most internal body
organs; the resolution of micro-CT images at a cellular level is, however, much lower
than that of HIS, which makes both techniques complementary.

Subjects Taxonomy, Zoology, Histology

Keywords Annelida, Syllidae, Micro-CT, Histological sectioning, Scanning electron microscopy,
Anatomy

INTRODUCTION

Syllidae Grube, 1850 is one of the most speciose and morphologically diverse families of

Annelida, currently with 74 genera and nearly 700 valid species described (San Martín

& Aguado, 2014). Most of the previous taxonomic and phylogenetic studies have been

based on the examination of external anatomy characters by means of stereomicroscopy,

light microscopy and scanning electron microscopy (e.g., Aguado, Nygren & Siddall, 2007;

Aguado & San Martín, 2009; Nygren, 1999; San Martín, López & Aguado, 2009; Álvarez

Campos et al., 2015; San Martín & Worsfold, 2015).

Syllis gracilis (Grube, 1840) is a well-known syllid species, originally described in the

Gulf of Naples, and commonly reported in a number of substrates in shallow temperate

coastal waters around the world (Imajima, 2003; Gil, 2011). It is mostly characterised by

the presence of Y-shaped chaetae (i.e., ypsiloid chaetae) that result from the fusion of the

shaft and blade of falciger compound chaetae (San Martín, 2003). This feature is, however,

shared with other taxa, that have been considered as junior synonyms of this species,

regardless of the large geographic distances between them (see Licher, 1999); this resulted

in considering S. gracilis as cosmopolitan, although this has been questioned by recent

molecular phylogenetic studies (e.g., Maltagliati et al., 2000; Álvarez Campos, Giribet &

Riesgo, 2017).

In comparison to other annelids, syllid species identification requires no detailed

anatomical studies (i.e., dissection and/or histological sectioning; Fernández et al., 2014).

Because of their small size, the study of internal syllid anatomy relies on the identification of

larger elements, such as the anterior part of the digestive tract—e.g., the eversible axial-type

pharynx, aka proboscis, and the conspicuous highly muscularised proventricle - which

are often visible through the body wall or by histological sectioning (San Martín, 2003;

San Martín & Aguado, 2014). Therefore, the study of most of the internal characters was

traditionally limited to purely anatomical works rather than to systematic and phylogenetic

ones. Previous work on syllid anatomy has included in vivo observations under the

stereomicroscope (STM), light compound microscopy (LCM), histological sectioning

(HIS) techniques and scanning electron microscopy (SEM) (see San Martín & Aguado,

2012). More recently, cytochemical approaches with Confocal Laser Scanning Microscopy

(CLSM) and Transmission Electron Microscopy (TEM) have improved our knowledge

of their internal anatomy (e.g., Helm & Capa, 2015; Weidhase et al., 2016; Weidhase et al.,

2017).
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The micro-computed X-ray tomography (micro-CT) has been demonstrated to be a

powerful, fast, complementary and novel tool for exploring internal anatomy across many

metazoan taxa, including terrestrial and marine vertebrates and invertebrates (Metscher

& Müller, 2011; Handschuh et al., 2013; Fernández et al., 2014; Sombke et al., 2015). For

instance, its usefulness in studying Annelida anatomy has recently been tested (see Dinley

et al., 2010; Faulwetter et al., 2013a; Faulwetter et al., 2013b; Paterson et al., 2014; Parapar

et al., 2017a) and increasingly used in descriptions of new taxa (e.g., Parapar, Moreira &

Helgason, 2015; Parapar et al., 2016; Parapar et al., 2017b). However, none of these works

compares their results with those obtained with other techniques, such as the examination

of histological sections (but, see Parapar et al., 2018). This would be necessary to truly

assess the strengths and limitations of this novel technique when used in taxonomy and

systematics. On the other hand, micro-CT per se is a non-invasive technique and, therefore,

seems suitable for studying the anatomy of preserved material (including type specimens)

stored in museums and other collections, thus avoiding any significant alteration.

We studied the external and internal anatomy of Syllis gracilis using different available

anatomical methods and tested the capabilities of micro-CT in the study of general

annelid anatomy. To this end, several specimens collected from the same location in NW

Spain were analysed with micro-CT to cover the potential individual variability of the

taxon, along with the integrative use of different macroscopic, microscopic and staining

methods, including STM and LCM, SEM, CLSM and HIS, the latter by using two staining

procedures. Transmission Electron Microscopy (TEM) and CLSM at histological and

cellular level were not explored here (see ‘Discussion’). Therefore, by considering this

multi-specimen integrative approach, cross validating of techniques could be achieved,

and misinterpretations of any given structure (i.e., observational artefacts) could also

be potentially avoided. Images obtained through these techniques were compared with

those of micro-CT in terms of quality, contrast and reliability, and assessing whether

these techniques are complementary or otherwise. Furthermore, specimens selected

were previously treated and fixed under standard conditions, as in many benthic studies

(i.e., with ethanol 70% or formalin 4%), not following any special protocol. This will make

it possible to test if micro-CT provides acceptable results with material not specifically

prepared for this technique, as occurs withmost specimens stored inmuseums and research

institutions.

MATERIALS & METHODS

Specimens of Syllis gracilis were collected in the Ria of Ferrol, Galicia (NWAtlantic coast of

the Iberian Peninsula) in the framework of several benthic studies (Table S1). This species

is the most abundant syllid at this location from the intertidal to 25 m depth (Parapar et

al., 1996). A total of 18 specimens were examined and about half of them were selected

from a collection obtained between 2000 and 2002 from several intertidal rocky shore sites.

Additional specimens were collected in 2008, 2012 and 2015 in shallow subtidal sediments

in Santa Lucía bay, located in the southern margin of the ria. Samples were taken by (1)

scraping the macroalgae on the rocky surface and (2) by means of a Van-Veen grab in
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sedimentary bottoms. Samples were sieved through a 1-mm mesh, specimens sorted to

species level, fixed in 10% formalin and finally transferred to 70% ethanol for preservation.

Additional material was collected between 2000 and 2002 and had been previously

deposited in the Museo Nacional de Ciencias Naturales-MNCN (Madrid) by the first

author with the registration numbers MNCN16.01/15999-16001, MNCN16.01/16003,

MNCN16.01/16007 andMNCN16.01/16011-16013. Several specimens used for description

under stereomicroscope and light microscope, HIS, SEM, CLSM and micro-CT were

extracted from this collection and have received new registration numbers: MNCN

16.01/18341 to MNCN 16.01/18409 and MNCN 16.01/18412 to MNCN 16.01/18415

(Table S1). Two more specimens, later collected in Santa Lucía Bay (see above), were used

for micro-CT and deposited in the MNCN with reg. numbers MNCN 16.01/18410 and

MNCN 16.01/18411. Sampling coordinates and abiotic features of all samples are given in

Table S1. Preparatory treatment data for histological sections, and micro-CT and scanning

parameters used for each specimen studied under this technique and CLSM are shown in

Tables S2 to S4.

Identification of specimens, drawings and measurements were performed using

an Olympus SZX9 stereomicroscope and an Olympus BX40 compound microscope,

both equipped with camera lucida at the Universidade da Coruña (UDC), Universidad

Autónoma de Madrid (UAM) and Estación de Bioloxía Mariña da Graña, Universidade de

Santiago de Compostela (EBMG, USC). Photographs were taken with a compound light

microscope Nikon Eclipse 90i equipped with Nomarsky Differential Interference Contrast

(DIC).

