
Bioshake: a Haskell EDSL for bioinformatics
workflows (#35266)

1

First submission

Editor guidance

Please submit by 7 Mar 2019 for the benefit of the authors (and your $200 publishing discount).

Structure and Criteria
Please read the 'Structure and Criteria' page for general guidance.

Raw data check
Review the raw data. Download from the location described by the author.

Image check
Check that figures and images have not been inappropriately manipulated.

Privacy reminder: If uploading an annotated PDF, remove identifiable information to remain anonymous.

Files
Download and review all files
from the materials page.

2 Latex file(s)

https://peerj.com/submissions/35266/reviews/450409/materials/#question_31
https://peerj.com/submissions/35266/reviews/450409/materials/

For assistance email peer.review@peerj.com

Structure and
Criteria

2

Structure your review
The review form is divided into 5 sections. Please consider these when composing your review:
1. BASIC REPORTING
2. EXPERIMENTAL DESIGN
3. VALIDITY OF THE FINDINGS
4. General comments
5. Confidential notes to the editor

You can also annotate this PDF and upload it as part of your review

When ready submit online.

Editorial Criteria
Use these criteria points to structure your review. The full detailed editorial criteria is on your guidance page.

BASIC REPORTING

Clear, unambiguous, professional English
language used throughout.

Intro & background to show context.
Literature well referenced & relevant.

Structure conforms to PeerJ standards,
discipline norm, or improved for clarity.

Figures are relevant, high quality, well
labelled & described.

Raw data supplied (see PeerJ policy).

EXPERIMENTAL DESIGN

Original primary research within Scope of
the journal.

Research question well defined, relevant
& meaningful. It is stated how the
research fills an identified knowledge gap.

Rigorous investigation performed to a
high technical & ethical standard.

Methods described with sufficient detail &
information to replicate.

VALIDITY OF THE FINDINGS

Impact and novelty not assessed.
Negative/inconclusive results accepted.
Meaningful replication encouraged where
rationale & benefit to literature is clearly
stated.

Data is robust, statistically sound, &
controlled.

Speculation is welcome, but should be
identified as such.

Conclusions are well stated, linked to
original research question & limited to
supporting results.

mailto:peer.review@peerj.com
https://peerj.com/submissions/35266/reviews/450409/
https://peerj.com/submissions/35266/reviews/450409/guidance/
https://peerj.com/about/author-instructions/#standard-sections
https://peerj.com/about/policies-and-procedures/#data-materials-sharing
https://peerj.com/about/aims-and-scope/
https://peerj.com/about/aims-and-scope/

Standout
reviewing tips

3

The best reviewers use these techniques

Tip Example

Support criticisms with
evidence from the text or from
other sources

Smith et al (J of Methodology, 2005, V3, pp 123) have
shown that the analysis you use in Lines 241-250 is not the
most appropriate for this situation. Please explain why you
used this method.

Give specific suggestions on
how to improve the manuscript

Your introduction needs more detail. I suggest that you
improve the description at lines 57- 86 to provide more
justification for your study (specifically, you should expand
upon the knowledge gap being filled).

Comment on language and
grammar issues

The English language should be improved to ensure that an
international audience can clearly understand your text.
Some examples where the language could be improved
include lines 23, 77, 121, 128 – the current phrasing makes
comprehension difficult.

Organize by importance of the
issues, and number your points

1. Your most important issue
2. The next most important item
3. …
4. The least important points

Please provide constructive
criticism, and avoid personal
opinions

I thank you for providing the raw data, however your
supplemental files need more descriptive metadata
identifiers to be useful to future readers. Although your
results are compelling, the data analysis should be
improved in the following ways: AA, BB, CC

Comment on strengths (as well
as weaknesses) of the
manuscript

I commend the authors for their extensive data set,
compiled over many years of detailed fieldwork. In addition,
the manuscript is clearly written in professional,
unambiguous language. If there is a weakness, it is in the
statistical analysis (as I have noted above) which should be
improved upon before Acceptance.

