

Prognostic value of mean platelet volume/platelet count ratio in patients with resectable esophageal squamous cell carcinoma: a retrospective study

Ji-Feng Feng Corresp., 1, 2, Chen Sheng 1, Qiang Zhao 1, 2, Peng-Cheng Chen Corresp. 1

Corresponding Authors: Ji-Feng Feng, Peng-Cheng Chen Email address: Fengjf@zjcc.org.cn, Chenpc0425@126.com

Background. Mean platelet volume (MPV) to platelet count (PC) ratio (MPV/PC) is a useful indicator in several cancers. However, the role for MPV/PC ratio in esophageal squamous cell carcinoma (ESCC) is still controversial.

Methods. A retrospective study was conducted including 277 resectable ESCC patients. The optimal cutoff values were calculated by the X-tile program. The receiver operator characteristic (ROC) curves were also created to show the candidate cut-off points. The comparisons between the X-tile plot and ROC curve were performed. The Kaplan-Meier method was utilized to analyze the cancer-specific survival (CSS). Prognostic factors for CSS were calculated with Cox regression univariate and multivariate analyses.

Results. According to the X-tile program, the cut-off values for MPV, PC and MPV/PC ratio were 8.5 (fl), 200 (giga/l) and 0.04, respectively. However, the cut-off values for MPV, PC and MPV/PC ratio by the ROC curves were 8.25 (fl), 243.5 (giga/l) and 0.0410, respectively. The cut-off values were similar between the X-tile and ROC curve. A low MPV/PC ratio level (\leq 0.04) was associated with poor CSS (22.4% vs. 43.1%, *P* <0.001). In multivariate analyses, we found that MPV/PC ratio was an independent predictor for CSS (*P* <0.001). When we set the cut-off point using ROC curve, the MPV/PC ratio was still an independent predictor for CSS (*P* <0.001).

Conclusion. The MPV/PC ratio is a useful predictive indicator in patients with ESCC.

¹ Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou, China

² Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Hangzhou, China


```
Prognostic value of mean platelet volume/platelet count ratio in patients with resectable
 1
    esophageal squamous cell carcinoma: a retrospective study
2
 3
 4
    Ji-Feng Feng<sup>1,2</sup>, Chen Sheng<sup>1</sup>, Qiang Zhao<sup>1,2</sup>, Peng-Cheng Chen<sup>1</sup>
 5
    Ji-Feng Feng
 6
    Email: Fengjf@zjcc.org.cn
 7
 8
    Chen Sheng
9
10
    Email: Chensheng@zjcc.org.cn
11
    Qiang Zhao
12
    Email: Zhaoqiang@zjcc.org.cn
13
14
15
    Peng-Cheng Chen
    Email: Chenpc0425@126.com
16
17
        Department of Thoracic Surgery, Zhejiang Cancer Hospital, Hangzhou 310022, China.
18
19
    2
         Key Laboratory Diagnosis and Treatment Technology on Thoracic Oncology, Zhejiang
        province, Hangzhou 310022, China.
20
21
    Corresponding author
22
    Ji-Feng Feng Email: Fengjf@zjcc.org.cn
23
    Peng-Cheng Chen Email: Chenpc0425@126.com
24
25
26
27
```


PeerJ

28	
29	
30	
31	Abstract
32	Background. Mean platelet volume (MPV) to platelet count (PC) ratio (MPV/PC) is a useful
33	indicator in several cancers. However, the role for MPV/PC ratio in esophageal squamous cell
34	carcinoma (ESCC) is still controversial.
35	
86	Methods. A retrospective study was conducted including 277 resectable ESCC patients. The
37	optimal cut-off values were calculated by the X-tile program. The receiver operator characteristic
88	(ROC) curves were also created to show the candidate cut-off points. The comparisons between
39	the X-tile plot and ROC curve were performed. The Kaplan-Meier method was utilized to
10	analyze the cancer-specific survival (CSS). Prognostic factors for CSS were calculated with Cox
11	regression univariate and multivariate analyses.
12	
13	Results. According to the X-tile program, the cut-off values for MPV, PC and MPV/PC ratio
14	were 8.5 (fl), 200 (giga/l) and 0.04, respectively. However, the cut-off values for MPV, PC and
15	MPV/PC ratio by the ROC curves were 8.25 (fl), 243.5 (giga/l) and 0.0410, respectively. The
16	cut-off values were similar between the X-tile and ROC curve. A low MPV/PC ratio level (≤0.04)
17	was associated with poor CSS (22.4% vs. 43.1%, $P < 0.001$). In multivariate analyses, we found
18	that MPV/PC ratio was an independent predictor for CSS ($P < 0.001$). When we set the cut-off
19	point using ROC curve, the MPV/PC ratio was still an independent predictor for CSS ($P < 0.001$).
50	
51	Conclusion. The MPV/PC ratio is a useful predictive indicator in patients with ESCC.
52	
53	
54	

PeerJ

55

Introduction

61	Esophageal cancer (EC) is the 8th most common cancer worldwide and the 6th most common
62	cause of death from cancer (Ferlay et al., 2010). The incidences vary widely in different
63	countries and regions. To date, approximately 53.8% and 51.9% of all ECs occurred and died in
64	China (Siegel et al., 2015; Ferlay et al., 2010). Esophageal adenocarcinoma is the most common
65	malignancy in the West. In China, however, esophageal squamous cell carcinoma (ESCC) is the
66	predominant subtype (Napier et al., 2014). Radical esophagectomy remains the most effective
67	therapy for patients with EC. However, the prognosis for EC remains poor (Bedenne et al., 2007;
68	Domper et al., 2015). Therefore, it is very important to find more and more useful and effective
69	prognostic indicators for patients with EC.