Examination with the SEM and CLSM was performed at the Servizos de Apoio

á Investigación-SAIN (UDC) (Research Support Services). For SEM, specimens were

dehydrated via a graded ethanol series; critical-point dried using CO2, covered with

gold in a BALTEC SCD 004 evaporator, and examined and photographed under a JEOL

JSM-6400 SEM (see Parapar et al., 2017a). For CLSM, four specimens previously fixed in

formalin and stored in 70% ethanol were washed with 0.1 M phosphate buffered saline

(PBS, pH 7.4). After 3 rinses for 15 min, specimens were permeabilized with 0.5% Triton

X-100 in 0.1M PBS for 10–15 min. To stain muscular tissue, specimens were incubated in a

solution containing phalloidin-FITC (5–10 µl stock solution in 500 µl PBS; Sigma-Aldrich)

during 90–120 min at room temperature. Subsequently, samples were washed in PBS for

5 min and mounted between two coverslips with a drop of glycerol/PBS, 1:1. Specimens

were analysed with a confocal laser microscope Nikon A1; image stacks were processed

with Nis-Elements (Nikon). Parameters used with each specimen are indicated in Table S2.

Histological sectioning and staining were performed at UDC and EBMG, respectively.

To this end, specimens previously preserved in 70% ethanol were dehydrated through a

series of graded ethanol baths and clearing in xylene, infiltrated with paraffin at 57 ◦C

overnight, and embedded in a paraffin block. Blocks were sectioned with a microtome

in 8–10 µm sections, which were placed on microscope slides, hydrated and stained with

Hematoxylin-Eosin orMallory trichromic, dehydrated, and finally mounted on permanent

slides with Canada balsam. For Hematoxylin-Eosin stained sections, slides were submerged

in Harris hematoxylin for 15 min, washed in tap water for 10 min and counterstained with
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eosin for 2 min. For Mallory stained sections, slides were submerged in acid fuchsine for

15 min and air dried for 25 min. Once dry, they were submerged in aniline blue-orange

G solution for 20 min and washed briefly in baths of water and ethanol. Parameters used

with each specimen are indicated in Table S3.

Examination with micro-CT was conducted at the EBMG. Specimens were gradually

dehydrated in ascending ethanol series up to 96% ethanol. Selected specimens were

stained with 1% iodine in 96% ethanol for three days. All specimens were dehydrated

for two hours with hexamethyldisilazane (HMDS) and left to dry overnight before

scanning, following Alba-Tercedor & Sánchez-Tocino (2011). Scanning was conducted

with a microtomograph Skyscan 1172. Parameters used with each specimen are indicated

in Table S4. Samples were rotated 360◦ to obtain as much detail as possible. The X-

ray projection images obtained during scanning were reconstructed with the NRecon

software (Bruker, Kontich, Belgium). The sections obtained were processed with CTAn

and DataViewer software (Bruker, Kontich, Belgium) and 3D representations with CTVox

(Bruker, Kontich, Belgium) software. To present the results in a homogeneous manner—

and thus facilitate comparison between species and with results of previous works, 2D

sections and 3D renderings were shown as coronal (frontal), sagittal and transversal views,

both from stained or non-stained specimens, following Parapar et al. (2017a). Images

were edited with Corel Draw software in order to enhance the contrast. Datasets of

transverse 2D images of studied specimens were uploaded at the Morphosource repository

(https://www.morphosource.org/Search/Index?search=Syllis).

RESULTS

External morphology and species delimitation

Examination of external characteristics of specimens revealed that they mostly agree

with previous descriptions of Syllis gracilis from the Iberian Peninsula (cfr. San Martín,

2003, pp. 413–416, fig 226, 227). Distinctive recognised characters were: (1) complete

specimens ranged from 2 to 29 mm in length and with 15 to 156 chaetigers (Figs. 1A,

2A); (2) anterior segments of fixed specimens show light brown pigmentation arranged

in two dorsal horizontal lines per segment; (3) pharynx similar in length to proventricle,

extending through 9 segments, and proventricle bearing around 45 muscle fibres (Fig. 1A);

(4) antennae, tentacular cirri and dorsal parapodial cirri about as long as body width, with

12–15 articles (Figs. 1A, 1B, 3A–3D, 4A–4C); (5) mid-body and posterior ones are much

shorter and spindle-shaped, with 5–9 articles (Figs. 2B, 2C, 4D); (6) anterior parapodia

with 4–5 bidentate falciger chaetae with a short secondary tooth (Figs. 1C, 2D, 4E, 4F);

(7) mid-body chaetigers with 1–2 (up to five) ypsiloid chaetae each (Figs. 1B, 1D, 2E,

2F, 3E, 4G), with fusion line between blade and shaft sometimes distinguishable, and 0

(sometimes up to 2) compound falcigers; (8) posterior chaetigers with 1–3 (normally 2)

ypsiloid chaetae and 0–3 falciger chaetae with short bidentate blades with a short secondary

tooth (Fig. 1E); (9) three distally curved aciculae in each anterior parapodium (Fig. 1C),

and two aciculae of similar shape from mid-body to posterior end (Figs. 1D, 1E).

Micro-CT images referred to external body features show a similar definition to those

obtainedwith the stereomicroscope, but with less detail than those of both opticmicroscope
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Figure 1 Line drawings of Syllis gracilis. One specimen showing main characters used in traditional tax-
onomic descriptions (MNCN 16.01/18405). (A) Anterior end, dorsal view; (B) mid-body parapodium;
(C) aciculae (left) and compound falcigers (right) of third parapodium; detail: blade distal end; (D) acic-
ula (left) and ypsiloid chaetae (right) of a mid-body parapodium; (E) aciculae (left), ypsiloid chaeta (mid-
dle) and compound falcigers (right) of a mid-posterior parapodium.

Full-size DOI: 10.7717/peerj.7251/fig-1

(Fig. 2), CLSM (Fig. 3) and SEM (Fig. 4). Main external characters can be discernible with

micro-CT (i.e., shape and body length, number and length of articles in antennae, tentacular

and parapodial cirri) (Figs. 5A–5B, 6B), but withmuch less resolution, which is even poorer

for other finer and highly relevant taxonomic characters such as ypsiloid and compound

chaetae.

STM images also lack detail in finer body structures (i.e., chaetae) but, in turn, show

relevant taxonomic information in characters such as the shape and length of parapodial

dorsal cirri as well as dorsal body colouration and head features (prostomium, palps, eyes).

But however, such images are always of a similar or lower quality than those provided by

micro-CT.

LCM (Fig. 2), CLSM (Fig. 3) and SEM (Fig. 4) images show better detail than micro-CT

and STM regarding chaetae and some features of internal anatomy that can be seen by

transparency of the body wall. Low-medium magnification (40× to 400×) in LCM shows
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Figure 2 LCMmicrographs of Syllis gracilis. Images at low-medium-high magnification of one speci-
men (MNCN 16.01/18368-18372). (A) Anterior end, dorsal view (40×) showing main gut regions as seen
by transparency; (B) proventricle-ventricle-intestine region; ventricle and gastric caeca areas highlighted
by broken lines (200×); (C) detail of mid-body parapodial cirri (200×); insert showing several cirrus ar-
ticles with glands inside; (D) anterior parapodium, compound chaetae (400×); (E) mid-body parapo-
dia, ypsiloid chaetae (200×); (F) detail of two mid-body ypsiloid chaetae showing main chaetal elements
(1000×).

