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ABSTRACT
Neisseria meningitidis and N. gonorrhoeae are closely related pathogenic bacteria. To
compare their population genetics, we compiled a dataset of 1,145 genes found across
20 N. meningitidis and 15 N. gonorrhoeae genomes. We find that N. meningitidis
is seven-times more diverse than N. gonorrhoeae in their combined core genome.
Both species have acquired the majority of their diversity by recombination with
divergent strains, however, we find that N. meningitidis has acquired more of its
diversity by recombination than N. gonorrhoeae. We find that linkage disequilibrium
(LD) declines rapidly across the genomes of both species. Several observations
suggest that N. meningitidis has a higher effective population size than N. gonorrhoeae;
it is more diverse, the ratio of non-synonymous to synonymous polymorphism is
lower, and LD declines more rapidly to a lower asymptote in N. meningitidis. The two
species share a modest amount of variation, half of which seems to have been acquired
by lateral gene transfer and half from their common ancestor. We investigate
whether diversity varies across the genome of each species and find that it does. Much
of this variation is due to different levels of lateral gene transfer. However, we also find
some evidence that the effective population size varies across the genome. We test
for adaptive evolution in the core genome using a McDonald–Kreitman test and
by considering the diversity around non-synonymous sites that are fixed for different
alleles in the two species. We find some evidence for adaptive evolution using both
approaches.
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INTRODUCTION
The two closely related bacteria Neisseria meningitidis and N. gonorhoeae are major
human pathogens. N. gonorrhoeae is the causative agent of the sexually transmitted
disease gonorrhoeae which currently infects 106 million people each year worldwide (WHO,
2012). When untreated, gonoccocal infections can result in long-term problems such
as persistent urethritis, cervicitis, proctitis, pelvic inflammatory disease, infertility,
first-trimester abortion, ectopic pregnancy and maternal death (WHO, 2012).
They also increase the risk of acquiring and transmitting HIV. In cases of pregnancy,
N. gonorrhoeae infections can cause severe damages to neonatal health (WHO, 2012).
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In contrast, N. meningitidis is a human commensal infecting approximately 10% of
the healthy human population (Claus et al., 2005; Yazdankhah et al., 2004), which only
occasionally causes disease. However, it can cause meningococcal meningitidis and
septicaemia with mortality rates that can reach 50% when untreated, and the global
disease burden is estimated to be ∼500,000 cases a year (Roberts, 2008). Among
the different micro-organisms that can cause meningitidis, it is regarded as one of the
most important because of its ability to cause large epidemics.

Here, we consider several aspects of the population genetics of these bacterial species.
The two species are sister taxa (Bennett et al., 2012), and N. meningitidis is known to
be considerably more diverse than N. gonorrhoeae within the genes that they share in
common (Bennett et al., 2007, 2012). The first problem we address is why the two taxa
differ in their diversities. There are several potential explanations. First, N. gonorrhoeae
might have a lower effective population size, either because it evolved from N. meningitidis
and went through a bottleneck when the species was formed (Vazquez et al., 1993), or
because it generally has a lower effective population size, possibly because it has a lower
census population size. Second, N. gonorrhoeae might have a lower mutation rate than
N. meningitidis. Third, N. gonorrhoeaemight acquire less diversity through recombination
than N. meningitidis. Both N. gonorrhoeae and N. meningitidis are known to be
naturally transformable, and it has been known for many years that both species acquire
diversity, within their core genome, by homologous recombination with genetically
divergent strains (Spratt, 1988; Spratt et al., 1989). We refer to this process as homologous
lateral gene transfer (hLGT), to differentiate it from the acquisition of accessory genes by
non-homologous lateral gene transfer (nhLGT) (however, note that the acquisition of
new genes generally involves homologous recombination with flanking genes, so nhLGT
will typically involve some hLGT; Kong et al., 2013). hLGT leads to mosaic genes, in
which parts of the gene have been acquired from a highly divergent strain or a different
bacterial species. In fact, N. meningitidis and N. gonorrhoeae were some of the first bacteria
in which this form of recombination was demonstrated (Spratt, 1988; Spratt et al., 1989).
It has been estimated that N. meningitidis acquires single nucleotide polymorphisms
(SNPs) through hLGT at a rate between 4 and 100� higher than via mutation (Feil et al.,
2001; Hao et al., 2011; Kong et al., 2013; Vos & Didelot, 2009). In contrast this ratio
has recently been estimated to be only about twofold in N. gonorrhoeae (Ezewudo et al.,
2015). It is unclear whether these ratios are significantly different. We investigate
this here.