Over the past few decades, a number of prognostic factors for EC have been identified, including tumor length, vessel invasion, lymph node status (N stage), depth of invasion (T stage), TNM stage and other serum biomarkers, such as squamus cell carcinoma antigen (SCCA) and carcinoembryonic antigen (CEA) (*Peyre et al., 2008*; *Wijnhoven et al., 2007*; *Feng et al., 2013*). Inflammation plays an important role in cancer progression and prognosis (*Balkwill et al., 2001*; *Mantovani et al., 2008*). C-reactive protein (CRP), as a most sensitive inflammatory biomarker, has been confirmed in a series of cancers to predict the prognosis, including patients with EC (*Shimada et al., 2003; Nozoe et al., 2001; Platt et al., 2012*). In addition, there are other

parameters like neutrophil and lymphocyte that are easy-to-measure inflammatory markers (*Dutta et al., 2011*).

81

82 Mean platelet volume (MPV) is recognized as a hallmark for platelet count (PC) activation (Kamath et al., 2001). Several studies showed that MPV and PC are associated with mortality in 83 84 cardiovascular disease, such as ischemic cardiovascular disease and acute myocardial infarction 85 (Guenancia et al., 2017; Azab et al., 2011). Moreover, recent studies have shown that the ratio for MPV to PC (MPV/PC) is associated with prognosis in some malignancies, such as 86 hepatocellular carcinoma and lung cancer (Cho et al., 2013; Inagaki et al., 2014; Omar et al., 87 2018). However, the role for MPV/PC ratio in ESCC is still controversial. Furthermore, 88 controversy exists concerning the optimal cut-off points for MPV/PC to predict the prognosis of 89 90 ESCC. Therefore, the purpose of our study here was to explore the prognostic role of MPV/PC ratio in patients with ESCC. 91

92

93

94

95

96

97

98

99

100

101

102

Patients and Methods

From January 2007 to December 2010 at the Department of Thoracic Surgery, Zhejiang Cancer Hospital, a retrospective study was conducted including 277 resectable ESCC patients. The exclusion criteria were as follows: 1). patients who received preoperative treatment, such as chemotherapy and/or radiotherapy; 2). patients who had any form of acute or chronic inflammatory diseases or infections; 3). patients who had systemic diseases, and 4) those diagnosed with distant metastases. Written informed consent for the collection of specimen and other medical information were obtained from all patients before surgery. The current study was approved by the Ethics Committees of Zhejiang Cancer Hospital (IRB Approval No. IRB-2018-130).

103104

105

The main clinical characteristics, such as age, gender, tumor location (upper, middle and lower), tumor length, vessel invasion, differentiation (well, moderate and poor) and tumor stage (T stage,

N stage and TNM stage), were retrospectively reviewed and collected. The tumor length was 106 defined as the long diameter for pathological specimens. Blood samples were obtained within 107 108 one week prior to surgery to measure the neutrophil (Neu), MPV, PC, CRP and CEA levels. 109 MPV/PC was defined as MPV to PC ratio. Neu/PC was defined as Neu to PC ratio. The levels of Neu, MPV and PC were measured by automated blood cell counter (Sysmex XE-2100, Kobe, 110 Japan). Serum levels of CRP were determined by latex-enhanced homogeneous immunoassay 111 112 (Hitachi 917; Skill, Munich, Germany). Serum levels of CEA were measured using enzyme immunoassay kits (Abbott, Chicago, USA). The AJCC/UICC TNM staging system (the 7th 113 edition) was utilized to classify the stage for this study (*Rice et al.*, 2010). 114

115

- All the above patients were followed-up postoperatively (regularly evaluated every 3-6 months).
- 117 The assessment included physical examination, blood tumor markers and computed tomography
- scan. In this study, we conducted a cancer-specific survival (CSS) to analyze the prognosis of
- patients with ESCC. The mean follow-up for patients was 45 months.

120

121

Statistical analyses

In the current study, the optimal cut-off values for Neu, MPV, PC, MPV/PC ratio, and Neu/PC 122 ratio were calculated by the X-tile program (Camp et al., 2004). The receiver operator 123 124 characteristic (ROC) curves were also created to show the candidate cut-off points. The 125 comparisons between the X-tile plot and ROC curve were performed. The areas under the curve (AUC) for Neu, MPV, PC, MPV/PC and Neu/PC were calculated and compared by the ROC 126 curve. The chi-squared tests were used to compare the MPV/PC ratio, MPV and PC. The CSS 127 128 curves were generated by the Kaplan-Meier method. Univariate analyses were performed with log-rank test. Multivariate analyses with cox proportional hazards regression model were utilized 129 to analyze prognostic factors for CSS. SPSS 20.0 (SPSS Inc., Chicago, IL, USA) was utilized to 130 perform the statistical analyses. R 3.2.3 software (Institute for Statistics and Mathematics, 131 Vienna, Austria) was also utilized to conduct the nomogram model by Harrell's concordance 132