Full-size DOI: 10.7717/peerj.7251/fig-2

general external anatomy (Fig. 2A), head, and shape and number of articles of dorsal

parapodial cirri and whether there is a pattern of alternation in length of cirri (Fig. 2C).

They also make it possible to observe several internal organs through the very thin and

transparent integument, particularly the gut (Figs. 2A, 2B), the extension (i.e., number

of chaetigers) of each region such as the pharynx and the proventricle (Fig. 2A), and the
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Figure 3 CLSMmicrographs of Syllis gracilis. Two specimens, showing mainly relevant morphologi-
cal external elements (MNCN 16.01/18410, MNCN 16.01/18414). (A) Anterior end, dorsal view (100×);
(B) anterior end, ventral view (100×); (C) anterior end, left ventro-lateral view (100×); (D) anterior end,
ventral view, showing anterior end of pharynx projecting from buccal cavity (200×); (E) right anterior
chaetigers in ventral view (200×); insert showing two ypsiloid chaetae; (F) proventricle extracted from
body showing surface main elements (200×).

Full-size DOI: 10.7717/peerj.7251/fig-3

presence of small features (e.g., pharyngeal tooth), the proventricle muscular fibres, and

the presence and size of ventricle and gastric caeca (ven, gca, Fig. 2B) that connect the

proventricle to the intestine.Highermagnification (1,000×) allows for detailed examination

of other highly relevant taxonomic finer features such as the presence and shape of the

parapodial aciculae, marginal spines of distal blade of compound falcigers (Fig. 2D) and

the ypsiloid chaetae (Figs. 2E, 2F). The latter cannot be observed in such detail by means

of the micro-CT.
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Figure 4 SEMmicrographs of Syllis gracilis. One specimen (MNCN 16.01/18341). (A) Anterior end,
dorsal view; (B) detail of anterior end showing main sensory elements; (C–D) detail of anterior and me-
dian region in dorsal view showing several parapodial cirri and chaetae; (E) compound long-blade falciger
chaeta; (F) detail of shaft distal end of falciger chaeta shown in E; (G) one ypsiloid and two compound
short-blade chaetae from mid-anterior chaetiger.

Full-size DOI: 10.7717/peerj.7251/fig-4

CLSM images (Fig. 3) show that, in general, external characters are better defined than

with LCM. On the contrary, SEM images show more resolution than CLSM. Furthermore,

laser scanning and subsequent layer integration result in 3D images while providing high

superficial definition (e.g., Figs. 3A–3D). This is not true for chaetae when compared with

LCM at high magnification (cfr. Figs. 3E vs. 2E, 2F). Examination of internal structures
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Figure 5 Micro-CT 3D volume renderings of Syllis gracilis. External and internal anatomy of an un-
stained specimen (MNCN 16.01/18342-18349). (A) Frontal section at pharynx-proventricle region show-
ing musculature associated with protraction and retraction; (B) frontal section at proventricle-ventricle-
intestine region showing main gut parts and musculature associated with parapodial movement.

Full-size DOI: 10.7717/peerj.7251/fig-5

extracted through dissection benefits from this technique; for example, this makes it

possible to distinguish the organization of the muscular fibres in the proventricle (Fig. 3F).

SEM allows for the most accurate examination of external body features by providing

the highest detail of body surface (Figs. 4A–4D) while revealing taxonomic characters

hardly visible with other techniques, such as the presence of nuchal organs that appear

as short ciliated grooves behind the prostomium (Fig. 4B). SEM images show the chaetal

architecture withmaximumdetail in comparison to other techniques. Some chaetal features

revealed in this manner are the shape and length of blade teeth in the compound chaetae,

and the presence of spines in their shaft (Fig. 4E, 4F) and a fusion line between shaft and

blade in the ypsiloid chaetae (Fig. 4G).

Internal anatomy

The combined approach of two complementary imaging methods such as micro-CT and

HIS (Figs. 5–15) provided an integrative view of the internal anatomy of the studied

specimens.
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Figure 6 Micro-CT 3D volume renderings of Syllis gracilis. Internal anatomy of two unstained speci-
mens (MNCN 16.01/18410 and MNCN 16.01/18411). (A) Composition of two pictures of sagittal section
at proventricle-ventricle-intestine region; insert showing the position of segmental organs (arrowheads)
below parapodial aciculae and acicular retractor muscles; (B) frontal section at pharynx-proventricle re-
gion showing pharyngeal retractor and protractor muscles.

Full-size DOI: 10.7717/peerj.7251/fig-6

Integument and musculature

The cuticle is clearly seen in coronal (frontal) (cut, Figs. 5B, 6B), para-sagittal (Fig. 6A)

and transversal micro-CT images (Figs. 7A–7D). On the contrary, the epidermis (with the

basal membrane) and the circular muscle layer (epi, cml) are poorly portrayed, and seen as

an apparent ‘‘empty space’’ between the cuticle and the underlying longitudinal muscular

layer (dlml, Fig. 7B), but not in the iodine stained specimen where a continuum is observed

in its place (Fig. 15C). HIS, however, shows a far better definition of such layers (Fig. 8C, 8E,

11A–11B), especially at highermagnifications (Fig. 8D). The arrangement of the integument

components is visible in the longitudinal sections of the beaded parapodial dorsal cirrus,

including the secretory cell glands, muscular fibres, nerve bodies and processes (pcg,

pcm, pcnb, pcnp, Fig. 8E); micro-CT images do not, however, clearly show the glandular

elements inside parapodial dorsal cirri (pdc, Figs. 5A–5B).

The musculature of body wall, along with several internal organs (i.e., gut, see below),

is among the features that are better-observed with the micro-CT, whether specimens

are stained with iodine or otherwise. Body musculature is evident both in longitudinal—

being coronal or sagittal (dlml, phpm, phrm, Figs. 5, 6)—and transversal body sections

(Fig. 7). However, as stated above, it is difficult in all cases to detect the limits between

wall muscles and the components of the integument and cuticle, which are far better
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Figure 7 Micro-CT 3D volume renderings of Syllis gracilis. Internal anatomy of two unstained speci-
mens of Syllis gracilis (MNCN 16.01/18410 and MNCN 16.01/18411). (A–D) Four transversal sections at
anterior and posterior pharyngeal, proventricle and intestine regions respectively showing main body ele-
ments. Arrowheads in B and C showing point of attachment of pharyngeal retractor muscles to inner body
wall.

Full-size DOI: 10.7717/peerj.7251/fig-7

portrayed in HIS images (Figs. 8–11). Three muscular elements are particularly well

viewed through micro-CT: (1) the dorsal longitudinal muscular layer of body wall (dlml),

(2), the muscles associated with parapodial movement, especially the acicular retractor

muscles (arm), and (3) the protractor, retractor and transversal muscles associated with

the pharyngeal movement (phrm, phpm, phtm). In contrast, the circular (or transversal)

body wall muscular layer, which is much less developed than the longitudinal one, is more

conspicuous in HIS (cml, Figs. 8E, 8E) than in micro-CT images (Fig. 7). Longitudinal

musculature is evident in coronal (dlml, Fig. 6B), sagittal (Fig. 6A) and transversal (e.g., Figs.