The second question we address is whether diversity varies across the core genome of
the two species. Genetic diversity is known to vary across the genome of many species.
This was originally demonstrated in Drosophila melanogaster by Begun & Aquadro
(1992) who showed that diversity was positively correlated to the rate of recombination.
This was thought to be due to the effects of linked selection, in the form of genetic
hitch-hiking (Smith & Haigh, 1974) and background selection (Charlesworth, Morgan &
Charlesworth, 1993), depressing diversity in regions of the genome with low rates of
recombination. Variation in diversity across the genome has been demonstrated in many
other species including the bacterium Escherichia coli (Maddamsetti et al., 2015;
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Martincorena, Seshasayee & Luscombe, 2012). The reasons for this variation remain
unclear (Chen & Zhang, 2013; Maddamsetti et al., 2015; Martincorena & Luscombe, 2013).

The final question we address is whether N. meningitidis and N. gonorrhoeae have
undergone adaptive evolution. N. meningitidis and N. gonorrhoeae inhabit different niches
and one presumes they have undergone adaptive evolution to allow them to do this.
Some of this adaptation may have been through the acquisition of new genes via nhLGT,
but there might also be adaptation in the core genome. Two recent analyses using the
dN/dS test on the core genome have found limited evidence for adaptive evolution in
N. meningitidis (Yu et al., 2014) and N. gonorrhoeae (Ezewudo et al., 2015), but this test
is known to be very conservative. Here, we apply two additional tests.

MATERIALS AND METHODS
Dataset
All 15 genomes of N. gonorrhoeae that were present in Genbank in April 2018 (NCCP11945
(Chung et al., 2008), FA19 (Abrams, Trees & Nicholas, 2015), FA6140 (Abrams, Trees &
Nicholas, 2015), 35/02 (Abrams, Trees & Nicholas, 2015), FA1090, MS11, FA19, FA6140,
35/02, 32867, 34530, 34769, FDAARGOS 204, FDAARGOS 205, FDAARGOS 207,
NCTC13799, NCTC13798, NCTC13800) and 20 randomly selected genomes of
N. meningitidis (MC58 (Tettelin et al., 2000), Z2491 (Parkhill et al., 2000), FAM18 (Bentley
et al., 2007), 053442 (Peng et al., 2008), alpha14 (Schoen et al., 2008), 8013 (Rusniok
et al., 2009), alpha710 (Joseph et al., 2010), WUE 2594 (Schoen et al., 2011), G2136
(Budroni et al., 2011), M01-240149 (Budroni et al., 2011), M04-240196 (Budroni et al., 2011),
H44/76 (Budroni et al., 2011), M01-240355 (Budroni et al., 2011), NZ-05/33 (Budroni et al.,
2011), 510612 (Zhang et al., 2014), NM3686, M7124, NM3682, NM3683, L91543)
were downloaded from Genbank. From these all protein coding sequences were extracted.
We retained those coding sequences that started NTG, terminated with TAA, TAG or
TGA and had a length that is a multiple of three. We identified orthologs using reciprocal
BLAST, with an e-value threshold of 0.00001; i.e. each protein coding gene in each genome
was BLASTed against the genes of FA1090, and then the best hit was BLASTed back
onto the original genome, retaining only those hits in which the original query sequence was
the best hit. Similar selections of genes were obtained using alternative starting genomes.
The protein sequences of the orthologs were aligned using MUSCLE (Edgar, 2004).
We selected genes where the alignments meet these criteria: the number of gaps is lower than
1% of the length of the sequence and the total number of nucleotides in gaps is lower than
10% of the total number of nucleotides in the sequence. Sequences with internal stop
codons were removed. This resulted in a dataset of 1,145 genes belonging to the core genome
of bothN. gonorrhoeae andN. meningitidis. We used the BioPython Phylo library (Cock et al.,
2009) to estimate a phylogeny of the strains based on the core genome alignment.

Analyses
In most analyses we treated genes independently. However, to detect hLGT we ran
ClonalFrameML (Didelot & Wilson, 2015) on a concatenation of the protein coding
sequences from the core genome of both species. Genes were concatenated randomly
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without respect for synteny. For some analyses we masked those regions inferred to be
due to hLGT in the strains affected.

