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ABSTRACT
Serine Protease Inhibitors (Serpins) control tightly regulated physiological processes
and their dysfunction is associated to various diseases. Thus, increasing interest is given
to these proteins as new therapeutic targets. Several studies provided functional and
structural data about human serpins. By comparison, only little knowledge regarding
bacterial serpins exists. Through the emergence ofmetagenomic studies, many bacterial
serpins were identified from numerous ecological niches including the human gut
microbiota. The origin, distribution and function of these proteins remain to be
established. In this report, we shed light on the key role of human and bacterial serpins
in health and disease. Moreover, we analyze their function, phylogeny and ecological
distribution. This review highlights the potential use of bacterial serpins to set out new
therapeutic approaches.

Subjects Microbiology, Gastroenterology and Hepatology
Keywords Serine protease inhibitors, Disease, Homeostasis, Function, Human gut microbiota

INTRODUCTION
Serpins were first discovered in 1980 when Hunt and Dayhoff noticed similarities between
ovalbumin, an eggwhite protein and two human proteins: antithrombin andα1-antitrypsin
(α1-AT) (Hunt & Dayhoff, 1980). The acronym serpin was coined in 1985 to designate
serine protease inhibitors (Carrell & Travis, 1985). Serpins constitute a superfamily
displaying different functions and are divided into 16 clades (named A-P) (Heit et al.,
2013). Although serpin acronym initially derived from their main function, which is the
inhibition of serine proteases (Gettins, 2002; Huntington, 2011), cross-class inhibition was
also demonstrated (Schick et al., 1998; Bao et al., 2018). However, several serpins do not
exhibit any inhibitory activity but coordinate a wide range of other biological functions
(Hammond et al., 1987; Clarke et al., 1991; Gettins, 2002; Carrell & Read, 2017). In human,
serpins are well studied and their dysregulation is often associated to many pathologies
including inflammation, cardiovascular diseases, cancer and neurological disorders (Ho et
al., 1994;Wolf et al., 1999; Vecchi et al., 2008). Many reports stressed the key role of serpins
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in human health leading to their suggestion as potential therapeutic targets (Richardson,
Viswanathan & Lucas, 2006; Zheng et al., 2013; Al-Horani, 2014).

Unlike eukaryotic serpins, the discovery of their prokaryotic counterparts is relatively
recent. Indeed, until 2002, serpins were believed to be restricted to eukaryotes, but based
on phylogenetic analysis, Irving et al. (2002) evidenced that such proteins are also encoded
by prokaryotes (Irving et al., 2002). Despite these findings, bacterial serpins remain poorly
studied and data about their origin and functions need to be established.

In this review, we report a concise overview of serpin functions in human and outline the
current knowledge on bacterial serpins. Moreover, we provide the first analysis of serpins
encoded by human gut microbiota and their impact on host wellbeing.

Survey methodology
In this review, we discussed the current literature related to serpins and their functions in
health and disease, with a focus on the human gut microbiota. References mentioned in this
review were retrieved from PubMed up to 2019. We used the research terms such as serpin,
microbiota, health and diseases. Considered references will provide more information
about serpins and their impact on the human health. We excluded the studies related
to the serpin engineering and the improvement of their biochemical behaviors. Protein
sequences encoding for serpins were isolated from the NCBI public database using the key
word ‘‘serpin’’. Phylogenetic tree was built with PhyloT (https://phylot.biobyte.de/) and
ITOL.