7B, 7D) micro-CT sections. This appears as a large dorsal band mostly continuous across
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Figure 8 Transversal histological sections of Syllis gracilis. Two specimens stained with Hematoxylin-
Eosin (MNCN 16.01/18342-18349 and MNCN 16.01/18350-18367). (A) Palps and several sensory head
elements; (B) prostomium and buccal cavity showing brain, left eye and left circumoesophageal connec-
tive; (C) pharynx, showing pharyngeal retractor muscles, ventral nerve cord ganglia and left segmental or-
gan; framed: segmental organ; (D) detail of a ventral nerve cord ganglion showing differentiation between
soma and axonic parts of neurons; (E) left median hemi-metamere at intestine level showing continuous
dorsal muscle layer and muscular and nervous elements associated with dorsal parapodial cirrus; framed:
basal part of parapodial cirrus.

Full-size DOI: 10.7717/peerj.7251/fig-8

the body, the exception being at the pharyngeal level, where the transversal pharyngeal

muscles are inserted in the inner side of body wall (phtm, Figs. 7B, 7C, arrowheads)

(see below). This discontinuity in the longitudinal dorsal muscular bands results in a

dorsolateral muscular band, that is located more ventrally (d-lml, Figs. 7C, 8C). On the

ventral side of the body, there are two far less developed longitudinal muscular bands (vlml,

Fig. 6A) located on both sides of the ventral nerve cord (vnc, Fig. 7D). In this case, once

Parapar et al. (2019), PeerJ, DOI 10.7717/peerj.7251 13/37

https://peerj.com
https://doi.org/10.7717/peerj.7251/fig-8
http://dx.doi.org/10.7717/peerj.7251


Figure 9 Sagittal histological sections of Syllis gracilis. One specimen stained with Hematoxylin-Eosin
(MNCN 16.01/18368-18372). (A) Anterior body region showing prostomial brain, palp nerve, and
segmental organ, located ventrally to parapodial aciculae in first anterior body segments; (B) detail of
chaetae+aciculae group and segmental organ in ventral parapodia; (C) basal region of several parapodia
showing segmental organs located ventrally to chaetal group; (D) detail of a transversally sectioned
acicula showing internal chaetal channels; (E) detail of somata/neuropil regions of ventral nerve cord and
elements of ventral body wall; (F) detail of segmental organ.

Full-size DOI: 10.7717/peerj.7251/fig-9
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Figure 10 Transversal histological sections of Syllis gracilis. One specimen of stained with
Hematoxylin-Eosin (MNCN 16.01/18342-18349) and Mallory (MNCN 16.01/18383-18398). (A, C)
pharynx, showing a left stomatogastric nerve located in pharyngeal epithelium; (B) detail of antero-dorsal
part of pharynx showing pharyngeal glands; (C) overall view of pharyngeal region showing main
anatomical elements; framed: stomatogastric nerves at both sides of pharynx; (D) pharyngeal glands at
dorsal side of pharynx.

Full-size DOI: 10.7717/peerj.7251/fig-10

again, HIS shows greater detail both in the structure and limits of these muscular bands

(Figs. 8C, 8D, 9E, 11A, 11B).

Muscular elements associated with parapodial and chaetal/acicular movement (arm)

are reflected in far more detail in 3D micro-CT images (Figs. 5B, 6A, 7A–7D), even better

than those of HIS (Figs. 8, 9).

Protractor, retractor and transversal pharyngeal muscles (phpm, phrm, phtm),

associated with pharyngeal movement, are particularly well seen in micro-CT images

(Figs. 5A, 6B, 7B), although the limits of each group of muscles are poorly defined. On

the contrary, the circular and longitudinal musculature of the pharyngeal wall is better

portrayed in HIS (phcm, phlm, Fig. 8C). The myotomes of the proventricle are radially

disposed and can be clearly seen in all images (prv, Figs. 5A, 6B, 6A vs. 11A). Pharyngeal

protractor muscles connect the anterior and posteriormost pharynx with the anterior body
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Figure 11 Transversal histological sections of Syllis gracilis. One specimen stained with Mallory
(MNCN 16.01/18383-18398 and MNCN16.01/18399-18404). (A) posterior proventricle region showing
connection with intestine and gastric caeca; (B) intestine and dorsal and ventral blood vessels; (C)
detail of ventral cord ganglion showing soma and neuropil regions; (D) detail of one segmental organ at
parapodium base.

Full-size DOI: 10.7717/peerj.7251/fig-11

wall (phpm, Figs. 5A, 6B). Pharyngeal retractor muscles are located connecting the anterior

end of the pharynx with the inner face of the body cavity backwards, which are difficult to

identify among the pharyngeal transversal muscles (phrm, phtm, Figs. 5A, 6B). The latter

are numerous and well defined, mostly in transversal sections of the pharynx; these muscles

are arranged laterally on each body side, connecting the pharynx to the inner side of the

body wall above the insertion of parapodial dorsal cirri (Fig. 7B), from about chaetiger 2

level to chaetiger 11, and then absent from the level of the proventricle (Fig. 7C).

Conversely, in the iodine-stained specimen, micro-CT images show muscular fibres,

cuticle and epidermal elements that appear as if they are pasted to each other (Figs.

15C–15E).
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Figure 12 Micro-CT 2D images of internal anatomy of Syllis gracilis. Two unstained specimens
(MNCN 16.01/18410 and MNCN16.01/18411). (A) hemifrontal section at ventral nerve cord level
(arrowheads marking position of segmental organs); (B–G) several transversal sections at pharyngeal (B),
anterior, middle, and posterior proventricle (C–E), ventricle (F) and intestine regions (G). Arrowheads
marking several anatomical structures such as: dorsal and ventral pharyngeal glands in B; dorsal mesentery
in C; dorsal mesentery (up), point of attachment of pharyngeal transversal muscles (left) and parapodial
musculature complex (down, right) in D; peritoneal lining (left) and gastric caeca (right) in E; dorsal
blood vessel (up) and gastric caeca (down) in F; gastric caeca (right), ventral blood vessel (middle), and
ventral nerve ganglion (down) in G.

Full-size DOI: 10.7717/peerj.7251/fig-12

Coelomic cavity and vascular system

The coelomic cavity and enclosed organs are clearly observed with both micro-CT and

HIS (cc, Figs. 7, 8C, 11B). However, the peritoneum, the septa and the two major blood

vessels are better defined in the micro-CT stained specimen, particularly in coronal and

transversal (Figs. 15C, 15E) sections at the intestine level, as occurs with HIS (Fig. 11B).

Micro-CT images of unstained specimens only show dorsal mesenteries and septa that

are better seen in 2D sagittal sections (arrows, Fig. 12C, 12D; sep, Fig. 13B) than in 3D.

Images of iodine-stained specimen show ventral peritoneum and its continuation towards

the septa.
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Figure 13 Comparison of images of proventricle-ventricle-intestine region of Syllis gracilis. Two spec-
imens (MNCN 16.01/18368-18372 and MNCN 16.01/18410) as obtained from HIS (A) and virtual micro-
CT 2D sagittal section (B).

Full-size DOI: 10.7717/peerj.7251/fig-13

The major dorsal blood vessel is clearly seen in 3D micro-CT images, particularly in

relation to the intestine, while the ventral vessel is only hardly discernible at that level

(vbv, Fig. 7D). The micro-CT stained specimen shows far better results in this case. Both

elements are better portrayed in HIS images of Mallory stained specimen (Fig. 11B).

There are neither discernible blood plexus nor lateral/segmental vessels, but in some

3D images of the ventricle-intestine region, a series of ‘lines’ that seem to represent thin

segmental vessels connecting the two major longitudinal vessels were seen. However, the

Parapar et al. (2019), PeerJ, DOI 10.7717/peerj.7251 18/37

https://peerj.com
https://doi.org/10.7717/peerj.7251/fig-13
http://dx.doi.org/10.7717/peerj.7251


Figure 14 Micro-CT 3D volume renderings of internal anatomy of Syllis gracilis. One unstained spec-
imen regenerating from a mid-body fragment (MNCN 16.01/18409). (A) coronal view; (B–C) detail of
framed areas in A.