Bioshake: a Haskell EDSL for bioinformatics workflows

Justin Bedő Corresp. 1, 2

1 Bioinformatics Division, The Walter and Eliza Hall Institute, Parkville, VIC, Australia
2 Department of Computing and Information Systems, The University of Melbourne, Parkville, VIC, Australia

Corresponding Author: Justin Bedő

Email address: cu@cua0.org

Typical bioinformatics analysis comprise long running computational workflows. An

important part of producing reproducible research is the management and execution of

these computational workflows to allow robust execution and to minimise errors. Bioshake

is an embedded domain specific language embedded in Haskell for specifying and

executing computational workflows in bioinformatics that significantly reduces the

possibility of errors occurring.

Unlike other workflow frameworks, Bioshake raises many properties to the type level to

allow the correctness of a workflow to be statically checked during compilation, catching

errors before any lengthy execution process. Bioshake builds on the Shake build tool to

provide robust dependency tracking, parallel execution, reporting, and resumption

capabilities. Finally, Bioshake abstracts execution so that jobs can either be executed

directly or submitted to a cluster.

Bioshake is available at http://github.com/papenfusslab/bioshake.

PeerJ reviewing PDF | (2019:02:35266:0:0:NEW 22 Feb 2019)

Manuscript to be reviewed

http://github.com/papenfusslab/bioshake

Bioshake: a Haskell EDSL for bioinformatics1

workflows2

Justin Bedő1,2
3

1Bioinformatics Division, Walter and Eliza Hall Institute, 1G Royal Parade, Parkville VIC4

3052, Australia5
2Department of Computing and Information Systems, University of Melbourne VIC 3010,6

Australia7

Corresponding author:8

Justin Bedő1
9

Email address: bedo.j@wehi.edu.au10

ABSTRACT11

Typical bioinformatics analysis comprise long running computational workflows. An important part of
producing reproducible research is the management and execution of these computational workflows
to allow robust execution and to minimise errors. Bioshake is an embedded domain specific language
embedded in Haskell for specifying and executing computational workflows in bioinformatics that
significantly reduces the possibility of errors occurring.

12

13

14

15

16

Unlike other workflow frameworks, Bioshake raises many properties to the type level to allow the
correctness of a workflow to be statically checked during compilation, catching errors before any lengthy
execution process. Bioshake builds on the Shake build tool to provide robust dependency tracking,
parallel execution, reporting, and resumption capabilities. Finally, Bioshake abstracts execution so
that jobs can either be executed directly or submitted to a cluster.

17

18

19

20

21

Bioshake is available at http://github.com/papenfusslab/bioshake.22

1 BACKGROUND23

Bioinformatics workflows are typically composed of numerous programs and stages coupled24

together loosely using intermediate files. These workflows tend to be quite complex and require25

much computational time, hence a good workflow must be able to manage intermediate files,26

guarantee rentrability – the ability to re-enter a partially run workflow and continue from the27

latest point – and also provide methods to easily describe workflows.28

We present bioshake: a Haskell Embedded Domain Specific Language (EDSL) for bioinformat-29

ics workflows. The use of a language with strong types gives our framework several advantages30

over existing frameworks (Amstutz et al., 2016; Goodstadt, 2010; Leipzig, 2016; OpenWDL 2012;31

Vivian et al., 2017):32

1. The type system is strongly leveraged to prevent errors in the workflow construction during33

compilation. Errors such as mismatching file types, combining samples mapped against34

different references, or failing to sort a Sequence Alignment Map (SAM) file before a stage35

that requires sorting all result in a compile error rather than a runtime error. This catches36

errors significantly earlier, reducing debugging time. As bioinformatics workflows tend to37

have long runtimes, this is especially advantageous. To the best of our knowledge, this38

is the first bioinformatics workflow framework to use strong typing and type inference to39

prevent specification errors during compile time.40

2. Naming of outputs at various stages of a workflow are abstracted by bioshake. Output at a41

stage can be explicitly named if they are desired outputs. Thus, the burden of constructing42

names for temporary files is alleviated. This is similar in spirit to Sadedin et al. (2012)43

who also allow abstraction away from explicit filenames.44

PeerJ reviewing PDF | (2019:02:35266:0:0:NEW 22 Feb 2019)