index (c-index) (Iasonos et al., 2008). 133 134 135 **Results** 136 There were 37 (13.4%) women and 240 (86.6%) men in all 277 patients with the mean age of 59.2 ± 7.8 years (36-80 years). In the current study, the mean values for Neu, MPV, PC, 137 MPV/PC and Neu/PC were 4.2 ± 1.5 (giga/l) (range 1.5-9.5 giga/l), 9.3 ± 1.3 (fl) (range 6.7-12.9138 139 fl), 232 ± 72 (giga/l) (range 60-473 giga/l), 0.04 ± 0.02 (range 0.02-0.14), and 0.020 ± 0.010 140 (range 0.0053-0.0667), respectively. The histograms of the preoperative MPV/PC ratio, MPV and PC are shown in Figure 1. 141 142 According to the X-tile program, the optimum cut-off points for MPV, PC, MPV/PC, Neu and 143 144 Neu/PC ratio were 8.5 (fl), 200 (giga/l), 0.04, 4.2 (giga/l) and 0.02, respectively (Fig. 2). According to the optimum cut-off points of the above values, patients then were divided into 2 145 groups (MPV ≤ 8.5 fl and > 8.5 fl; PC ≤ 200 giga/l and > 200 giga/l; MPV/PC ratio ≤ 0.04 and 146 >0.04). Clinicopathologic characters for the above values (MPV/PC ratio, MPV and PC) were 147 148 shown in Table 1. The levels of MPV/PC ratio were significantly correlated with the CRP levels (P = 0.029).149 150 151 Kaplan-Meier analyses showed that a low MPV/PC ratio level (≤0.04) was associated with poor 152 CSS (P < 0.001). The 5-year CSS was 43.1% in patients with MPV/PC ratio > 0.04, and 22.4% in patients with MPV/PC ratio ≤0.04 (Fig. 3A). There were also significantly different for MPV 153 (42.4% vs. 27.0%, P = 0.010) and PC (41.0% vs. 26.7%, P = 0.009) (Fig. 3B-C). In multivariate 154 155 analyses, we found that MPV/PC ratio was an independent predictor for CSS (P < 0.001) (Table 2). In addition, TNM stage (P < 0.001), CEA (P = 0.019), Neu (P = 0.007) and CRP (P < 0.001)156 were other significant prognostic variables by multivariate analyses (Table 2). 157

158

We also created ROC curves to show the candidate cut-off points. The cut-off values for Neu,

186

187

MPV, PC, MPV/PC, and Neu/PC ratio by the ROC curves were 4.25 (giga/l), 8.25(fl), 243.5 160 (giga/l), 0.0410, and 0.0213, respectively (Fig. 4). The candidate cut-off points and the area 161 162 under ROC curve (AUC) are shown in Table 3. When we set the cut-off points using ROC curve, 163 the MPV/PC ratio (42.7% vs. 23.5%, P < 0.001), MPV (51.7% vs. 26.7%, P = 0.001), and PC (41.8% vs. 19.3%, P < 0.001) were also associated with CSS (D-F) (Fig. 3D-F). In multivariate 164 analyses, MPV/PC ratio was still an independent predictor for CSS (P < 0.001) (Table 4). 165 166 167 Moreover, we wanted to predict the survival risk (CSS) for patients with ESCC, a nomogram model was conducted including age, gender, TNM, CEA, Neu, MPV/PC ratio and CRP for CSS 168 (Fig. 5). From this model, the probability of survival for ESCC patients could be predicted (c-169 170 index=0.72). 171 **Discussion** 172 Our study demonstrated some important findings: (1) MPV/PC ratio was a strong predictor of 173 CSS; (2) MPV/PC ratio, but not MPV or PC, was a useful predictive indicator. This study used 174 X-tile program and ROC curves as candidate cut-off points. The comparisons between the X-tile 175 plot and ROC curve were performed. The cut-off values were similar between the X-tile and 176 ROC curve. Moreover, our study is also the first attempt to predict the survival risk by a 177 nomogram model based on MPV/PC ratio. 178 179 Platelet activation has been demonstrated as a common phenomenon in some cardiovascular 180 diseases (Guenancia et al., 2017; Azab et al., 2011). To assess the platelet activation status, 181 MPV and PC are two main aspects. Moreover, studies have shown that MPV/PC ratio is 182 associated with prognosis in some malignancies, such as hepatocellular carcinoma and lung 183 cancer (Cho et al., 2013; Inagaki et al., 2014; Omar et al., 2018). Cho et al. (Cho et al., 2013) 184 have shown that the ratio of MPV/PC levels in hepatocellular carcinoma were higher than the 185

control group. Inagaki et al. (Inagaki et al., 2014) have revealed that MPV/PC ratio was

significantly different on survival in lung cancer. However, Omar et al. (Omar et al., 2018)

showed that increased MPV and increased PC were significant higher than the control group. In their study, however, MPV/PC was not an independent predictor in lung cancer.

190

191

192

193

194

195

196

197

198

199

200

201

202

203

204

205

206

MPV is an indicator of platelet activation. Shen et al. (Shen et al., 2018) demonstrated that reduced MPV is associated with worse survival outcome in EC. The role for MPV/PC ratio in ESCC patients has not yet been well evaluated. A study reported by Sun et al. showed that the levels of MPV/PC ratio in ESCC were significantly lower than the healthy group, and which were significantly correlated with the tumor length (Sun et al., 2018). In our study, however, the MPV/PC ratio was not significantly correlated with the tumor length (P = 0.087). In addition, they revealed that decreased MPV and MPV/PC ratio were significantly associated with locally advanced ESCC. In our study, MPV was not a significant prognostic factor by multivariate analyses. Recently, Zhang et al. (Zhang et al., 2016) initial conducted a COP-MPV (combination of MPV and PC) model to predict the prognosis in ESCC. They revealed that COP-MPV was a useful independent predictor, but not for MPV or PC. As everyone knows, MPV and PC may be influenced by a variety of other non-cancer related conditions, the potential basis could be decreased by the MPV to PC ratio (MPV/PC). Therefore, the role of the MPV/PC ratio would be more reliable than the effect of either MPV or PC. In the current study, a low MPV/PC ratio level (≤ 0.04) was associated with poor CSS (P < 0.001) and was confirmed by multivariate analyses (P < 0.001).