We investigated whether linkage disequilibrium (LD) declines with the distance
between sites by measuring the LD between all pairs of polymorphisms within each gene;
we did not concatenate the genes or align whole genomes, because with the gain and loss
of genes the distance between sites differs depending on the strains being analysed.
We measured LD using the r2 statistic (Hill & Robertson, 1968). LD values were then
assigned to bins based on the distance between the two sites—10 bp bins between
1–100 bp, a bin from 101–200 bp and then 200 bp bins between 201–800 bp. We took the
average LD and distance between sites for each bin in a manner which weighted each gene
equally—we estimated the average LD and distance for pairs of sites in each bin for
each gene and then averaged those values across genes. To estimate the approximate
half-life of LD, we found the distance between sites that gave approximately half the LD
between the LD for the 1–10 bp bin and the asymptotic value of the LD.

Because r2 is constrained to be positive, the expected value of r2 is greater than zero even
when there is no LD. To calculate the expected value of r2 when there is no LD, we
considered two bi-allelic loci with alleles at frequencies p1 and p2. The expected frequencies
of the four haplotypes are p1p2, p1(1-p2) : : : etc. from which we generated four random
variates from a multinomial distribution for a sample size of N chromosomes using
Mathematica version 11; for each sample of haplotypes we calculated r2. We repeated this
procedure 10,000 times and calculated the mean to estimate the expected value of r2.
We found that the expected value of r2 is independent of the allele frequencies.

To investigate the relationship between the non-synonymous, pN, and synonymous, pS,
nucleotide diversity we used a variation of the method of James, Castellano & Eyre-Walker
(2017) to combine data from different genes. If the distribution of fitness effects of
new mutations is a gamma distribution (assuming most mutations are deleterious) then
log(pN) is expected to be linearly correlated to log(pS) if there is variation in Ne (Welch,
Eyre-Walker & Waxman, 2008). However, for many genes either pN or pS is zero,
hence we need to combine genes together. We can do this by splitting the synonymous
polymorphisms into two groups according to whether they were in an odd or even
numbered codon and then using the two groups to estimate two synonymous nucleotide
diversities that have independent sampling errors, pS1 and pS2. One of these, pS1, was used
to rank and group genes, and the other was averaged across genes in the group to give
an unbiased estimate ofpS for the group.pN was also averaged across the genes in the group.

To investigate the diversity around sites that are fixed between N. meningitidis and
N. gonorrhoeae for different alleles we focused on genes that had at least one synonymous
polymorphism and one fixed difference between the two species. For each fixed difference,
we identified all the synonymous polymorphisms that were within one kb and we
grouped them by windows of 100 bp. Since, background selection can potentially lead to a
lower dip in diversity around fixed non-synonymous mutations we normalised the diversity
around fixed synonymous and non-synonymous substitutions by dividing the number
of synonymous polymorphisms in a particular window by the total number of synonymous
polymorphisms in the gene, multiplied by the window size over the gene length.
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RESULTS
Recombination and mutation
We are interested in how genetic variation is generated and distributed in the twoNeisseria
species N. meningitidis and N. gonorrhoeae. Although, the presence and absence of genes
in the strains of the two species is an important aspect of this problem, here we focus
on the genetic variation that is present in the core genome that is common to both species.
Using reciprocal BLAST, we identified 1,145 genes present across the 15 genomes of
N. gonorrhoeae and 20 genomes of N. meningitidis that we analysed. The total length of
this core genome is 1.1 MB long. Defining a polymorphism as a site that contains two
or more alleles within either of the two species, we find that N. meningitidis is ∼7.6-fold
more diverse than N. gonorrhoeae consistent with previous qualitative reports (Bennett
et al., 2007, 2012). The difference in diversity is more apparent at synonymous (∼8.9-fold)
than non-synonymous (∼5.5-fold) sites (Table 1), a pattern we return to later. The two
species share a modest amount of diversity; 35% of all polymorphisms in N. gonorrhoeae
are shared with N. meningitidis, and 4.5% of those in N. meningitidis are shared with
N. gonorrhoeae.

It is well known that N. meningitidis and N. gonorrhoeae undergo substantial levels of
homologous recombination with divergent strains, possibly from other species of bacteria.
This leads both to the acquisition of new genes, but also to the acquisition of parts of
genes that are already present in the genome; we refer to these processes as nhLGT and
hLGT, respectively. To quantify the role that hLGT plays in the acquisition of diversity
in the core genome we ran ClonalFrameML (Didelot & Wilson, 2015). The method
estimates the ratio of the rate at which recombination tracts initiate (R) and the rate of
mutation (θ), both multiplied by twice the effective population size, Ne, along with the
average recombination tract length, d, and the proportion of sites that differ between the
imported and resident sequences, m. Estimates of these parameters are given in Table 2.