Manuscript to be reviewed

http://github.com/papenfusslab/bioshake
John Vivian

John Vivian

John Vivian

John Vivian
analyses

John Vivian

John Vivian

John Vivian
Repetition of terms if you can avoid it

John Vivian

John Vivian

John Vivian
, allowing

John Vivian

John Vivian
by

3. Bioshake builds on top of Shake, an industrial strength build tool also implemented as45

an EDSL in Haskell. Bioshake thus inherits the reporting features, robust dependency46

tracking, and resumption capabilities offered by the underlying Shake architecture.47

4. Unlike underlying shake that expects dependencies to be specified (i.e., in a DAG the arrows48

point from the target back towards the source(s)), bioshake allows forward specification of49

workflows (i.e., the arrows point forward). As bioinformatics workflows tend to be quite50

long and mostly linear, this eases the cognitive burden during workflow design and also51

improves readability.52

5. Non-linear workflows are constructed using typical Haskell constructs such as maps and53

folds. Combinators are available for the most common grouping of outputs together for a54

subsequent stage. However, as the main data type is recursively defined, outputs of a stage55

can always be referenced by subsequent stages without explicit non-linear constructs (i.e.,56

the alignments used for variant calling are available for a subsequent variant annotation57

stage without explicitly introducing non-linearity).58

Bioshake in essence is an EDSL for specifying workflows that compiles down to an exe-59

cution engine (shake). In this respect, it is similar to other specification languages such as60

Common Workflow Language (CWL) (Amstutz et al., 2016) and Workflow Description Lan-61

guage (WDL) (OpenWDL 2012), but executes on top of shake. Table 1 provides a high level62

feature overview of Bioshake when compared to several other workflow specification language,63

workflow EDSLs, and execution engines. We will further elaborate on the unique features of64

Bioshake:65

Strong type-checking The use of a language with strong types gives our framework several66

advantages over existing frameworks (Amstutz et al., 2016; Goodstadt, 2010; Leipzig, 2016;67

OpenWDL 2012; Sadedin et al., 2012; Vivian et al., 2017). Our framework leverages Haskell’s68

strong type-checker to prevent many errors that can arise in the specification of a workflow.69

As an example, file formats are statically checked by the type system to prevent specification70

of workflows with incompatible intermediate file formats. Furthermore, tags are implemented71

through Haskell type-classes to allow metadata tagging, allowing various properties of files –72

such as whether a bed file is sorted – to be statically checked. Thus, a misspecified workflow will73

simply fail to compile, catching these bugs well before the lengthy execution. This feature is not74

present in other bioinformatics workflow frameworks such as those reviewed by Leipzig (2016).75

Intrinsic and extrinsic building Our framework builds upon the Shake EDSL (Mitchell, 2012),76

which is a make-like build tool. Similarly to make, dependencies in shake are specified in an77

extrinsic manner (called internal/external by Leipzig, 2016), that is a build rule will define its78

input dependencies based on the output file path. Our EDSL compiles down to shake rules,79

but allows the specification of workflows in an intrinsic fashion, whereby the processing chain is80

explicitly stated and hence no filename based dependency graph needs to be specified. However,81

as bioshake compiles to shake, both extrinsic and intrinsic rules can be mixed, allowing a choice82

to be make to maximise workflow specification clarity. For example, small “side” processing like83

generation of indices can be specified extrinsically, removing the need for an explicit index step84

in the workflow specification.85

Furthermore, the use of explicit sequencing for defining workflows allows abstraction away86

from the filename level: intermediate files can be automatically named and managed by bioshake,87

removing the burden of naming the intermediate files, with only desired outputs requiring explicit88

naming.89

Example 1 The following is an example of a workflow expressed in the bioshake EDSL:90

align 7→ fixMates 7→ sort 7→ markDups 7→ call 7→ out [”output.vcf ”]

From this example it is clear what the stages are, and the names of the files flowing between91

stages is implicit and managed by Bioshake. The exception is the explicitly named output, which92

is the output of the whole workflow. Note that non-linearity is handled by constructors that93

2/8

PeerJ reviewing PDF | (2019:02:35266:0:0:NEW 22 Feb 2019)

Manuscript to be reviewed

John Vivian

John Vivian
, in essence,

John Vivian
This paragraph seems to just reiterate bullet point 1 from the previous page. Consolidate or make bullet points briefer?