Human serpins
Serpins were extensively studied in eukaryotes. Since 2012, the number of genes encoding
eukaryotic serpins listed in NCBI has increased from 6,628 to 12,953 (Gaci et al., 2013).
Human genome encodes 37 serpins, among them 30 are functional inhibitors (Rau et al.,
2007; Lucas et al., 2018; Sanrattana, Maas & De Maat, 2019). They act at various cellular
compartments and they are involved in many physiological functions. In fact, these
inhibitors are encoded by 10 different chromosomes and belong to the A-I clades (Heit
et al., 2013). Most serpins from clade A i.e., extracellular serpins, are encoded by a group
of genes located on chromosome 14 and act through the regulation of protease activities
involved mainly in: pathogen invasion, injury and inflammation (Olson & Gettins, 2011).
While in clade B, serpins (known as ov-serpins) are intracellular and are encoded by genes
from chromosomes 6 and 18 (Gettins, 2002;Olson & Gettins, 2011). Given their mechanism
of inhibition, serpins were selected to control tightly regulated physiological processes
(Huntington, 2011) such as the blood coagulation cascade (Anti-thrombin) (Pickering &
Hewitt, 1922; Quinsey et al., 2004; Pike et al., 2005; Hepner & Karlaftis, 2013) and tissue
remodeling (Plasminogen Activator Inhibitor-1 and 2) (Diebold et al., 2008). Serpins also
play key roles in other processes including the control of the inflammatory response
(Anti-trypsin, Anti-chymotrypsin) (Bots & Medema, 2008), programmed cell death and
cell development (Bird, 1998; Kryvalap et al., 2018). Moreover, Serpins display functions
such as blood pressure regulation (SERPINA8) (Davisson et al., 1997), hormone transport
(SERPINA6, SERPINA7) (Zhou et al., 2006; Klieber et al., 2007), tumor suppression
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(SERPINB5) (Zhang, Magit & Sager, 1997) as well as molecular chaperone functions
(SERPINH1) (Silverman et al., 2010) which are not based on protease inhibition.

In agreement with their functions, serpin disequilibrium is associated to several
physiopathologies in humans (Table 1). The expression of α1-AT is altered in patients
suffering from inflammatory bowel diseases (IBD) (Karbach, Ewe & Bodenstein, 1983;
Grill, Hillemeier & Gryboski, 1984). Hence, the administration of this protein attenuated
the intestinal inflammation in mice by reducing the cellular infiltration and the secretion
of pro-inflammatory cytokines as well as restoring the epithelial barrier and limiting tissue
damage (Collins et al., 2013). Moreover, it was described that SERPINE1 was associated to
lung inflammation (Table 1). Serpins are also involved in obesity as demonstrated for vaspin
(visceral adipose tissue-derived serpin). Clinical data revealed an increase of vaspin level in
adipose tissues from obese and type 2 diabetes patients (Cho, Han & Kang, 2010; Klöting et
al., 2011; Zhang et al., 2011; Teshigawara et al., 2012). Furthermore, the administration of
vaspin to obese mice improved glucose tolerance and insulin sensitivity (Hida et al., 2005).
Such beneficial effect was linked to the inhibition of KLK7 (Kallikrein-Related Peptidase
7) which is up-regulated in obesity-induced insulin resistance patients (Hida et al., 2005;
Heiker et al., 2013). In addition to that, it was suggested that blocking serpinB13 might
prevent the development of type1diabetes (Table 1). Serpins are also believed to be involved
in cardiovascular diseases. In fact, Kallistatin, a protease inhibitor widely distributed in
tissues relevant to cardiovascular function (Chai et al., 1993; Chao & Chao, 1995; Chao et
al., 1996; Wolf et al., 1999), is significantly reduced in coronary artery disease (Chao, Guo
& Chao, 2018). This protein displays many properties including anti-atherosclerotic effects
and reduction of infarct size (Chao et al., 2006; Gao et al., 2008; Shen et al., 2010). Besides
metabolic and inflammatory disorders, many studies reported the clinical relevance of
serpins in cancer. In this context, it was reported that Maspin, a non-inhibitory serpin,
is significantly associated to breast and prostate cancers (Cao et al., 2007; Vecchi et al.,
2008). Increased level of Maspin was detected in different types of cancer and shown to
(i) efficiently promote cancer cell apoptosis, (ii) exhibit anti-angiogenesis activity and (iii)
inhibit cancer cell migration (Zou et al., 1994; Zhang et al., 1999; Ngamkitidechakul et al.,
2001; Song et al., 2002; Cher et al., 2003; Sopel, Kasprzyk & Berdowska, 2005). In contrast, it
was recently demonstrated that Maspin cannot be considered as a tumor suppressor but
may be a prognostic indicator (Teoh et al., 2014). In addition to Maspin, SERPINE2 and
SERPINF1 are associated to many carcinoma types including lung, prostate, pancreatic and
papillary thyroid cancers (Halin et al., 2004; Zhang et al., 2006; Stepień et al., 2017). Based
on these findings, serpins appear as attractive therapeutic targets to set out new medical
strategies against some human pathologies.

Serpins structure
Many structural and biochemical analysis provided a major knowledge progress on
serpin family. Serpins display a single domain of 40–60 kDa (PFAM ID PF00079) with
an average size of 350–400 amino acids (Stein & Carrell, 1995; Irving et al., 2000; Gettins,
2002). Currently, around 200 three-dimensional structures of serpin and serpin-protease
complexes are available in PDB database deriving from both eukaryotes and prokaryotes
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Table 1 Biological functions of serpins and their association to human diseases.