Full-size DOI: 10.7717/peerj.7251/fig-14

possibility of an artefact related to muscular fibres associated with the peritoneum cannot

be ruled out.

Digestive system

The foregut of S. gracilis is composed of an anterior eversible axial-type pharynx that

is connected to the buccal opening through a pharyngeal sheath (phsh, Fig. 6B) and

posteriorly leading to a muscular proventricle (ph, prv, Figs. 5A, 5B, 6A, 6B) provided

with numerous well delineated muscle fibres that are radially disposed, and a posterior

non-muscular ventricle (=oesophagus) provided with caeca (ven, gca, Figs. 5B, 6A). The

midgut is made up of a long and apparently undifferentiated intestine (int, Figs. 5B, 6A)

and the hindgut by a short undifferentiated rectum (not studied here).

Both 3D longitudinal and transversal micro-CT sections clearly reflect all gut regions and

their inner anatomical composition. The anterior pharyngeal region is surrounded by thick

pharyngeal glands (phg, Figs. 6B, 7A), also seen in 2D (Fig. 12B) and inHIS (Figs. 10B, 10D)

and by numerous transversal and retractormuscles (phtm, phrm, Fig. 6B). The components

of the pharyngeal wall, e.g., pharyngeal lumen, pharyngeal longitudinal muscles, and inner
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Figure 15 Micro-CT 3D volume renderings of internal anatomy of Syllis gracilis. Iodine-stained spec-
imen (MNCN 16.01/18405). (A) Ventro-frontal section at intestine level showing ventral nerve cord, seg-
mental nerves and segmental organs; framed: detail of ventral nerve cord; (B) right hemi-sagittal section
showing organization of parapodial musculature and segmental organs; (C) transversal section at ante-
rior pharyngeal region showing main body elements; (D) transversal section at middle proventricle region
showing main body elements; (E) transversal section at intestine level showing main body elements.

Full-size DOI: 10.7717/peerj.7251/fig-15

cuticular and epidermal lining, are clearly seen both in micro-CT (phlm, phep, phcm, Figs.

7A, 7B) and HIS (Figs. 8C, 10A, 10B) sections, but better in the latter, where a thin circular

muscle lining (phcm, Fig. 10B) can also be much better discerned from the pharyngeal

epithelium (phep, Fig. 10B).

The anterior and posterior parts of proventricle seem to show a similar shape throughout,

both in lumen size and shape, and the radial disposition of the myotomes. The inner region

of the anterior proventricle, at its junction with the pharynx, is lined with a cuticular

plate, which is visible both in 3D (apcs, Figs. 5A, 7C) and 2D micro-CT images (Fig. 12C,

arrowhead). Backwards, the ventricle (provided with gastric caeca) and the intestine can
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be observed (ven, gca, int, Figs. 5B, 6A), but they are composed of a far thinner wall than

that of the pharynx and proventricle (Fig. 7D). In fact, 2D micro-CT (Figs. 12E–12G, 13B)

and HIS (Figs. 11A, 11B, 13A) images show clear differences between these gut regions in

relation to the epithelium; the ventricle epithelium ismore glandular than that of the gastric

caeca and intestine, which exhibit a much thinner wall, but have many long microvilli that

are absent in the former (Fig. 13).

In contrast, micro-CT images taken from the iodine-stained specimen do not provide

detailed information about these features in gut, showing only gross features at this level

(Figs. 15C–15E).

Excretory and reproductive systems

Masses with metameric disposition, here named as segmental organs (sgo), are clearly

observed both in unstained 3D and 2D (Figs. 7B–7D, 12A, arrows), and stained micro-CT

images (Figs. 15A, 15B, 15D, 15E), and as well in HIS (Figs. 8C, 9A–9C, 9F, 11D). These

masses may correspond to metanephridia rather than to gonads when considering the

non-reproductive external appearance of the specimens, their metameric disposition,

their well-defined and constant size and shape along the body (Figs. 12A, 14C), and cell

composition (Figs. 8C, 9F, 11D). Iodine-stained specimen shows conspicuous multiple,

small cell masses at parapodial bases in the mid-anterior body segments (sgo, Figs. 15A,

15B), while a simple pair seems to be present in the posterior third (Figs. 15D, 15E). This

suggests that evolving gonads may be present along with the nephridia in anterior segments

but could represent an artefact corresponding to other structures such as parapodial muscle

fibres, nerves or even circulatory vessels.

Nervous system

The main elements of the annelid nervous system such as the brain and ventral nerve

cord with associated ganglia are clearly observed in 2D and 3D micro-CT images, both in

unstained (br, vnc (g), Fig. 7A), stained specimens (Figs. 15A, 15C, 15D) and in HIS (Figs.

8B–8D, 9A, 9E, 11A–11C). While the brain is much better viewed in HIS (br, Figs. 8B, 9A)

than with micro-CT, the ventral nerve cord is one of the internal structures that is clearly

shown with all techniques (vnc, e.g., Figs. 6A, 7A, 7C, 7D, 8C, 8D, 15A).

The internal organization of ventral ganglia (i.e., central core of neuropil and a peripheral

ring containing neuronal somata (vng (s), vng (n), Figs. 8D, 11C) is also present in HIS and

micro-CT images, but less clearly in the latter (cfr. Figs. 8C, 11B vs. 15C, 15D, 15E). Most

neurons are located mid-ventrally and laterally in ventral ganglia, but dorsally and laterally

in the brain (br(n), br(s), Fig. 8B). The distinct location of neuron bodies and axons

(somata and neuropil respectively) in brain and segmental ganglia is, undoubtedly, much

better shown in HIS images. In contrast, the micro-CT images show these features with

less detail both in unstained 3D (Fig. 7D) and stained (Fig. 15D) specimens. Nevertheless,

micro-CT fronto-ventral images of stained specimen show with considerable detail the

multiple fibres that run between the ventral nerve cord ganglia (Fig. 15A, insert) that

seem to correspond to the multiple, partially fused, connective fibres present between each

segmental ganglion.
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In relation to the peripheral nervous system, segmental nerves emanating from the

ventral cords are also clearly shown in these images, where a pair of segmental nerves runs

from each ganglion of the ventral nerve cord (sgn, Fig. 15A). In addition, thin nerves in

palps, antennae and parapodial cirri are only detected with HIS (pan, man, tdcn, pcn(b/p),

Figs. 8A, 8B, 8E), as well as the circumoesophageal connectives that connect the brain to

the ventral nerve cord (coec, Fig. 8B).

The stomatogastric complex can only be seen in HIS transversal sections at pharyngeal

level with both staining methods (stn, Figs. 10A, 10C), but not with micro-CT in the same

sections (Figs. 7A, 7B), neither in 2D and 3D renderings nor in unstained or iodine-stained

specimens.

In relation to the sensory system, HIS shows prostomial eyes (eye, Fig. 8B) and SEM

images highlight the position of the nuchal organs (nuo, Fig. 4B), the latter being poorly

distinguished in micro-CT images.