John Vivian

John Vivian
made

John Vivian

John Vivian
Shake

John Vivian

John Vivian
Bioshake

John Vivian

John Vivian
Fix quotes

John Vivian
Toil has identical behavior. What tools require naming of all intermediate files?

John Vivian
Beautiful!

John Vivian

Table 1. High level feature comparison of Bioshake with other execution engines (Toil,
Cromwell), specification languages (WDL, CWL), and EDSLs (Ruffus). Dashes indicate that
feature is not applicable.

Ruffus Toil Cromwell WDL CWL Bioshake
Embedded DSL X – – X

Python X X –
Strong static typing – X

Type inferencing – X

Extrinsic specification – X

Intrinsic specification X X – X X X

Functional language – X

Container integration X X – –
Cloud computing integration X X – –
Cluster integration (Torque) – X X – – X

Cluster integration (Slurm) – X X – –
Cluster integration (SGE) – X X – –
Cluster integration (LSF) – X – –

Cluster integration (DRMAA) X – –
Direct execution X X X – – X

accept the extra inputs, but workflows can always recurse backwards along 7→ to retrieve prior94

build products (e.g., to fetch Binary Alignment Map (BAM) files used to generate a set of variant95

calls), reducing the need for non-linearity.96

Extends a robust build system Finally, the Bioshake EDSL compiles to Shake (Mitchell, 2012), an97

industrial strength build tool also implemented as an EDSL in Haskell. Bioshake thus inherits98

the reporting features, robust dependency tracking, and resumption capabilities offered by99

the underlying Shake framework. Though Bioshake is not the first EDSL for bioinformatics100

workflows (Goodstadt, 2010; Leipzig, 2016), to the best of our knowledge it is the first EDSL in101

Haskell and the first to use a deep type embedding to prevent invalid workflow specifications.102

2 IMPLEMENTATION103

2.1 Core data types104

Bioshake is build using a tagless-final style (Carette et al., 2009) around the following datatype:105

data a 7→ b

where

(7→) :: a → b → a 7→ b
infixl 1 7→

This datatype represents the conjunction of two stages a and b. As we are compiling to shake106

rules, the Buildable class represents a way to build thing of type a by producing shake actions:107

class Buildable a

where

build :: a → Action ()

Finally, as we are ultimately building files on disk, we use a typeclass to represent types that can108

be mapped to filenames:109

class Pathable a

where

paths :: a → [FilePath]

3/8

PeerJ reviewing PDF | (2019:02:35266:0:0:NEW 22 Feb 2019)

Manuscript to be reviewed

John Vivian
Repetition of bullet point #3

2.2 Defining stages110

A stage – for example aligning and sorting – is a type in this representation. Such a type is111

an instance of Pathable as outputs from the stage are files, and also Buildable as the stage is112

associated with some shake actions required to build the outputs. We give a simple example of113

declaring a stage that sorts bam files.114

Example 2 Consider the stage of sorting a bed file using samtools. We first define a datatype to115

represent the sorting stage and to carry all configuration options needed to perform the sort:116

data Sort = Sort

This datatype must be an instance of Pathable to define the filenames output from the stage.117

Naming can take place according to several schemes, but here we will opt to use hashes to name118

output files. This ensure the filename is unique and relatively short.119

instance Pathable a ⇒ Pathable (a 7→ Sort)
where

paths (a 7→ _) = let

inputs = paths a

in

[hash inputs ++ ”.sort.bed”]

In the above, hash :: Binary a ⇒ a → String is a cryptographic hash function such as sha1 with120

base32 encoding. Many choices are appropriate here.121

Finally, we describe how to sort files by making Sort an instance of Buildable:122

instance (Pathable a, IsBam a) ⇒ Buildable (a 7→ Sort)
where

build p@(a 7→ _) = let

[input] = paths a

[out] = paths p
in

cmd ”samtools sort” [input] [”−o”, out]

Note here that IsBam is a precondition for the instance: the sort stage is only applicable to BAM123

files. Likewise, the output of the sort is also a BAM file, so we declare that too:124

instance IsBam (a 7→ Sort)