Clade Serpin Biological function Associated disease Reference

α1-Antitrypsin (SER-
PINA1)

Complement activa-
tion, apoptosis

Emphysema, Cirro-
hosis, IBD, Cancer
(liver)

Eriksson, Carlson & Velez (1986), Lomas et al. (1992), Yang
et al. (2000), Saunders et al. (2012) and Heit et al. (2013)

Antichymotrypsin
(SERPINA3)

Complement activa-
tion, apoptosis, pro-
hormone conversion

Emphysema,
Alzheimer’s disease

Law et al. (2006), Kamboh et al. (2006) and Heit et al. (2013)

Kallistatin (SER-
PINA4)

Complement activa-
tion, angiogenesis,
fibrinolysis, apoptosis

Coronary artery, Hy-
pertension, Cardio-
vascular diseases,
Chronic liver diseases

Chao et al. (1996), Heit et al. (2013) and Nallagangula et al.
(2017)

Coticosteroid
-binding globulin
(SERPINA6)

Hormone transport Chronic fatigue Torpy et al. (2004)

Thyroxine-binding
globulin (SERPINA7)

Hormone transport Hypothyroidism Refetoff et al. (1996) andMoeller et al. (2015)

Angiotensinogen
(SERPINA8)

Blood pressure reg-
ulation, hormone
transport

Hypertension Kim et al. (1995) and Yan et al. (2018)

Protein Z-dependent
proteinase inhibitor
(SERPINA10)

Inhibition of factor Z
and XI

Venous thromboem-
bolic disease

Van de Water et al. (2004) and Law et al. (2006)

A

Vaspin (SERPINA12) Insulin-sensitizing
adipocytokine

Obesity, Insulin resis-
tance, Diabetes

Hida et al. (2005) and Heiker (2014)

Plasminogen activa-
tor inhibitor-II (SER-
PINB2)

Fibrinolysis, elastase
inhibitor

Cancer Medcalf & Stasinopoulos (2005), Su et al. (2015) and Harris
et al. (2017)

Squamous cell car-
cinoma antigen-I/II
(SERPINB3/B4)

Anti-apoptosis Respiratory and skin
inflammatory diseases

Sun, Sheshadri & Zong (2017) and Izuhara et al. (2018)

Maspin (SERPINB5) Anti-angiogenesis Cancer (breast,
prostate, colon,
bladder)

Zou et al. (1994) and Berardi et al. (2013)

B

Megsin (SERPINB7) Renal development,
Mesangial cell prolif-
eration

IgA nephropathy Miyata et al. (1998)

C Antithrombin (SER-
PINC1)

Coagulation, angio-
genesis

Thrombosis, Lung in-
flammation

Perry & Carrell (1996) and Ishikawa et al. (2017)

D Heparin cofactor II
(SERPIND1)

Coagulation Thrombosis, Cancer
(lung)

He et al. (2002) and Liao et al. (2015)

E Plasminogen activa-
tor inhibitor I (SER-
PINE1)

Angiogenesis,
fibrinolysis, anti-
apoptosis

Bleeding disorders,
Cancer, Septic shock,
acute lung inflamma-
tion

Law et al. (2006), Placencio et al. (2015), Gupta et al. (2016)
and Ozolina et al. (2016)

PEDF (SERPINF1) Anti-angiogenesis Cancer (prostate,
melanoma)

Becerra & Notario (2013)

F
Alpha-2-antiplasmin
(SERPINF2)

Fibrinolysis Bleeding disorders Miles et al. (1982)

(continued on next page)
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Table 1 (continued)

Clade Serpin Biological function Associated disease Reference

G C1 inhibitor (SERP-
ING1)

C1 esterase inhibitor Angioedema De Marchi et al. (1973)

H Heat shock protein
(SERPINH1)

Chaperone Osteogenesis imper-
fecta

Nagata (1996) and Lindert et al. (2015)

I Neuroserpin (PII4)
(SERPINI1)