207

208

209

210

211

212

213

214

In previous studies, controversy exists about the optimum cut-off point for MPV/PC ratio to predict prognosis. Cho et al. (*Cho et al., 2013*) demonstrated that 0.0491 might be the optimum cut-off point for MPV/PC ratio in hepatocellular carcinoma according to the ROC curve. Inagaki et al. (*Inagaki et al., 2014*) and Omar et al. (*Omar et al., 2018*) also conducted the ROC curve analyses to calculate the optimum cut-off point for MPV/PC in lung cancer. They concluded that the optimum cut-off points for MPV/PC ratio were 0.40873 and 0.47424, respectively. Recently, Camp et al. (*Camp et al., 2004*) initial conducted a program to explore the optimum cut-off point

215	(X-tile plot). In our study, according to their method, 0.04 was the optimum cut-off point for
216	MPV/PC ratio. We also created ROC curves to show the candidate cut-off points. When we set
217	the cut-off point using ROC curve, the MPV/PC ratio was also associated with CSS. In
218	multivariate analyses, MPV/PC ratio was still an independent predictor for CSS.
219	
220	The mechanism between MPV/PC ratio and cancer remains unknown. Inflammation and cancer
221	are closely related (Balkwill et al., 2001; Mantovani et al., 2008). As everyone knows, platelets
222	can release a variety of cytokines, such as platelet-derived growth factor (PDGF) and vascular
223	endothelial growth factor (VEGF), which have an important role in regulating angiogenesis
224	(Blair et al., 2009; Borsig et al., 2008; Dineen et al., 2009). The inflammation will be inevitably
225	caused by chemotherapy and/or radiation. Therefore, we analyze the role of MPV/PC ratio in
226	ESCC patients without neoadjuvant chemotherapy and/or radiation.
227	
228	Limitations should be acknowledged in this study. The major limitations of this study are small
229	samples and its retrospective character. Moreover, patients who received preoperative
230	chemotherapy and/or radiotherapy were excluded, which might have influenced the result in the
231	current study. On the one hand, neoadjuvant treatment will have a side effect on MPV and PC.
232	On the other hand, neoadjuvant treatment can improve cancer survival for locally advanced EC,
233	but not for early stage EC (Rawat et al., 2013; Mariette et al., 2014). In addition, we did not set
234	up a validation group to verify the conclusion. Thus, the results of our study are expected more
235	large-sample trials to confirm in future.
236	
237	Conclusion
238	In summary, we found that the ratio of MPV/PC is a potential prognostic biomarkers in patients
239	with ESCC.
240	
241	References

- 242 Azab B, Torbey E, Singh J, Akerman M, Khoueiry G, McGinn JT, Widmann WD, Lafferty
- J. 2011. Mean platelet volume/platelet count ratio as a predictor of long-term mortality after
- 244 non-ST-elevation myocardial infarction. *Platelets* 22: 557-566. doi:
- 245 10.3109/09537104.2011.584086.
- Balkwill F, Mantovani A. 2001. Inflammation and cancer: back to Virchow? Lancet 357: 539-
- 247 545. doi: 10.1016/S0140-6736(00)04046-0.
- 248 Bedenne L, Michel P, Bouche O, Milan C, Mariette C, Conroy T, Pezet D, Roullet B, Seitz
- JF, Herr JP, Paillot B, Arveux P, Bonnetain F, Binquet C. 2007. Chemoradiation followed
- by surgery compared with chemoradiation alone in squamous cancer of the esophagus: FFCD
- 9102. *J Clin Oncol* **25:** 1160-1168. doi: 10.1200/JCO.2005.04.7118.
- 252 Blair P, Flaumenhaft R. 2009. Platelet alpha-granules: basic biology and clinical correlates.
- 253 Blood Rev 23: 177-189. doi: 10.1016/j.blre.2009.04.001.
- Borsig L. 2008. The role of platelet activation in tumor metastasis. Expert Rev Anticancer Ther 8:
- 255 1247-1255. doi: 10.1586/14737140.8.8.1247.
- 256 Camp RL, Dolled-Filhart M, Rimm DL. 2004. X-tile: a new bio-informatics tool for
- biomarker assessment and outcome-based cut-point optimization. Clin Cancer Res 10: 7252-
- 258 7259. doi: 10.1158/1078-0432.CCR-04-0713.
- 259 Cho SY, Yang JJ, You E, Kim BH, Shim J, Lee HJ, Lee WI, Suh JT, Park TS. 2013. Mean
- platelet volume/platelet count ratio in hepatocellular carcinoma. *Platelets* **24:** 375-377. doi:
- 261 10.3109/09537104.2012.701028.
- 262 Dineen SP, Roland CL, Toombs JE, Kelher M, Silliman CC, Brekken RA, Barnett CC Jr.
- 263 **2009.** The acellular fraction of stored platelets promotes tumor cell invasion. J Surg Res 153:
- 264 132-137. doi: 10.1016/j.jss.2008.04.013.
- Domper Arnal MJ, Ferrández Arenas Á, Lanas Arbeloa Á. 2015. Esophageal cancer: Risk
- factors, screening and endoscopic treatment in Western and Eastern countries. World J
- 267 *Gastroenterol* **21:** 7933-7943. doi: 10.3748/wjg.v21.i26.7933.