The tag IsBam itself can be declared as the empty typeclass class IsBam a. See section 2.4 for a125

discussion of tags and their utility.126

2.3 Compiling to shake rules127

The workflows as specified by the core data types are compiled to shake rules, with shake128

executing the build process. The distinction between Buildable and Compilable types are that129

the former generate shake Actions and the latter shake Rules. The Compiler therefore extends130

the Rules monad, augmenting it with some additional state:131

type Compiler = StateT (S.Set [FilePath]) Rules

The state here captures rules we have already compiled. As the same stages may be applied in132

several concurrent workflows (i.e., the same preprocessing may be applied but different subsequent133

processing defined) the set of rules already compiled must be maintained. When compiling a134

rule, the state is checked to ensure the rule is new, and skipped otherwise. The rule compiler135

evaluates the state transformer, initialising the state to the empty set:136

compileRules :: Compiler () → Rules ()
compileRules p = evalStateT p mempty

4/8

PeerJ reviewing PDF | (2019:02:35266:0:0:NEW 22 Feb 2019)

Manuscript to be reviewed

John Vivian

John Vivian
Fix quotes

John Vivian
Unnecessary indent?

John Vivian

John Vivian

John Vivian
Fix quotes

A compilable typeclass abstracts over types that can be compiled:137

class Compilable a

where

compile :: a → Compiler ()

a 7→ b is Compilable if the input and output paths are defined, the subsequent stage a is138

Compilable, and a 7→ b is Buildable. Compilation in this case defines a rule to build the output139

paths with established dependencies on the input paths using the build function. These rules are140

only compiled if they do not already exist:141

instance (Pathable a, Pathable (a 7→ b), Compilable a, Buildable (a 7→ b))
⇒ Compilable (a 7→ b)

where

compile pipe(a 7→ b) = do

let outs = paths pipe

set ← get

when (outs ‘S.notMember‘ set) $ do

lift $ outs &%> _ → do

need (paths a)
build pipe

put (outs ‘S.insert‘ set)
compile a

2.4 Tags142

Bioshake uses tags to ensure type errors will be raised if stages are incompatible. We have143

already seen in example 2 the use of IsBam to ensure the input file format of Sort is compatible.144

By convention, Bioshake uses the file extension prefixed by Is as tags for filetype, e.g.,: IsBam,145

IsSam, IsVCF.146

Other types of metadata are used such as if a file is sorted (Sorted) or if duplicate reads have147

been removed (DeDuped) or marked (DupsMarked). These tags allow input requirements of148

sorting or deduplication to be captured when defining stages. Properties, where appropriate,149

can also automatically propagate down the workflow; for example, once a file is DeDuped all150

subsequent outputs carry the DeDuped tag:151

instance Deduped a ⇒ Deduped (a 7→ b)

Finally, the tags discussed so far have been empty type classes, however tags can easily carry152

more information. For example, bioshake uses a Referenced tag to represent the association of a153

reference genome. This tag is defined as154

class Referenced

where

getRef :: FilePath

instance Referenced a ⇒ Referenced (a 7→ b)

This tag allows stages to extract the path to the reference genome and automatically propagates155

down the workflow allowing identification of the reference at any stage.156

2.5 EDAM ontology157

EDAM (Ison et al., 2013) is an ontology containing terms and concepts that are prevalent in the158

field of bioinformatics. As it is a formal ontology, the terms are organised into a hierarchical tree159

structure, with each term containing reference to parent terms. EDAM can be used with the160

flat tagging structure introduced in the previous section through the use of template Haskell to161

establish the tree.162

Bioshake provides the EDAM ontology in the EDAM module. This module provides EDAM163

terms identified by their short name, along with some template Haskell for associating EDAM164

5/8

PeerJ reviewing PDF | (2019:02:35266:0:0:NEW 22 Feb 2019)

Manuscript to be reviewed

John Vivian
Should terms like `IsBam` be italicized as done previously? Or changed to code notation?

terms to types. For example, the FASTQ-illumina term (http://edamontology.org/format_1931)165

is represented by the tag FastqIllumina and a type can be tagged using the is template Haskell166

function, for example:167

import Bioshake.EDAM

data MyType = MyType

$(is ′′MyType ′′FastqIllumina)

Output of stages (e.g., types of a 7→ MyType) can equally be tagged using the isP template168