Neutrofic factor Dementia Davis et al. (1999)

that display significant structural similarities. Most of these structures (∼90%) belong to
eukaryotic species, while only three serpins structure from thermophilic and pathogenic
bacteria are solved (Irving et al., 2003; Fulton et al., 2005; Zhang et al., 2007; Goulas et al.,
2017). Overall, serpins shared a common fold in spite of their low sequences homology
(∼25%) (Huntington, 2011). Serpin architecture is typically composed of 3 β-sheets (A,
B and C), 8-9 α-helices (named hA–hI) and a Reactive Center Loop (RCL) (Fig. 1A).
The latter is a long and flexible loop (20–25 amino acids linking the β-sheets A and C)
that mediates the conformational conversion during the protease docking and inhibition
(Gettins, 2002; Law et al., 2006; Huntington, 2011). As a result, RCL plays a critical role in
the efficiency and the specificity of serpin inhibition (Huntington, Read & Carrell, 2000;
Gettins, 2002). Such mechanism of action was reported for prokaryotic and eukaryotic
serpins. Interestingly, serpin family is distinguishable by the fact that the native fold is not
the most stable form (Gettins, 2002).

Mechanism of inhibition
Many studies proved that serpins inhibit their targets by an irreversible substrate-like
mechanism (Lawrence et al., 1995; Huntington, 2011; Khan et al., 2011). Upon inhibition,
both molecules undergo extreme conformational changes that generate a stable covalent
serpin-protease complex (Huntington, Read & Carrell, 2000; Khan et al., 2011). Initially,
catalytic serine/cysteine of serine/cysteine peptidases performs a nucleophilic attack on the
RCL within the scissile bond P1-P1′. Such hydrolysis reaction generates the cleavage of the
peptide bond P1-P1′ and the formation of a covalent acyl-ester linkage between P1 and the
catalytic serine (Fig. 1B). Then, the RCL is inserted between the A β-sheets allowing the
translocation of the protease on the opposite side of the serpin. Such structural changes
strongly distort the protease active site and both proteins are inactivated by this suicide
inhibition mechanism (Lawrence et al., 1995; Wilczynska et al., 1995; Huntington, Read &
Carrell, 2000) (Fig. 1A). Several studies highlighted serpin structure-function relationships
based on mutagenesis and molecular engineering strategies (Seo et al., 2000; Im, Ryu &
Yu, 2004). It was demonstrated that the serpin native form is a metastable conformation,
which is converted to a more stable state during protease inhibition (Kaslik et al., 1997; Im,
Ahn & Yu, 2000). Notably, the inhibition efficiency is modulated by the protein flexibility
and mainly the RCL (Huntington et al., 1997; Lee et al., 1998; Zhou, Carrell & Huntington,
2001). Indeed, it was demonstrated that numerous mutations in the RCL increased the
protein stability and significantly reduced the inhibition efficiency (Im, Seo & Yu, 1999; Im
& Yu, 2000; Seo et al., 2000; Im, Ryu & Yu, 2004; Jung, Na & Im, 2004).
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Figure 1 Serpin structure andmechanism of inhibition. (A) The RCL (Blue) is recognized by a serine
protease (green). After cleavage, RCL rapidly inserts into β-sheet and forms a covalent serpin-protease
complex. (B) Close-up view of the interaction between the serpin and its target protease (adapted from
Song et al., 2011, permission license number 4545950475192).

Full-size DOI: 10.7717/peerj.7224/fig-1

Bacterial serpins
The presence of serpins was believed to be restricted to eukaryotes and virus (Irving et al.,
2002; Silverman et al., 2010). Owing to recent advances in sequencing technology and the
development of bioinformatic tools, new additional serpins were identified in bacteria,
protozoa and fungi. Serpins constitute the most distributed superfamily of protease
inhibitors across all major branches of life (Irving et al., 2002; Gettins, 2002; Silverman et
al., 2010; Harish & Uppuluri, 2018). Studies on bacterial serpins provided limited data
regarding their origin and potential functions. The presence of genes encoding serpins in
all life kingdoms suggests that such superfamily firstly appeared in prokaryotes before the
divergence of themajor domains of life (Irving et al., 2002). The loss of serpin genes by some
prokaryotes during evolution can be related to the surrounding environment. However, the
sporadic presence of serpins in prokaryotes did not support such hypothesis (Irving et al.,
2002; Kantyka, Rawlings & Potempa, 2010). The second hypothesis proposes that serpin-
encoding genes appeared first in eukaryotes and were acquired by prokaryotes through
horizontal gene transfer (Irving et al., 2002). Such statement is challenged by serpins having
a competing microbes and modulating the host immune response including that from
gingival crevice (Eckert et al., 2018). Several reports supporting the latter hypothesis were
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Figure 2 Bacterial serpins distribution. Protein sequences and their taxonomic assignation were re-
trieved from public database NCBI. Taxonomic lineages are represented in different colors. Phylogenetic
tree was built with PhyloT (https://phylot.biobyte.de/) and ITOL.