Table 1 Nucleotide diversity estimates across all sites in the core genome (pi) and at zerofold
non-synonymous sites (piN) and fourfold synonymous sites (piS).

p pS pN

N. gonorrhoeae 0.0029 (0.0008) 0.007 (0.002) 0.0014 (0.0004)

N. meningitidis 0.022 (0.007) 0.06 (0.02) 0.007 (0.002)

Ratio 7.6 8.6 5.0

Table 2 Recombination rate estimates obtained from ClonalFrameML along with their 95% confidence intervals.

Species R/θ δ m (%) r/m θ (� 10-3) R (� 10-4)

N. gonorrhoeae 0.41 (0.39, 0.43) 70 (67, 72) 6.9 (6.8, 7.1) 2.0 (1.8, 2.2) 1.0 (0.8, 1.2) 4.0 (3.0, 5.0)

N. meningitidis 1.2 (1.2, 1.3) 99 (98, 100) 5.3 (5.3, 5.4) 6.4 (6.2, 6.7) 3.0 (2.5, 3.5) 36 (30, 44)

Ratio (N. meningitidis/N. gonorrhoeae) 3.0 1.4 0.77 3.2 3.0 9.3

Note:
Given is the rate at which recombination tracts initiate (R) relative to the rate of mutation (theta), both multiplied by the effective population size, the average length of
recombination tracts (delta) and the proportion of sites that differ to the resident sequence (mu), along with the rate at which sites change due to recombination relative to
mutation (r/m).
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The overall effect of recombination relative to mutation can be estimated as Rdm/θ = r/m,
where r and m are the rates at which variants are introduced into a genome by
recombination and mutation, respectively.

InN. meningitidis we find that recombination introduces 6.43 (95% CI [6.16–6.71]) times
more variation than mutation, whereas in N. gonorrhoeae it introduces 1.97 (1.76–2.19)
times as much. In N. meningitidis the r/m ratio has previously been estimated to be 5.37
(Hao et al., 2011), 6.71 (Vos & Didelot, 2009), 16.4 (Kong et al., 2013) and 100 (Feil et al.,
2001). Our estimate is similar to the first two estimates, but substantially lower than
the last two estimates. Both of these latter estimates were obtained from very closely
related strains and hence may reflect the value of r/m before natural selection has had an
opportunity to operate. In N. gonorrhoeae it has been estimated that 2.2� as much
variation is introduced by recombination (Ezewudo et al., 2015), which is very similar
to our estimate. The estimates of r/m mean that ∼87% of all polymorphisms in
N. meningitidis are a consequence of recombination, whereas in N. gonorrhoeae it is 66%.
The difference between the two species in the influence of recombination is largely
driven by a difference in the ratio of the rate at which recombination is initiated vs.
the mutation rate (R/θ), since although the tract lengths are estimated to be on
average slightly longer in N. meningitidis, they introduce slightly less variation than
N. gonorrhoeae (Table 2).

ClonalframeML estimates the ratio of R and θ but not their absolute values. However, we
can estimate the absolute value as follows. We note that the nucleotide diversity is due to
the input of mutation and the input of recombination: i.e. p = θ + Rdy. If we note that
ClonalframeML gives us an estimate of R/θ we can rewrite this equation as p = θ + θdyR/θ,
from which we can estimate θ = p/(1 + dyR/θ). Estimates of R and θ are given in
Table 2. From this it is evident that the nucleotide diversity is higher in N. meningitidis
both because of a threefold greater mutational input and a ninefold greater rate at which
recombination tracts initiate in N. meningitidis, at the population level (i.e. when the
tract length initiation rate and mutation rate are multiplied by Ne).

The parameters R and θ are the rates of recombination initiation and mutation,
multiplied by the effective population size. Hence, a simple reason why both parameters
are higher in N. meningitidis might simply be that N. meningitidis has a higher Ne than
N. gonorrhoeae. To test this idea, we masked all sequences that were identified as
due to hLGT by ClonalframeML and estimated the levels of non-synonymous and
synonymous diversity. Under a model in which synonymous mutations are neutral and
non-synonymous mutations are deleterious, but drawn from some distribution, we expect
pN/pS to be lower in species with high Ne; this is because selection is more effective in
species with higher Ne and hence the proportion of mutations that are effectively neutral is
lower (Ohta, 1972, 1977, 1992). This is what we find—pN/pS = 0.095 (SE = 0.0023) in
N. meningitidis vs. 0.23 (0.014) in N. gonorrhoeae. These are significantly different to each
other (normal test z = 9.5, p < 0.001).