Haskell function:169

$(isP ′′MyType ′′FastqIllumina)

These template Haskell functions declare the given type to be instances of all parents of the170

EDAM term, allowing tag matching at any level in the hierarchy. These EDAM types can be171

used similarly to tags as described in section 2.4.172

2.6 Abstracting the execution platform173

In example 2, the shake function cmd is directly used to execute samtools and perform the build,174

however it is useful to abstract away from cmd directly to allow the command to be executed175

instead on (say) a cluster, cloud service, or remote machine. Bioshake achieves this flexibility by176

using free monad transformers to provide a function run – the equivalent of cmd – but where the177

actual execution may take place via submitting a script to a cluster queue, for example.178

To this end, the datatype for stages in bioshake are augmented by a free parameter to carry179

implementation specific default configuration – e.g., cluster job submission resources. In the180

running example of sorting a bed file, the augmented datatype is data Sort c = Sort c.181

2.7 Reducing boilerplate182

Much of the code necessary for defining a new stage can be automatically written using template183

Haskell. This allows very succinct definitions of stages increasing clarity of code and reducing184

boilerplate. Bioshake has template Haskell functions for generating instances of Pathable and185

Buildable, and for managing the tags.186

Example 3 Template Haskell can simplify example 2 considerably. First we have the augmented187

type definitions:188

data Sort c = Sort c

The instances for Pathable and the various tags can be generated with the template Haskell189

splice190

$(makeTypes ′′Sort [′′IsBam, ′′Sorted] [])

This splice generates a Pathable instance using the hashed path names, and also declares the191

output to be instances of IsBam and Sorted. The first tag in the list of output tags determines192

the file extension. The second empty list allows the definition of transient tags; that is the tags193

that if present on the input paths will hold for the output files after the stage. Finally, given a194

generic definition of the build195

buildSort t _ (paths → [input]) [out] =
run ”samtools sort” [input] [”-@”, show t] [”-o”, out]

the Buildable instances can be generated with the splice196

$(makeThreaded ′′Sort [′′IsBam] ′buildSortBam)

This splice takes the type, a list of required tags for the input, and the build function. Here, the197

build function is passed the number of threads to use, the Sort object, the input object and a198

list of output paths.199

6/8

PeerJ reviewing PDF | (2019:02:35266:0:0:NEW 22 Feb 2019)

Manuscript to be reviewed

http://edamontology.org/format_1931

3 RESULTS AND DISCUSSION200

We have presented a framework for describing and executing bioinformatics workflows. The201

framework is an EDSL in Haskell and built on shake. This allows us to leverage the robustness202

of shake, and also the power of Haskell’s type system to prevent many types of errors in workflow203

construction. This is of great benefit for bioinformatics workflows, as they tend to be long204

running and thus catching errors during compile reduces the debugging time significantly.205

Though this library is built around Shake as the execution engine, the core value lies in the206

unique abstraction and use of types to capture metadata. It is feasible to compile a specification207

to a different backend instead of Shake, such as Toil (Vivian et al., 2017) or Cromwell (Cromwell208

2015) via CWL (Amstutz et al., 2016) or WDL (OpenWDL 2012). This would allow leveraging209

of the cloud and containerisation facilities of Toil and Cromwell. The abstraction used may210

also be useful in other domains where long data-transformation stages are applied, such as data211

mining on large datasets.212

Though many errors are currently caught by the type system, there are still classes of errors213

that are not. Notably, the Pathable class instance maps stages to lists of files with unknown214

length. Thus, the number of files expected to be exchanged between two stages may differ,215

causing a runtime error. This could in principle be caught by using lists of typed length, however216

this would increase the complexity for users. Bioshake attempts to strike a balance between217

usability and type safe guarantees.218

4 CONCLUSIONS219

We have presented a unique EDSL in Haskell for specifying bioinformatics workflows. The220

Haskell type checker is used extensively to prevent specification errors, allowing many errors to be221

caught during compilation rather than runtime. To our knowledge, this is the first bioinformatics222

workflow framework in Haskell, as well as the first formalisation of bioinformatics workflows and223

their attributes in a type system from the Hindley–Milner family.224

ACKNOWLEDGEMENTS225

I thank Tony Papenfuss for supporting this work and helpful discussions. I also thank Leon di226