- 268 Dutta S, Crumley AB, Fullarton GM, Horgan PG, McMillan DC. 2011. Comparison of the
- 269 prognostic value of tumour- and patient-related factors in patients undergoing potentially
- curative resection of oesophageal cancer. World J Surg 35: 1861-1866. doi: 10.1007/s00268-
- 271 011-1130-7.
- Feng JF, Huang Y, Zhao Q. 2013. Tumor length in elderly patients with esophageal squamous
- cell carcinoma: is it a prognostic factor? Ups J Med Sci 118: 145-152. doi:
- 274 10.3109/03009734.2013.792887.
- 275 Ferlay J, Shin HR, Bray F, Forman D, Mathers C, Parkin DM. 2010. Estimates of
- worldwide burden of cancer in 2008: GLOBOCAN 2008. Int J Cancer 127: 2893-2917. doi:
- 277 10.1002/ijc.25516.
- Guenancia C, Hachet O, Stamboul K, Béjot Y, Leclercq T, Garnier F, Yameogo NV, de
- Maistre E, Cottin Y, Lorgis L. 2017. Incremental predictive value of mean platelet volume
- to platelet count ratio in in-hospital stroke after acute myocardial infarction. Platelets 28: 54-
- 281 59. doi: 10.1080/09537104.2016.1203397.
- 282 Iasonos A, Schrag D, Raj GV, Panageas KS. 2008. How to build and interpret a nomogram for
- 283 cancer prognosis. *J Clin Oncol* **26:** 1364-1370. doi: 10.1200/JCO.2007.12.9791.
- Inagaki N, Kibata K, Tamaki T, Shimizu T, Nomura S. 2014. Prognostic impact of the mean
- platelet volume/platelet count ratio in terms of survival in advanced non-small cell lung cancer.
- 286 Lung Cancer 83: 97-101. doi: 10.1016/j.lungcan.2013.08.020.
- 287 Kamath S, Blann AD, Lip GY. 2001. Platelet activation: assessment and quantification. Eur
- 288 *Heart J* **22:** 1561-1571. doi: 10.1053/euhj.2000.2515.
- 289 Mariette C, Dahan L, Mornex F, Maillard E, Thomas PA, Meunier B, Boige V, Pezet
- D, Robb WB, Le Brun-Ly V. 2014. Surgery alone versus chemoradiotherapy followed by
- surgery for stage I and II esophageal cancer: final analysis of randomized controlled phase III
- trial FFCD 9901. *J Clin Oncol* **32:** 2416-2422. doi: 10.1200/JCO.2013.53.6532.
- 293 Mantovani A, Allavena P, Sica A, Balkwill F. 2008. Cancer-related inflammation. Nature
- 294 **454:** 436-444. doi: 10.1038/nature07205.

- 295 Napier KJ, Scheerer M, Misra S. 2014. Esophageal cancer: A review of epidemiology,
- pathogenesis, staging workup and treatment modalities. World J Gastrointest Oncol 6: 112-
- 297 120. doi: 10.4251/wjgo.v6.i5.112.
- 298 Nozoe T, Saeki H, Sugimachi K. 2001. Significance of preoperative elevation of serum C-
- reactive protein as an indicator of prognosis in esophageal carcinoma. Am J Surg 182: 197-201.
- 300 Omar M, Tanriverdi O, Cokmert S, Oktay E, Yersal O, Pilancı KN, Menekse S, Kocar M,
- 301 Sen CA, Ordu C. 2018. Role of increased mean platelet volume (MPV) and decreased
- MPV/platelet count ratio as poor prognostic factors in lung cancer. Clin Respir J 12: 922-929.
- 303 doi: 10.1111/crj.12605.
- 304 Peyre CG, Hagen JA, DeMeester SR,, Altorki NK, Ancona E, Griffin SM, Hölscher A,
- Lerut T, Law S, Rice TW, Ruol A, van Lanschot JJ, Wong J, DeMeester TR. 2008. The
- number of lymph nodes removed predicts survival in esophageal cancer: an international study
- on the impact of extent of surgical resection. Ann Surg 248: 549-556. doi:
- 308 10.1097/SLA.0b013e318188c474.
- 309 Platt JJ, Ramanathan ML, Crosbie RA, Anderson JH, McKee RF, Horgan PG, McMillan
- DC. 2012. C-reactive protein as a predictor of postoperative infective complications after
- curative resection in patients with colorectal cancer. *Ann Surg Oncol* **19:** 4168-4177. doi:
- 312 10.1245/s10434-012-2498-9.
- Rawat S, Kumar G, Kakria A, Sharma MK, Chauhan D. 2013. Chemoradiotherapy in the
- management of locally advanced squamous cell carcinama esophagus: is surgical resection
- 315 required? J Gastrointest Cancer **44:** 277-284. doi: 10.1007/s12029-013-9477-7.
- 316 Rice TW, Rusch VW, Ishwaran H, Blackstone EH. 2010. Cancer of the esophagus and
- esophagogastric junction: data-driven staging for the seventh edition of the American Joint
- Committee on Cancer/International Union Against Cancer Staging Manuals. Cancer 116:
- 319 3763-3773. doi: 10.1002/cncr.25146.
- 320 Shen W, Cui MM, Wang X, Wang RT. 2018. Reduced mean platelet volume is associated with

- poor prognosis in esophageal cancer. Cancer Biomark 22: 559-563. doi: 10.3233/CBM-
- 322 181231.
- 323 Shimada H, Nabeya Y, Okazumi S, Matsubara H, Shiratori T, Aoki T, Sugaya M,
- Miyazawa Y, Hayashi H, Miyazaki S, Ochiai T. 2003. Elevation of preoperative serum C-
- reactive protein level is related to poor prognosis in esophageal squamous cell carcinoma. J
- 326 Surg Oncol **83:** 248-252. doi: 10.1002/jso.10275.
- 327 Siegel RL, Miller KD, Jemal A. 2015. Cancer statistics, 2015. CA Cancer J Clin 65: 5-29. doi:
- 328 10.3322/caac.21254.
- 329 Sun SY, Zhao BQ, Wang J, Mo ZX, Zhao YN, Wang Y, He J. 2018. The clinical implications
- of mean platelet volume and mean platelet volume/platelet count ratio in locally advanced
- esophageal squamous cell carcinoma. *Dis Esophagus* **31:** 2. doi: 10.1093/dote/dox125.
- Wijnhoven BP, Tran KT, Esterman A, Watson DI, Tilanus HW. 2007. An evaluation of
- prognostic factors and tumor staging of resected carcinoma of the esophagus. *Ann Surg* **245**:
- 717-725. doi: 10.1097/01.sla.0000251703.35919.02.
- Zhang F, Chen Z, Wang P, Hu X, Gao Y, He J. 2016. Combination of platelet count and
- mean platelet volume (COP-MPV) predicts postoperative prognosis in both resectable early
- and advanced stage esophageal squamous cell cancer patients. *Tumour Biol* **37:** 9323-9331.
- 338 doi: 10.1007/s13277-015-4774-3.