Full-size DOI: 10.7717/peerj.7224/fig-2

described (Irving et al., 2002; Roberts et al., 2004; Goulas et al., 2017). However, as far as we
know no evidence exists to reinforce one hypothesis over another.

Phylogenetic study
Analysis of serpins available in the public databases (NCBI) demonstrated that these
bacterial antiproteases are distributed in different phyla, mainly Actinobacteria, Firmicutes,
Bacteroidetes, Cyanobacteria and Proteobacteria (Fig. 2). In order to explore the
distribution of these serpins within each phylum, we carried out a phylogenetic study
at the family level (Fig. 2). We noted a significant proportion of serpins that were only
represented in a small number of species (<50 species) of a given family which we classified
as rare.

In addition to rare families, we found that serpins from the Actinobacteria phylum
were mainly distributed in three families: Streptomycetaceae, Bifidobacteriaceae and
Pseudonocardiaceae. In the Bacteroidetes phylum beside rare families, serpins belong
to the Prevotellaceae, Bacteroidaceae and Porphyromonadaceae families. In Firmicutes,
serpins were found in five families: Lachnospiraceae, Clostridiaceae, Ruminococcaceae,
Bacilliaceae and Paenibacillaceae while in Proteobacteria and Cyanobacteria, serpins are
only found in rare families (Fig. 2). However, in the other phyla there is less diversity at
family level but with more abundant bacteria encoding for serpins. We propose that the
high abundance of serpins in a given bacterial family could be linked to the adaptation of
these bacterial groups to their environments.
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Figure 3 Distribution of bacterial serpin in ecological niches. The pie-chart represents the relative per-
centage of serpins in various ecological niches.

Full-size DOI: 10.7717/peerj.7224/fig-3

Ecological niches
According to current knowledge, the main ecological niches housing bacteria harboring
serpins are: human microbiota (32%), soil (23%) and water (14%) (Fig. 3). These results
confirm the finding of Kantyka, Rawlings & Potempa (2010) who reported that serpins
belong mainly to benign environments (Kantyka, Rawlings & Potempa, 2010).

Taking into account the wide distribution of serpins in prokaryotes and the lack of data
about their regulation and role, the physiological functions of these protease inhibitors
remain elusive. Nevertheless, the variability of the ecological niches of the bacterial species
encoding serpins stressed that these inhibitors have evolved to perform key functions.

Thermophilic bacterial serpins
Prokaryotic serpins were initially observed in archaea and some extremophilic bacterial
genera (Irving et al., 2002). Sequence analysis of serpins from thermophilic bacteria
predicted that these proteins were protease inhibitors (Irving et al., 2002). Indeed,
thermopin, a serpin produced by the thermophilic bacterium Thermobifida fusca, was
first studied and shown to inhibit chymotrypsin. Such inhibitory function was further
confirmed by the formation of a covalent complex with the target protease (Irving et al.,
2003). Thermopin was also shown to be stable at 60 ◦C, at which the α-1-antitrypsin rapidly
lost its activity (Irving et al., 2003). Structural analyses revealed that thermopin exhibits a
C-terminal extension (amino acid: 363-367) interacting with Glu309 and Arg258 residues
in the s5A and s6A β-strands respectively. This takes more importance if we consider
that Glu309 and Arg258 residues are highly conserved among serpins and particularly
important for the stability of these proteins (Irving et al., 2003).

The serpin from the extremophilic bacterium Thermoanaerobacter tengcondensis was
further characterized. This serpin, tengpin, inhibits the human neutrophil elastase and
forms a covalent complex typical of inhibitory serpins. Like thermopin, tengpin is
distinguishable by a structural feature allowing to operate at extreme temperatures (Zhang
et al., 2007). In fact, mutagenesis and X-ray studies demonstrated that this serpin displays
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an N-terminal extension that is essential to stabilize the native metastable status of tengpin
(Zhang et al., 2007).