DISCUSSION

Previous anatomical studies in the genus Syllis

The overall anatomy of the genus Syllis is well known since the 19th century (e.g., Audouin

& Milne-Edwards, 1833; Grube, 1840; Delle Chiaje, 1841–1844 and Rathke, 1843). Some

internal characters (shape and size of anterior gut) were then used as diagnostic character

at the species level. The internal syllid anatomy was later studied by many authors, and

recently by Aguado et al. (2015),Helm & Capa (2015) andWeidhase et al. (2016),Weidhase

et al. (2017), using HIS and CLSM. Recently, Faulwetter et al. (2013a), Faulwetter et al.

(2013b) and Parapar et al. (2017a) provided the first micro-CT images of the anatomy

of S. gracilis and Syllis garciai (Campoy, 1982) respectively; however, unlike in our study,

these authors examined just one specimen and only described gross elements of external

and internal anatomy such as gut (pharynx, proventricle) and body musculature (parietal

longitudinal bands), not comparing these results with any other anatomical techniques.

Unfortunately, the brief description of the main body elements in the Mediterranean

specimen of S. gracilis provided by Faulwetter et al. (2013a) and Faulwetter et al. (2013b),

does not allow for an accurate comparison with our specimens. However, the description

of S. garciai provided by Parapar et al. (2017a) allowed us to highlight potential differences

that may be relevant for future taxonomic/phylogenetic studies:

(1) The circulatory system seems to be more complex in S. garciai than in S. gracilis,

showing well developed lateral blood vessels joining dorsal to ventral blood vessels in the

former through well-developed segmentary vessels.

(2) The shape of the proventricle lumen of S. garciai changes longitudinally, being

anteriorly circular in cross section and star-shaped posteriorly. This change in shape was

not detected in any examined specimen of S. gracilis. Nevertheless, according to Parapar et

al. (2017a), this could be an artefact due to the preservation process or post manipulation

of the only studied specimen. In any case, we consider that this aspect is worthy of further

study by examining more specimens, and thus potentially revealing additional interspecific

differences.
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External anatomy and taxonomy

Compared to clitellate annelids (see Fernández et al., 2014), the taxonomy of ‘‘polychaetes’’,

and especially for syllids, mostly relies on external rather than on internal characters (e.g.,

Álvarez Campos et al., 2015).

The examination of many specimens of S. gracilis in this study, by means of micro-CT,

provided good images of several relevant characters critical for this species, such as the

shape, length and number of articles of dorsal parapodial cirri, but not of the same quality

and reliability as those obtained by using the traditional imaging tools such as the STM,

LCM and SEM. For instance, the morphology of posterior compound chaetae and the

degree of fusion of blades and shafts in the ypsiloid chaetae are much better depicted by

SEM, while the colouration pattern (see Álvarez Campos, Giribet & Riesgo, 2017) is only

properly visualized with STM.

Internal anatomy

The integrative approach of several techniques has provided a full view of the internal

anatomy of S. gracilis, also allowing for a comparison of their performance. In this case, the

micro-CT showed its full potential and allowed us to visualize, in 3D, the natural spatial

arrangement of the different organs, without affecting the specimens’ integrity.

Integument and musculature

Polychaete integument consists of a monolayered epithelium containing several types of

cells, covered by a cuticle and lying upon a thin fibrous extracellular layer (Storch, 1968).

The Syllidae have a special kind of integument related to beaded antennae and cirri that are

provided with a central core ofmusculature and nervous tissue, surrounded by several types

of integumental cells, including cork-screw shaped long and slender gland cells (Storch,

1968). These characters are relevant in Syllis taxonomy and included in many descriptions

of S. gracilis such as San Martín (2003) and Álvarez Campos et al. (2015). All these cirri

components are evident in the S. gracilis specimens studied with both LCM and HIS, but

were poorly viewed with micro-CT.

The main elements of polychaete musculature are the circular (transversal) and

longitudinal fibres of the body wall, parapodial, chaetal, oblique, diagonal, and dorsoventral

fibres, as well as muscular elements related to septa and mesenteries (Tzetlin & Filippova,

2005). Both HIS and micro-CT images of the studied specimens closely reflect the

organization of the dorsal muscle band, as described by these authors, consisting of up

to 10 or more muscle bundles adjacent to each other, plus two ventral bands. The poorly

developed circular layer seen in these studies agrees with previous works on other annelid

families. However, some areas of the bodywall of S. gracilis appear to have a thin layer of this

kind of muscular fibres, which is more evident in HIS images than in micro-CT ones, thus

confirming once again what has been previously reported for other syllid species (Mettam,

1967; Mettam, 1971; Tzetlin & Filippova, 2005; Purschke & Müller, 2006; Filippova et al.,

2010; Helm et al., 2013; Helm & Capa, 2015). Muscular fibres of the parapodial muscle

complex are always well developed in vagile parapodial bearing species, as is the case of

S. gracilis, and consists of numerous muscles associated with the parapodial wall, intrinsic

Parapar et al. (2019), PeerJ, DOI 10.7717/peerj.7251 23/37

https://peerj.com
http://dx.doi.org/10.7717/peerj.7251


muscles located inside the parapodium, diagonal and transversal (circular) muscles and

muscles attached to aciculae and compound chaetae (Storch, 1968; Tzetlin & Filippova,

2005; Helm et al., 2013; Helm & Capa, 2015). Unfortunately, micro-CT does not provide

images with sufficient resolution to detect many of these muscular bundles, especially the

thinner ones, showing only those with a larger diameter (i.e., acicular protractor muscles).

Only HIS techniques and CLSM methods, such as those used in Aguado et al. (2015) and

Helm & Capa (2015), can provide better information on these bundles.

Coelomic cavity and vascular system

Syllids have a well-developed fluid-filled coelomic space between the body wall and the

gut wall. The coelomic peritoneum, which defines the dorsal and ventral mesenteries

that suspend the gut within the body, encloses a pair of inner spaces in each segment

and surrounds the two major, dorsal and ventral, blood vessels. An exception occurs in

the foregut, which is involved in the extensive longitudinal movements of the proboscis

(Gardiner, 1992). Syllis gracilis shows a wide coelomic cavity, which was also previously

reported byFaulwetter et al. (2013b) for this species, andParapar et al. (2017a) for S. garciai.

We have noted that the coelom is divided by septa even from the proventricle region,

although this division may be incomplete there; these septa were particularly well seen in

sagittal 2D and 3D micro-CT sections of both unstained and stained specimens.

The circulatory systemof S. gracilis seems less complex than that of other annelid families,

which show highly muscularized vessels (heart bodies), a sinus or plexus associated with

the gut, and a wide variety of perineural, segmental or head vessels (see Malaquin, 1893;

Gardiner, 1992; Pleijel, 2001). Furthermore, when considering the findings by Parapar et

al. (2017a) for S. garciai, it seems that further interspecific differences may occur. Thus,

the circulatory system of S. gracilis seems to lack the well-developed pair of longitudinal

lateral vessels that are located on both sides of the gut of S. garciai. A closer examination

using more specimens of S. garciai is needed to confirm the presence of such a feature.

Digestive system

Even though Syllidae show a homonomously segmented body, the alimentary canal is

highly regionalized and shows different specialized parts (see Tzetlin & Purschke, 2005;

San Martín & Aguado, 2014); these are mainly located in the ectodermic foregut that is

divided into a short pharyngeal sheath, a long pharyngeal tube, a conspicuous muscular

proventricle and a thin-walled ventricle, provided with a pair of lateral caeca (Jenniaux,

1969; Glasby, 2000). All these elements are clearly observed by all the techniques used in

this study. Particularly, the micro-CT clearly shows even the minute anatomical details of

this region, such as the thin pharyngeal sheath—usually not illustrated in most traditional

taxonomic representations of Syllis species (e.g., Fig. 1A in this work and Álvarez Campos

et al., 2015)—the radial disposition of the muscular myotomes and the cuticular plates

located at the anterior end of the proventricle, described in detail by Boilly (1967) and

Michel (1974) that might assist in the mechanical digestion of food (Haswell, 1921).