Table 1(on next page)

Comparison of baseline clinical characteristics in ESCC

Comparison of baseline clinical characteristics in ESCC

1 Table 1 Comparison of baseline clinical characteristics in ESCC

	Т-4-1	MP	V (fl)	P value	PC (giga/l)	P value	MPV	V/PC	P value
	Total	<u>≤</u> 8.5	>8.5	•	<u>≤200</u>	>200		<u>≤0.04</u>	>0.04	
Age (years)				0.704			0.221			0.488
≤ 60	158	51	107		55	103		81	77	
> 60	119	41	78		50	69		66	53	
Gender				0.521			0.271			0.629
Female	37	14	23		11	26		21	16	
Male	240	78	162		94	146		126	114	
Tumor length (cm)				0.246			0.020			0.087
≤ 3.0	78	30	48		38	40		35	43	
> 3.0	199	62	137		67	132		112	87	
CRP (mg/l)				0.031			0.152			0.029
≤ 10.0	200	74	126		81	119		98	102	
> 10.0	77	18	59		24	53		49	28	
Tumor location				0.242			0.096			0.057
Upper	16	7	9		10	6		4	12	
Middle	127	36	91		44	83		72	55	
Lower	134	49	85		51	83		71	63	
Vessel invasion				0.744			0.097			0.111
Negative	232	78	154		83	149		128	104	
Positive	45	14	31		22	23		19	26	
Differentiation				0.927			0.826			0.454
Well	43	15	28		16	27		25	18	
Moderate	179	58	121		70	109		90	89	
Poor	55	19	36		19	36		32	23	
T stage				0.106			0.313			0.425
T1	50	22	28		18	32		28	22	
T2	49	20	29		24	25		21	28	
T3	154	44	110		56	98		86	68	
T4	24	6	18		7	17		12	12	
N stage				0.054			0.720			0.899
N0	150	60	90		61	89		78	72	
N1	74	21	53		27	47		39	35	
N2	32	7	25		10	22		19	13	
N3	21	4	17		7	14		11	10	
TNM stage				0.003			0.357			0.546
I	69	31	38		31	38		33	36	
II	92	35	57		34	58		52	40	
III	116	26	90		40	76		62	54	
CEA (ng/ml)				0.818			0.566			0.954

≤ 5.0	239	80	159		89	50		127	112	
> 5.0	38	12	26		16	22		20	18	
Neu (giga/l)				0.249			0.681			0.186
≤ 4.2	146	53	93		57	89		72	74	
> 4.2	131	39	92		48	83		75	56	
Neu/PC				0.090			< 0.001			< 0.001
≤ 0.02	170	50	120		35	135		114	56	
> 0.02	107	42	65		70	37		33	74	

² ESCC: esophageal squamous cell carcinoma; CRP: c-reactive protein; MPV: mean platelet volume; PC:

³ platelet count; TNM: tumor node metastasis; CEA: carcinoembryonic antigen; Neu: neutrophil.

Table 2(on next page)

Univariate and multivariate analyses for cancer-specific survival

Univariate and multivariate analyses for cancer-specific survival

Table 2 Univariate and multivariate analyses for cancer-specific survival

	CCC (0/)	D1	Univariate analysis	Darahaa	Multivariate analysis	Darelyo
	CSS (%)	P value	HR (95% CI)	P value	HR (95% CI)	P value
Age (years)		0.412		0.417	-	-
≤ 60	33.5		1.000			
> 60	30.3		1.127 (0.845-1.502)			
Gender		0.114		0.120	-	-
Female	45.9		1.000			
Male	30.0		1.445 (0.909-2.298)			
Tumor length		0.003		0.004	-	-
\leq 3 cm	42.3		1.000			
> 3 cm	28.1		1.642 (1.173-2.297)			
Tumor location		0.336		0.342	-	-
Upper/Middle	35.7		1.000			
Lower	28.4		1.149 (0.863-1.530)			
Vessel invasion		0.003		0.003	-	-
Negative	35.3		1.000			
Positive	15.6		1.710 (1.197-2.444)			
Differentiation		0.054		0.058	-	-
Well/Moderate	33.8		1.000			
Poor	25.5		1.398 (0.989-1.978)			
T stage		< 0.001		< 0.001	-	-
T1-2	45.5		1.000			
T3-4	24.7		1.898 (1.382-2.606)			
N stage		< 0.001		< 0.001	-	-
N0	49.3		1.000			
N1-3	11.8		2.852 (2.120-3.836)			
TNM stage		< 0.001		< 0.001		< 0.001
I	58.0		1.000		1.000	
II	38.9		1.966 (1.259-3.067)	0.003	1.825 (1.164-2.861)	0.009
III	13.8		3.799 (2.490-5.736)	< 0.001	3.624 (2.362-5.560)	< 0.001
Adjuvant therapy		0.085		0.090	-	-
No	35.6		1.000			
Yes	24.4		1.297 (0.960-1.753)			
CRP (mg/l)		< 0.001		< 0.001		< 0.001
≤ 10.0	39.5		1.000		1.000	
> 10.0	13.0		2.066 (1.526-2.798)		1.994 (1.461-2.722)	
MPV (fl)		0.019	,	0.021	-	-
≤ 8.5	41.3		1.000			
> 8.5	27.6		1.451 (1.057-1.992)			
PC (giga/l)		0.009	,	0.011	-	-