To better investigate the role of serpins in bacteria, three additional serpins were also
characterized from the thermophilic bacterium Clostridium thermocellum (Kang et al.,
2006). This strain has a high ability to degrade cellulose using a multi-enzyme complex, the
cellulosome, and exhibits three distinct serpins. Clotm-serpin 1 and Clotm-serpin 2 were
predicted as cellulosomal proteins while Clotm-3 is a membrane protein. Biochemical
characterization revealed that Clotm-serpin 1 inhibits the bacterial subtilisin. As C.
thermocellum displays a subtilisin-encoding gene, it was suggested that its serpins are
specific inhibitors of bacterial proteases, including its own subtilisin-like protease (Kang
et al., 2006). Taking into account these data, bacterial serpins were proposed to protect
the cellulosome structure through the regulation of endogenous and exogenous proteases
(Kang et al., 2006; Cuív et al., 2013).

Serpins from the human microbiota
To date, only few serpins from the human microbiota were studied (Ivanov et al., 2006;
Ksiazek et al., 2015;Mkaouar et al., 2016;Goulas et al., 2017). A novel serpin from Tanerella
forsythia, miropin, was characterized and shown to display a broad range of inhibition
including serine and cysteine proteases such as neutrophil elastase, cathepsinG, trypsin, and
papain (Ksiazek et al., 2015; Goulas et al., 2017). Besides host proteases, miropin inhibits
bacterial protease like gingipain and subtilisin (Ksiazek et al., 2015; Goulas et al., 2017).
Therefore, it was suggested to act as a virulence factor protecting the bacterium from
host and endogenous proteases (Ksiazek et al., 2015). Three serpins from the human gut
microbiota were also studied. In fact, the Bifidobacteria genome sequencing revealed
the presence of a serpin-encoding gene (Schell et al., 2002; Turroni et al., 2010). Based on
transcriptomic studies using Bifidobacterium strain, Turroni et al. (2010) reported the
up-regulation of various genes including serpin in presence of proteases (Turroni et al.,
2010). Recently, a serpin from B. longum has been characterized and reported to inhibit
the human neutrophil elastase (Ivanov et al., 2006). A stable covalent complex serpin-
protease was further observed when incubating purified serpin with fecal proteases from
mice (Ivanov et al., 2006). This serpin was recently reported to prevent enteric neurons
activation by supernatants from irritable bowel syndrome patients (Buhner et al., 2018).
Such data stressed the potential key role of bacterial serpins to improve gastrointestinal
symptoms. Lately, we reported the biochemical characterization of two putative serpins
from the human gut bacterium Eubacterium sireaum and supposed to be secreted in
the intestinal lumen (Mkaouar et al., 2016). The analysis of these novel bacterial serpins,
called Siropins, revealed that they efficiently inhibit the human neutrophil elastase and
proteinase 3. Interestingly, Siropins are the first bacterial serpins that significantly inhibit
the human proteinase 3, known to be involved in IBD. Kinetic studies demonstrated
that Siropins were highly efficient in comparison to other bacterial serpins including that
of B. longum. Furthermore, siropins exhibit a high efficiency to inhibit fecal proteases
issued from mice with chemically induced colitis (Mkaouar et al., 2016). This highlights
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the importance of serpins from the human gut microbiota to inhibit proteases related with
human physiopathologies.

CONCLUSIONS
In this review, we analyzed human serpins and their functions to maintain homeostasis
as well as their involvement in several diseases. Such data stressed the key role of human
antiproteases and highlighted their potential to establish innovative therapeutic strategies.
In contrast, bacterial serpins remain today poorly studied. The emergence of metagenomics
allowed the identification of new bacterial serpins. Phylogenetic study of this protein
family demonstrated that bacterial serpins essentially belong to five phyla colonizing
benign environments. The distribution of the serpins in ecological niches showed that
the human gastrointestinal tract harbors an elevated number of serpins. The relevance of
these bacterial proteins was reinforced through (i) the determination of their efficiency to
inhibit fecal proteases recovered from mice with chemically induced inflammation and
(ii) the inhibition of human proteases involved in IBD. Above all, it will be interesting
to characterize more microbial serpins and to further explore their therapeutic potential.
Resolution of the structure of serpin-protease complexes will bring useful structural insights
to investigate the serpins structure-function relationships that will allow the improvement
of their efficiency and specificity through engineering approaches. Such analysis will
promote the use of bacterial serpin mainly in biomedical applications including the set out
of new therapeutic alternatives against protease-related diseases.
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