As we described above, N. meningitidis and N. gonorrhoeae share a modest amount
of genetic variation. It is of some interest whether this is a consequence of hLGT or
the inheritance of genetic variation from their common ancestor. If we exclude those
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sequences inferred to be due to hLGT we find that the two species still share a modest
amount of genetic variation -15.5% of all N. gonorrhoeae polymorphisms are shared
with N. meningitidis and 2.4% of N. meningitidis polymorphisms are shared with
N. gonorrhoeae, approximately half of all shared polymorphisms in each case, suggesting
that some proportion of the shared variation originated from their common ancestor.

Linkage disequilibrium
Homologous recombination can both increase and decrease LD; homologous
recombination with divergent strains, of the sort detected by ClonalFrameML, generates
LD because it simultaneously introduces many polymorphisms that are initially linked
to each other. However, homologous recombination amongst a set of closely related
strains breaks-up LD. To investigate how these two forces play out, we calculated the LD
between all pairs of sites within each gene and plotted these as a function of the
distance between sites. As expected, we observe a decline in LD with distance (Fig. 1A).
Both species show similar patterns with LD declining rapidly; in N. meningitidis the
approximate half-life is 30 bp and in N. gonorrhoeae it is 100 bp. The decline could be due
to two processes. If most hLGT fragments tend to be short, with decreasing numbers
of long fragments, then LD will be greater between closely linked sites. However, we also
expect a decline due to recombination between closely related strains, and in fact we
observe a decline even when we focus on those parts of the genome which do not appear to
have undergone hLGT (Fig. 1B).

In both species LD asymptotes above zero. The non-zero asymptote could be due to
one of three reasons—statistical bias, population substructure and a balance between
genetic drift and recombination. The statistical bias arises because our measure of LD,
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Figure 1 Decay in linkage disequilibrium with the distance between sites. Linkage disequilibrium, as measured by r2 (Hill & Robertson, 1968),
between pairs of polymorphic sites as a function of the distance between sites for (A) all sites and (B) for those sites not inferred to have undergone hLGT.
Each point represents the average r2 between all pairs of points separated by a certain distance in bins of 10 bp between 0 and 100 bp, a bin of 101–200 bp
and then bins of 200 bp up to 800 bp. N. meningitidis in green, N. gonorrhoeae in red. Full-size DOI: 10.7717/peerj.7216/fig-1
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r2 (Hill & Robertson, 1968), cannot be negative, so positive values of r2 are expected even
if there is no LD if sample sizes are small; for sample sizes of 15 and 20 strains, the
expected value of r2 is 0.079 and 0.050, respectively (see Materials and Methods), so the
asymptote is clearly above this level. Both, N. meningitidis and N. gonorrhoeae have been
shown to have some level of population structure so this is the likely to be part of the
explanation (Budroni et al., 2011; Joseph et al., 2011). However, the slower decay in LD, and
higher asymptote in N. gonorrhoeae, is consistent with N. gonorrhoeae having a smaller Ne

than N. meningitidis—i.e. the non-zero asymptote might in part be caused by a
balance between genetic drift creating LD, and recombination breaking it down.

Diversity across the genome
Nucleotide diversity is known to vary across the genomes of many organisms. This is
largely thought to be driven by variation in the mutation rate or variation in the effects of
linked selection. However, in bacteria, and particularlyN. meningitidis andN. gonorrhoeae,
it could also be due to variation in the frequency of hLGT. All of these processes are
expected to affect synonymous and non-synonymous diversity to greater or lesser extents,
and indeed we observe a positive correlation between non-synonymous and synonymous
diversity, demonstrating that both vary across the genome in concert. At least part of
this pattern is driven by hLGT because genes with hLGT show higher pN and pS values
than genes without any evidence of hLGT (Fig. 2).