≤ 200	41.0		1.000			
> 200	26.7		1.488 (1.097-2.019)			
MPV/PC		< 0.001		< 0.001		< 0.001
> 0.04	43.1		1.000		1.000	
≤ 0.04	22.4		1.861 (1.386-2.498)		1.823 (1.347-2.469)	
CEA (ng/ml)		0.027		0.031		0.019
≤ 5.0	33.5		1.000		1.000	
> 5.0	23.7		1.549 (1.042-2.302)		1.613 (1.082-2.407)	
Neu (giga/l)		< 0.001		< 0.001		0.007
≤ 4.2	43.8		1.000		1.000	
> 4.2	19.1		1.945 (1.455-2.600)		1.512 (1.120-2.040)	
Neu/PC		0.223		0.229	-	-
≤ 0.02	35.3		1.000			
> 0.02	27.1		1.195 (0.894-1.597)			

² ESCC: esophageal squamous cell carcinoma; CRP: c-reactive protein; MPV: mean platelet volume; PC:

³ platelet count; TNM: tumor node metastasis; CEA: carcinoembryonic antigen; Neu: neutrophil; CI: confidence

⁴ interval; HR: hazard ratio.

Table 3(on next page)

Comparison of AUC areas for the prognostic factors in ESCC

Comparison of AUC areas for the prognostic factors in ESCC

Table 3 Comparison of AUC areas for the prognostic factors in ESCC

	Cut-off	Sensibility	Specificity	AUC	95% CI	P-value
MPV/PC	0.0410	62.9	61.7	0.608	0.548-0.666	Reference
MPV	8.25	84.6	34.8	0.609	0.549-0.667	0.9834
PC	243.5	50.0	74.2	0.648	0.588-0.704	0.0181
Neu	4.25	53.7	76.4	0.689	0.630-0.743	0.1123
Neu/PC	0.0213	38.3	74.2	0.543	0.482-0.603	0.3269

² ESCC: esophageal squamous cell carcinoma; AUC: area under the curve; MPV: mean platelet volume; PC:

4

5

³ platelet count; Neu: neutrophil.

Table 4(on next page)

Multivariate analyses with the cut-off values by ROC curve

Multivariate analyses in ESCC with the cut-off values by ROC curve

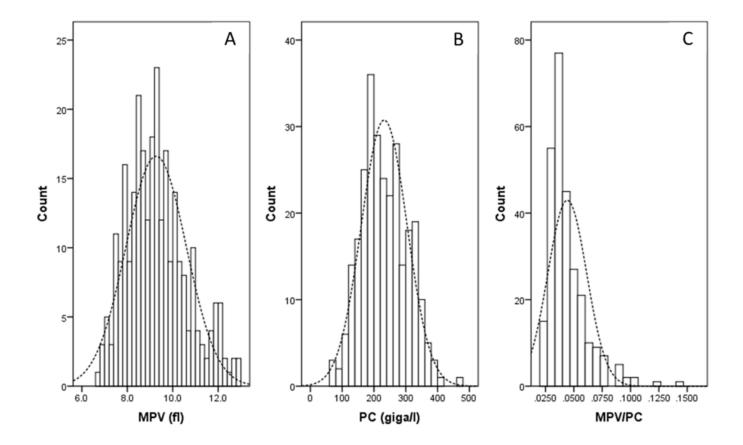
1 Table 4 Multivariate analyses in ESCC with the cut-off values by ROC curve

	HR (95% CI)	P-value	
$CRP (mg/l) (> 10.0 \text{ vs.} \le 10.0)$	2.060 (1.511-2.807)	< 0.001	
TNM stage			
II vs. I	1.816 (1.160-2.844)	0.009	
III vs. I	3.529 (2.298-5.417)	< 0.001	
MPV/PC ($\leq 0.0410 \text{ vs.} > 0.0410$)	1.728 (1.275-2.342)	< 0.001	
CEA (ng/ml) (> $5.0 \text{ vs.} \le 5.0$)	1.636 (1.097-2.438)	0.016	
Neu (giga/l) (> $4.25 \text{ vs.} \le 4.25$)	1.553 (1.150-2.096)	0.004	

² ESCC: esophageal squamous cell carcinoma; CSS: cancer-specific survival; CRP: c-reactive protein; MPV:

5

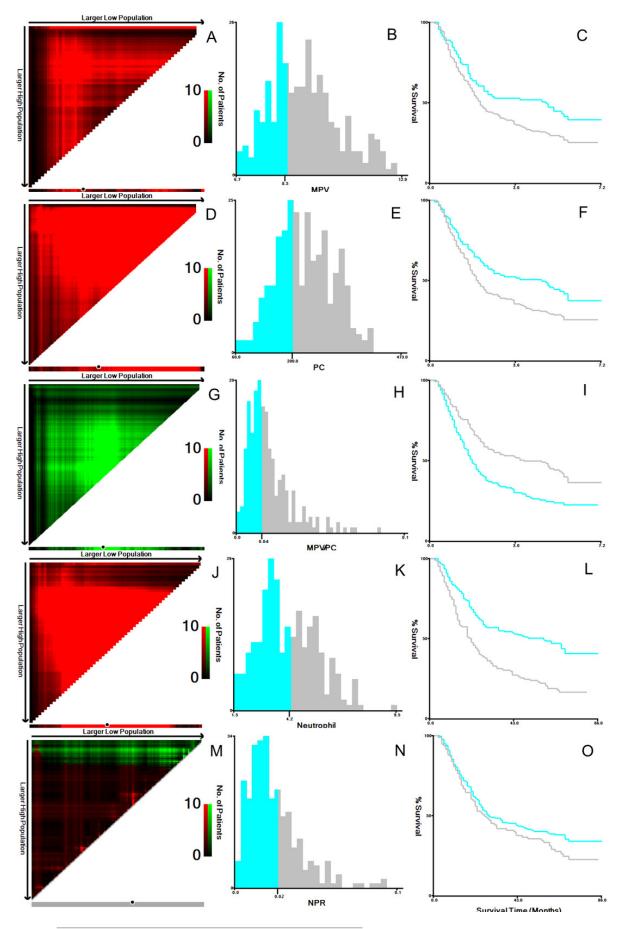
6


³ mean platelet volume; PC: platelet count; TNM: tumor node metastasis; CEA: carcinoembryonic antigen; Neu:

⁴ neutrophil; CI: confidence interval; HR: hazard ratio.

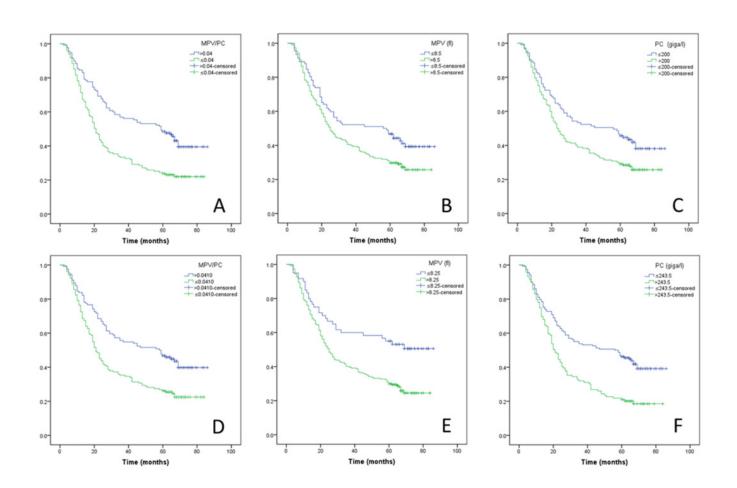
The histograms of the MPV (A), PC (B) and MPV/PC ratio (C)

The histograms of the MPV (A), PC (B) and MPV/PC ratio (C)



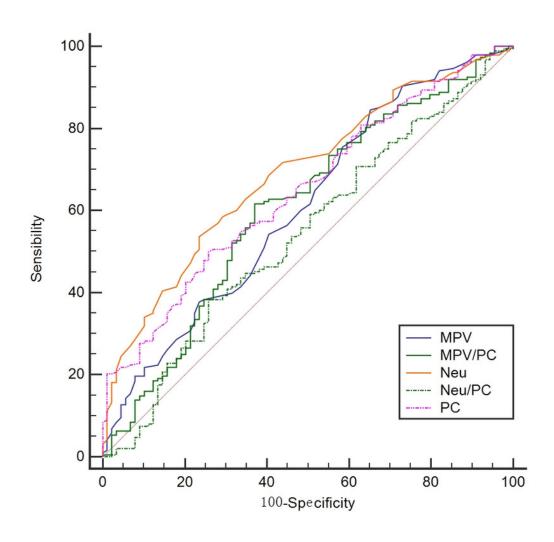
X-tile analyses.

X-tile plots of the training sets are shown in the left panels, with plots of matched validation sets shown in the smaller inset. The optimal cut-off points highlighted by the black circle in Fig. A, D, G, J, M are shown on the histograms of the entire cohort (Fig. B, E, H, K, N) and Kaplan-Meier plots (Fig. C, F, I, L, O). According to the X-tile program, the optimum cut-off points for MPV (A-C), PC (D-F), MPV/PC (G-I), Neu (J-L) and Neu/PC ratio (M-O) were 8.5 (fl), 200 (giga/l), 0.04, 4.2 (giga/l) and 0.02, respectively.



PeerJ reviewing PDF | (2019:01:34245:1:1:NEW 19 May 2019)

Kaplan-Meier CSS curves.


Patients with MPV/PC ratio >0.04 had a significantly better 5-year CSS than patients with MPV/PC ratio \leq 0.04 (43.1% vs. 22.4%, P <0.001; A). The 5-year CSS were also significantly different for MPV (42.4% vs. 27.0%, P =0.010; B) and PC (41.0% vs. 26.7%, P =0.009; C). When we set the cut-off points using ROC curve, the MPV/PC ratio (42.7% vs. 23.5%, P <0.001; D), MPV (51.7% vs. 26.7%, P =0.001; E), and PC (41.8% vs. 19.3%, P <0.001; F) were also associated with CSS.

ROC curve analysis.

The cut-off values for Neu, MPV, PC, MPV/PC, and Neu/PC ratio by the ROC curves were 4.25 (giga/l), 8.25(fl), 243.5 (giga/l), 0.0410, and 0.0213, respectively.

Nomogram model for prediction

The Harrell's c-index for CSS prediction was 0.72. A nomogram predicts survival prediction based on MPV/PC and other prognostic factors in patients with ESCC. The nomogram is used by totalling the points identified at the top of the scale for each independent factor. This total point score is then identified on the total points scale to determine the probability of risk prediction (A) and survival prediction (B).