Observed differences in the inner epithelium composition of each part, far more ciliated

in caeca and endodermic midgut (intestine) than in the ventricle, was previously reported

by Jenniaux (1969) and Glasby (2000).
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All these gross gut elements were also reported by Faulwetter et al. (2013b) and Parapar

et al. (2017a); however, Faulwetter et al. (2013b) did not describe this aspect in detail for S.

gracilis to allow for an appropriate comparison with our specimens. On the other hand, the

main difference between the gut of S. garciai sensu Parapar et al. (2017a) and S. gracilis as is

described here, lies in the shape of the proventricle lumen. Parapar et al. (2017a) describe

a star-shaped lumen in the anterior half, while that of S. gracilis is constant along its full

length. These authors consider that this change of shape may represent an artefact due to

the state of preservation of the only examined specimen. However, we suggest that this

potential difference deserves to be tested on more specimens of S. garciai as well as in other

species, to assess whether it represents a useful taxonomic character.

Excretory and reproductive systems

Excretory and reproductive systems in annelids are closely related and show great diversity

across taxa. Thus, in Clitellata the nephridia are usually segmentally positioned, and

gonads appear in a few, well defined segments. On the contrary, polychaetes show

segmentary gonads that can be associated with nephridia in different body regions such as

intersegmental septa, ventral or nephridial blood vessels, blind-ended capillaries, parapodial

connective tissue and coelomic peritoneum (Glasby, 2000;Rouse & Pleijel, 2001). According

to Goodrich (1945), the excretory ducts (metanephridia) and gonoducts (coelomoducts)

of Syllidae are fused to each other, forming the metanephromixia. However, Bartolomaeus

(1999) disputes their multiple origin. Whether they are derived from one or two different

tissues, these body elements are disposed metamerically, numbering one pair per segment;

they serve for both excretion and gamete emission and are named ‘segmental organs’ by

Rouse & Pleijel (2001), a terminology followed by us here.

The Syllinae show a unique reproductive strategy called schizogamy, which is

characterised by the production of stolons that are subsequently budded off and become

pelagic (Garwood, 1991; Franke, 1999; Pleijel, 2001). In many polychaetes, the gametes are

usually expelled from the body through metameric gonoducts associated with nephridia.

In epitokous taxa, such as S. gracilis, only the stolons are thought to develop gonads.

However, it has been suggested that in several Syllinae species the gametes are formed in

the medium/posterior segments during the development of stolons and are then moved

into the stolon through septal openings (Wissocq, 1966; Aguado et al., 2015).

Both HIS and micro-CT 2D and 3D images obtained here, from unstained and stained

small andmedium-sized specimens, show segmentally arranged discrete masses (segmental

organs) located at the base of the parapodia, and along almost the entire body, in the same

position in all individuals; these characteristics point to ametanephridial nature. Fragments

of large-sized individuals regenerating the anterior end, also studied here (see Fig. 14),

show these masses as coiled tubes and, therefore, also suggesting their metanephridial

rather than gonadal nature. However, examination of the iodine-stained specimen shows

multiple masses in anterior segments that would suggest that a different element, gonads or

even artefacts created by other body elements, may be involved. Future studies of mature

individuals in early schizogamic process would help to test this possibility.
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Nervous system

The central nervous system in Annelida is composed of an anterior prostomial brain and a

ventral nerve cord (VNC), provided with a pair of segmentally arranged ganglia, and both

connected by circumesophageal or circumpharyngeal nerves (Orrhage & Müller, 2005).

The presence of both elements can be seen in both micro-CT and HIS images, although far

better delineated in the case of the VNC. The micro-CT 3D images of stained/unstained

specimens are far better detailed than those provided by Faulwetter et al. (2013a), Faulwetter

et al. (2013b) and Parapar et al. (2017a).

The 3D reconstruction of the ventral nerve cord of the stained specimen agrees well

with the organization proposed by Müller (2006) and Weidhase et al. (2017) for Typosyllis

antoniAguado et al., 2015. Thus, there is a triple interganglia connective whose central fibre

may correspond to the median and paramedian connective sensu Weidhase et al. (2017);

the two lateral fibres may correspond, in turn, to the main connective (compare with Fig.

7 in Weidhase et al., 2017). Weidhase et al. (2017) state that VNC communicates with the

periphery via segmental nerves, usually three or four pairs per segment, and in many errant

polychaetes, a pair of peripheral parapodial ganglia are present in each segment laying

on segmental nerve II. Again, images of the stained specimen conspicuously show these

segmental nerves projecting from the paired ganglia of the VNC. We did, however, not

detect any segmental ganglia at the base of each parapodium of this species, as was reported

by Parapar et al. (2017a) for the phyllodocid Phyllodoce lineata (Claparède, 1870).

Micro-CT vs. HIS, CLSM and TEM

Many polychaete descriptions are traditionally based on stereomicroscopy, frequently

supported by whole body optical microscopy and SEM, while micro-dissection and

histology has normally been applied for purely anatomical studies (see above). However,

the use of micro-CT for species identification in other taxa seems particularly relevant since

it avoids specimen destruction, which is inevitable after histological sectioning (Fernández

et al., 2014; Pedrouzo et al., 2017; Machado, Passos & Giribet, 2018). This is an evident

advantage of micro-CT over HIS, although the former has obvious limitations to properly

visualize many characters, especially at cellular level and, therefore, classical histological

techniques are still essential for descriptions of new species when a proper identification of

internal structures is required.

Traditional dissection is also widely used for the study of the internal anatomy in several

groups of annelids, as is the case of the earthworms and large-sized polychaetes such as

Terebellidae (e.g., Jouin-Toulmond, Agustin & Toulmond, 1996; Zhadan & Tzetlin, 2003;

Parapar & Hutchings, 2015). However, this procedure is unsuitable for all small-sized

polychaetes, as is the case of the Syllidae.

Another relevant aspect of the use of micro-CT, when considered as a virtual dissection

technique, is that it allows for the examination of internal organs, in their natural anatomical

context, without harming body integrity. Furthermore, by using appropriate software, the

stack of data can be stored and shared with other scientists (see Keklikoglou et al., 2016),

thus allowing for a far better and quicker dissemination and exchange of information.
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On the other hand, Confocal Laser Scanning Microscope (CLSM) is becoming an

essential tool in the study of invertebrate anatomy in general, and of annelids and syllids in

particular (e.g.,Hessling & Westheide, 1999;Hessling & Purschke, 2000;Müller & Westheide,

2000; Aguado et al., 2015; Helm & Capa, 2015; Weidhase et al., 2016; Weidhase et al., 2017).

Here, our approach with this technique was focused on external anatomy because results

can be easily compared with STM, LCM and SEM. In contrast, the internal anatomy of S.

gracilis was not studied either with CLSM or Transmission Electron Microscopy (TEM)

because resulting images at cellular level are not comparable with those provided by the

micro-CT and, therefore, beyond the scope of this study.