However, to investigate whether there is also variation in the effective population size
across the genome we removed sequences inferred to be due to hLGT by ClonalFrameML
from our data. This reduces our data substantially and so to reduce statistical sampling
issues we used the method of James, Castellano & Eyre-Walker (2017) to combine data
from different genes. We find that pN and pS are still significantly correlated suggesting the
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Figure 2 Correlation between non-synonymous and synonymous diversity across the genome. The correlation between the log of the
non-synonymous nucleotide diversity and the log of the synonymous diversity for core genes in (A) N. meningitidis and (B) N. gonorrhoeae. Points in
green are genes with evidence of hLGT and red are those genes without evidence of hLGT. Note that some genes are excluded because they have either
no non-synonymous or synonymous diversity. Full-size DOI: 10.7717/peerj.7216/fig-2
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correlation between them is not just driven by hLGT (N. gonorrhoeae slope = 0.23,
p < 0.001; N. meningitidis slope = 0.53, p < 0.001) (Fig. 3). The remaining correlation could
be due to variation in the mutation rate or variation in the effects of linked selection.
We can test whether there is variation in the effects of linked selection by considering the
slope between log(pN) and log(pS). Under a model in which there is no variation in
linked selection then the slope of this relationship is expected to be one, and if there is
variation in linked selection the slope if expected to be less than one (Galtier, 2016;
Welch, Eyre-Walker & Waxman, 2008). Linked selection has two consequences. First, it
increases the stochasticity in allele frequencies. For example, the spread of an advantageous
mutation or the elimination of deleterious genetic variation, removes linked genetic
diversity; whether a linked mutation survives either process is a random process depending
on whether the advantageous or deleterious mutation occurs in linkage with the target
mutation. This can be thought of as reduction in the effective population size. Second,
genetic hitch-hiking leads to non-equilibrium dynamics. After a selective sweep, genetic
diversity will recover, but this happens faster for deleterious than neutral mutations
(Brandvain &Wright, 2016;Do et al., 2015;Gordo & Dionisio, 2005). In both cases we expect
a negative correlation between pN/pS and pS, which manifests itself in a positive correlation
between log(pN) and log(pS) but with a slope of less than one (James, Castellano &
Eyre-Walker, 2017). We find that the slope of the relationship between log(pN) and log(pS)
is 0.23 (SE = 0.052) and 0.59 (0.070) for N. gonorrhoeae and N. meningitidis, respectively,
in both cases significantly less than one (p < 0.001); i.e. pN increases as pS increases but
not as fast. The slopes are significantly different to each other (t-test, p < 0.001).
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Figure 3 Correlation between non-synonymous and synonymous diversity excluding regions with
evidence of hLGT. The correlation between the log of the non-synonymous nucleotide diversity plot-
ted and the log of the synonymous diversity for regions of the genome that have not undergone hLGT.
Green is N. meningitidis, red is N. gonorrhoeae. Also shown are the lines of best fit.

Full-size DOI: 10.7717/peerj.7216/fig-3
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Adaptive evolution
N.meningitidis andN. gonorrhoeae are ecologically quite different and one presumes the two
species have undergone adaptation to live in their respective environments. Some of
this adaptation will have come about through the acquisition of whole genes through
nhLGT. However, some of the adaptation may have occurred within the core genome of
the two species either by new mutations, standing genetic variation, or hLGT. To
investigate whether there has been adaptation in the core genome we used
two approaches. First, we used the McDonald & Kreitman (1991) approach to estimate
the rate of adaptive evolution (Eyre-Walker, 2006; Fay, Wycoff & Wu, 2001). In this
method the numbers of non-synonymous and synonymous substitutions (i.e. differences
between the two species, dN and dS, respectively) are compared to the numbers of
non-synonymous and synonymous polymorphisms (pN and pS, respectively). Under
a neutral model in which mutations are either neutral or strongly deleterious we expect
dN/dS = pN/pS (McDonald & Kreitman, 1991). In contrast if there are slightly deleterious
non-synonymous mutations we expect dN/dS < pN/pS, and if there are some advantageous
mutations we expect dN/dS > pN/pS (Eyre-Walker, 2006; Fay, Wycoff & Wu, 2001).
Summing dN, dS, pN and pS we calculate the fixation index FI = dN pS/dS pN (Gojobori et al.,
2007); adaptive evolution is indicated if FI >1.