Stefano and Jan Schröder for helpful discussions.227

REFERENCES228

Amstutz, P., M. R. Crusoe, Nebojša Tijanić, B. Chapman, J. Chilton, M. Heuer, A. Kartashov,229

D. Leehr, H. Ménager, M. Nedeljkovich, M. Scales, S. Soiland-Reyes, and L. Stojanovic (2016).230

Common Workflow Language, v1.0. DOI: 10.6084/m9.figshare.3115156.v2.231

Carette, J., O. Kiselyov, and C.-C. Shan (Apr. 2009). “Finally tagless, partially evaluated: Tagless232

staged interpreters for simpler typed languages”. In: Journal of Functional Programming233

19.05, p. 509. DOI: 10.1017/s0956796809007205.234

Cromwell (2015). http://github.com/broadinstitute/cromwell.git. Accessed: 2018-09-25.235

Goodstadt, L. (Sept. 2010). “Ruffus: a lightweight Python library for computational pipelines”.236

In: Bioinformatics 26.21, pp. 2778–2779. DOI: 10.1093/bioinformatics/btq524.237

Ison, J., M. Kalas, I. Jonassen, D. Bolser, M. Uludag, H. McWilliam, J. Malone, R. Lopez,238

S. Pettifer, and P. Rice (Mar. 2013). “EDAM: an ontology of bioinformatics operations, types239

of data and identifiers, topics and formats”. In: Bioinformatics 29.10, pp. 1325–1332. DOI:240

10.1093/bioinformatics/btt113.241

Leipzig, J. (Mar. 2016). “A review of bioinformatic pipeline frameworks”. In: Briefings in242

Bioinformatics, bbw020. DOI: 10.1093/bib/bbw020.243

Mitchell, N. (Oct. 2012). “Shake before building”. In: ACM SIGPLAN Notices 47.9, p. 55. DOI:244

10.1145/2398856.2364538.245

OpenWDL (2012). http://openwdl.org. Accessed: 2018-09-25.246

Sadedin, S. P., B. Pope, and A. Oshlack (Apr. 2012). “Bpipe: a tool for running and man-247

aging bioinformatics pipelines”. In: Bioinformatics 28.11, pp. 1525–1526. DOI: 10.1093/248

bioinformatics/bts167.249

7/8

PeerJ reviewing PDF | (2019:02:35266:0:0:NEW 22 Feb 2019)

Manuscript to be reviewed

https://doi.org/10.6084/m9.figshare.3115156.v2
https://doi.org/10.1017/s0956796809007205
http://github.com/broadinstitute/cromwell.git
https://doi.org/10.1093/bioinformatics/btq524
https://doi.org/10.1093/bioinformatics/btt113
https://doi.org/10.1093/bib/bbw020
https://doi.org/10.1145/2398856.2364538
http://openwdl.org
https://doi.org/10.1093/bioinformatics/bts167
https://doi.org/10.1093/bioinformatics/bts167
https://doi.org/10.1093/bioinformatics/bts167
John Vivian

John Vivian
Shake

John Vivian

John Vivian
Shake

John Vivian

John Vivian

John Vivian
Avoid repetition if you can

Vivian, J., A. A. Rao, F. A. Nothaft, C. Ketchum, J. Armstrong, A. Novak, J. Pfeil, J. Narkizian,250

A. D. Deran, A. Musselman-Brown, H. Schmidt, P. Amstutz, B. Craft, M. Goldman, K.251

Rosenbloom, M. Cline, B. O’Connor, M. Hanna, C. Birger, W. J. Kent, D. A. Patterson,252

A. D. Joseph, J. Zhu, S. Zaranek, G. Getz, D. Haussler, and B. Paten (Apr. 2017). “Toil253

enables reproducible, open source, big biomedical data analyses”. In: Nature Biotechnology254

35.4, pp. 314–316. DOI: 10.1038/nbt.3772.255

8/8

PeerJ reviewing PDF | (2019:02:35266:0:0:NEW 22 Feb 2019)

Manuscript to be reviewed

https://doi.org/10.1038/nbt.3772