Micro-CT 2D vs. 3D images, staining vs. unstaining, artefacts

As stated by Parapar et al. (2017a), micro-CT 2D images in polychaetes are usually less

informative than 3D renderings in relation to organ structure and position in body cavity

but, in turn, they offer a complementary point of view. In HIS pictures, as seen with 2D

images, some delicate structures are better visualized than in 3D, as is the case of the

segmentary septa and inner ciliated lining of the intestine, both well seen in sagittal (cfr.

Fig. 13) and coronal sections. In fact, we mostly agree with Fernández et al. (2014) who

state that by combining 2D and 3D dataset visualization techniques, many morphological

features commonly used in taxonomy can now be analysed without the need for dissection.

Although X-rays used in micro-CT scanning are particularly suitable for showing

highly mineralized elements, electron-dense contrast agents such as iodine can be used

for enhancing the contrast of soft, low dense, body tissues. Many staining strategies for

soft-bodied invertebrates in micro- CT applications have been evaluated in several annelid

taxa such as hirudineans (e.g., Tessler et al., 2016; Cascarano et al., 2017), oligochaetes

(Fernández et al., 2014) and polychaetes (Paterson et al., 2014). In our experience, staining

agents such as iodine can greatly improve visualization of tissues that are sometimes

difficult to see in unstained specimens. Internal structures such as the different elements of

the ventral nerve cord, the coelomic lining and the circulatory vessels can be much better

observed, although this can result in these stained specimens in a ‘pasted’ appearance

of the other denser organs/systems such as the digestive and the body musculature.

Besides, although the term ‘non-invasive’ is usually used in relation to the use of micro-CT

(Fernández et al., 2014), staining of specimens can be considered as an invasive technique

because the used solutions cannot always be fully washed out from the sample after

scanning.

According to our experience and as reported in previous works (e.g., Fernández et al.,

2014; Parapar et al., 2017a), interpretation of micro-CT images should always be aware of

the potential presence of artefacts. When using micro-CT and SEM, the presence of such

elements (of very different origin) can lead to erroneous observations. For example, two

specimens scanned the same day with same parameters, but collected at different dates and

probably in different conditions, led to very different results in terms of image definition

(cfr. Figs. 7A vs. 7B). Similarly, the relatively slow diffusion rate of the chemical staining

agents (Fernández et al., 2014) or incomplete development of some structures, confirmed

here in relation to the segmental organs (cfr. Figs. 14 and 15) can result in images that may
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lead to confusion. Therefore, multiple specimens should ideally be scanned to minimize

the risk of obtaining wrong data from a single, possibly unsuitable specimen.

CONCLUSIONS

•The integrative use of different anatomical techniques for the study of the anatomy of

the marine annelid Syllis gracilis Grube, 1840 has confirmed previous findings in other

annelids. Regarding micro-CT, although it needs proper infrastructure and qualified

personnel, as occurs with HIS and SEM as well, the specimens can be relatively easily and

quickly prepared and scanned, body integrity is not substantially altered, and the same

specimen can be later subjected to other techniques (e.g., HIS, SEM and CLSM).

•Images shown here were obtained from specimens that were fixed in the usual manner,

many specimens are stored in collections across the world and, therefore, do not follow the

most suitable protocol for any given technique. This avoids obtaining top quality images

but can help to evaluate their quality when comparing.

•Main external anatomical elements of S. gracilis are shown with all techniques,

but micro-CT images show lesser optical resolution and contrast when compared to

micrographs provided by LCM, SEM and CLSM.

•Comparison of micro-CT and HIS images revealed the utility and reliability of the

former to show the presence, shape and spatial disposition of most internal body organs;

the resolution of micro-CT images at cellular level is, however, much lower than that of

HIS, which makes both techniques complementary.

•Main internal anatomical elements of S. gracilis are clearly portrayed in micro-CT

images, but however, the best visualized features are those of higher tissue density (i.e.,

musculature, gut), particularly in 3D images of unstained specimens, while images of less

electron dense tissues (i.e., peritoneal lining of septa and nervous system) lack sufficient

detail. For the latter, 2D imaging and specimens staining works better.

•One of the main advantages of the micro-CT technology is that the anatomical

structures are observable in their natural position; this may potentially be useful for

taxonomic (and phylogenetic) studies and thus complementing traditional characters, that

in Syllidae comprises mainly external structures currently examined by LCM and SEM.

•The use of iodine stain with micro-CT has shown advantages over non-staining for the

adequate observation of delicate elements of low density, showing spectacular images of

the segmental organs as well as the connective between the ganglia, the ventral nerve cord

and segmental nerves. On the contrary, images lack much detail for high density elements

(e.g., musculature, digestive tract).

•Scanning artefacts and, consequently, misinterpretation of structures can be avoided by

simultaneously using other techniques (e.g., HIS) and examination of multiple specimens

at varying stages of development.
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ac acicula
a. e. anterior end
an antenna
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apcs anterior proventricle cuticle sheath
arm acicular retractor muscles
bc buccal cavity
bl buccal lip
bms blade marginal spines
br brain
br(n/s) brain (neuropil/somata)
cart cirrus articles
cc coelomic cavity
cfch compound falciger chaetae
ch chaetae
chb chaetal blade
chm chaetal muscles
chp chaetal protractor muscles
chs chaetal shaft
CLSM confocal laser scanning microscopy
cml circular muscle layer
coec circumoesophageal connective
cut cuticle
D drawings
dbv dorsal blood vessel
dlml dorsal longitudinal muscle layer
d-lml dorso-lateral longitudinal muscle layer
dm dorsal mesentery
dst distal tooth
epi epidermis
eye eyes
fl fusion line
gca gastric caeca
HIS histological sections
int intestine
la lateral antenna
LCM light compound microscopy
m muscles
ma median antenna
mac main connective
man median antennal nerve
mc median connective
micro-CT micro-computed X-ray tomography
mo mouth
ms marginal spines
nuo nuchal organ
pa palp
pan palp nerve
par parapodium
pcg parapodial cirri glands
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pcm parapodial cirrus musculature
pcn (b/p) parapodial cirrus nerve (body/processes)
pcul pharyngeal cuticular lining
pdc parapodial dorsal cirrus
per peristomium
perl peritoneal lining
ph pharynx
phcm pharyngeal circular muscles
phep pharyngeal epithelium
phg pharyngeal glands
phlm pharyngeal longitudinal muscles
phlum pharyngeal lumen
phpa pharyngeal papillae
phpm pharyngeal protractor muscles
phrm pharyngeal retractor muscles
phsh pharyngeal sheath
pht pharyngeal tooth
phtm pharyngeal transversal muscles
pm parapodial muscles
pmc paramedian connective
pr prostomium
prt proximal tooth
prv proventricle
prvmf proventricle muscular fibres
psv postventricle
pvc parapodial ventral cirrus
SEM scanning electron microscopy
sep septum
sgn segmental nerve
sgo segmental organ
ss shaft spines
STM stereomicroscopy
stn stomatogastric nerves
tc tentacular cirrus
tdc tentacular dorsal cirrus
tdcn tentacular dorsal cirrus nerve
tvc tentacular ventral cirrus
vbv ventral blood vessel
ven ventricle
vlml ventral longitudinal muscle layer
vm ventral mesentery
vnc ventral nerve cord
vnc(g/c) ventral nerve cord (ganglium/connective)
vnc (n/s) ventral nerve cord (neuropilum/somata)
vng(n/s) ventral nerve ganglium (neuropilum/somata)
w. a. whole animal
ych ypsiloid chaeta
yms ypsiloid marginal spines
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