We find that our estimate of FI differs if we use the polymorphism data of N.
meningitidis orN. gonorrhoeae; using the SNP data ofN. meningitidis we estimate that FI is
significantly greater than one suggesting adaptive evolution has occurred (FI = 1.51
with 95% Cis = 1.41 and 1.61), but if we use the SNP data ofN. gonorrhoeae, our estimate is
significantly less than one (FI = 0.92 (0.83, 0.99)). Estimates less than one can occur if
there are slightly deleterious mutations (SDMs) segregating, but even if we restrict our
analysis to common polymorphisms, which should remove many of the SDMs
(Charlesworth & Eyre-Walker, 2008; Fay, Wycoff &Wu, 2001), we find that the FI <1 using
the SNP data of N. gonorrhoeae (using SNPs with allele frequencies above 15%, FI = 0.78
(0.78, 0.88)). An explanation for why FI differs between the two species is that either
N. meningitidis has undergone population expansion, or N. gonorrhoeae has undergone
contraction. If there are SDMs then population size expansion leads to an overestimate of
FI whereas contraction leads to an underestimate (Eyre-Walker, 2002; McDonald &
Kreitman, 1991). As we argue above, a simple explanation for why N. meningitidis is more
diverse than N. gonorrhoeae is that N. meningitidis has a higher Ne. We find no evidence
of expansion or contraction amongst the current strains—Tajima’s D (Tajima, 1989),
a measure of a skew in the site frequency spectrum away from what we expect for neutral
mutations in a stationary population size is close to zero and not significantly different
to zero in both species in the regions of the genome that have no evidence of hLGT
(Tajima’s D = -0.073 and -0.093 in N. meningitidis and N. gonorrhoeae, respectively),
consistent with previous analyses in N. meningitidis (Joseph et al., 2011). However, the
expansion or contraction in either N. meningitidis or N. gonorrhoeae could have occurred
sometime in the past which would not be visible to an analysis using Tajima’s D, but
which might still affect the FI.
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A second approach to test for adaptive evolution, is to investigate whether there is a dip
in genetic diversity around putatively advantageous mutations (Sattath et al., 2011)—as
advantageous mutations spread through a population it reduces diversity in its proximity.
We find that synonymous diversity is lower close to sites that are fixed for different
nucleotides in the two species, and this dip is significantly greater for non-synonymous
than synonymous fixed differences when considering diversity in N. meningitidis (p < 0.001
for distances 1–100, 101–200 and 201–300 bp), consistent with a proportion of non-
synonymous mutations being fixed by positive adaptive evolution; a similar pattern is not
evident in N. gonorrhoeae, possibly because it is less diverse.

There is, however, an alternative explanation for the greater dip around non-synonymous
substitutions; if the strength of background selection (Charlesworth, Charlesworth &
Morgan, 1995) varies across the genome, then regions with high levels of background
selection will have low diversity but will tend to also fix slightly deleterious non-synonymous
mutations. To investigate whether there is evidence of this, we considered whether the ratio
of the non-synonymous to synonymous substitution rates, log(dN/dS), was correlated to
synonymous diversity, log(pS). We again use the method of James, Castellano & Eyre-Walker
(2017) to combine data from different genes and find that a strong negative correlation
in N. meningitidis (slope = -0.10, p = 0.018) but not in N. gonorrhoeae (slope = -0.001,
p = 0.97). This suggests that background selection might be a factor in N. meningitidis.
To take into account the potential variation in background selection, we normalised
the data from each gene by dividing the number of synonymous SNPs in each window
by the average diversity in each gene. This will account for variation in background
selection at a gene level, but not at a sub-gene level. The normalised data show a greater
dip in diversity for fixed non-synonymous than synonymous substitutions in both
N. meningitidis (combining t-test results from the three closest points, p < 0.001), and
N. gonorrhoeae (p = 0.0024) (Fig. 4) although the differences are not large.
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Figure 4 Synonymous diversity around sites fixed for either non-synonymous or synonymous substitutions. Average synonymous diversity in
(A) N. meningitidis and (B) N. gonorrhoeae around sites that are fixed for either a non-synonymous (red) or synonymous (green) substitution
between N. meningitidis and N. gonorrhoeae. Full-size DOI: 10.7717/peerj.7216/fig-4
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DISCUSSION
We have investigated several aspects of the comparative population genetics of the two
bacteria N. meningitidis and N. gonorrhoeae. We find, as others have (Bennett et al., 2007,
2012), that N. meningitidis is substantially more diverse than N. gonorrhoeae, but that
the two species share a moderate amount of diversity in the genes that they have in
common. This shared diversity could have been a consequence of ancestral polymorphism
that has been inherited by both species, or due to hLGT transferring variation between
the two. We find a substantial fraction is indeed due to hLGT, since if we remove the
fraction of the genome that appears to have undergone hLGT, the fraction of shared
polymorphism drops considerably. However, there is some diversity that appears to
have been inherited from the ancestor.

In both species we find that most of their genetic diversity has been acquired by
recombination, rather than by mutation. In N. meningitidis we estimate that the total
input from hLGT is sixfold greater than from mutation; this is in line with the
estimates of Hao et al. (2011) and Vos & Didelot (2009), but lower than two other
estimates (Feil et al., 2001; Kong et al., 2013). Both of these high estimates were derived
by considering very closely related strains. If hLGT events are on average more
deleterious than single nucleotide changes then we expect r/m estimates to be greater for
more closely related strains, because natural selection has had more opportunity to
remove the deleterious mutations in distantly related strains. This has the implication
that r/m may be far higher amongst newly arising mutations than often thought.
In N. gonorrhoeae we find the input of hLGT is twofold greater than mutation,
consistent with the one previous estimate performed on a similar selection of strains
(Ezewudo et al., 2015).

N. meningitidis might be more diverse than N. gonorrhoeae either N. meningitidis has
a higher mutation rate, a greater rate of hLGT or a higher effective population size.
Several lines of evidence suggest that N. meningitidis has a higher Ne. First, N. meningitidis
has higher values of both R and θ, where R and θ are estimates of the rate at which
recombination initiates and the mutation rate, multiplied by Ne. Second, pN/pS is lower
in N. meningitidis in the fraction of the genome which does not seem to have undergone
hLGT. Third, LD declines faster in N. meningitidis and asymptotes at a lower level.
However, this does not preclude a role for either faster rates of mutation or recombination
in the greater diversity in N. meningitidis.

It is possible that the lower Ne in N. gonorrhoeae is due to a bottleneck at the time when
N. gonorrhoeae was formed, assuming that it is a derivative of N. meningitidis (Vazquez
et al., 1993). Alternatively, it may be due to the fact that N. gonorrhoeae has a lower
census population size. Currently ∼10% of the human population is asymptomatically
infected with N. meningitidis (Claus et al., 2005; Yazdankhah et al., 2004), whereas levels of
N. gonorrhoeae infection are thought to be very low—between 1 and 170 cases per 100,000
individuals in Western Europe and America in 2017 (www.cdc.gov, ecdec.europa.eu).
Hence, although there seems to be a poor correlation between census and effective
population size across species (Bazin, Glemin & Galtier, 2006; Leffler et al., 2012;
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Lewontin, 1974; Romiguier et al., 2014), we predict N. meningitidis to have a much larger
Ne than N. gonorrhoeae, simply because it infects many more people.

In addition to the influence of hLGT we see the signature of recombination between
strains of the same species breaking down LD, since LD decreases with increasing distance
between sites. Similar patterns have been previously reported in both N. meningitidis
(Budroni et al., 2011) andN. gonorrhoeae (Arnold et al., 2018) but these studies used different
LD statistics and so it is hard to determine what the comparative patterns are. The patterns
are similar in the two species, but they are consistent with a difference in Ne since the
decay in LD is faster in N. meningitidis and asymptotes at a slightly lower value. In both
species the asymptote is above what is expected under free recombination even taking into
account sampling error and the fact that r2 cannot be negative (see above). The asymptote
might be above this level for two reasons. First, there might be a balance between drift
and recombination. In a gene conversion model of recombination, a non-zero asymptote is
expected because once sites are further apart than the gene conversion tract length, then
increasing distance does not increase the rate of recombination. The asymptote is then
determined by a balance between drift increasing LD, and recombination breaking it down.
The second explanation is that there is population sub-structure in both species. It has been
argued, based on the phylogeny of strains that there is substructure in N. meningitidis
(Budroni et al., 2011; Kong et al., 2013) and N. gonorrhoeae (De Silva et al., 2016; Ezewudo
et al., 2015; Grad et al., 2016; Lee et al., 2018). In N. meningitidis it has been suggested
that this structure arises because different sets of strains have different restriction
modification systems (Budroni et al., 2011). However, the correspondence between clades
of strains and these systems is not clear cut (Kong et al., 2013).

We find as others have found in some other species, that diversity varies across the
genome in N. meningitidis and N. gonorrhoeae, and that this variation affects both
synonymous and non-synonymous sites. This is in large part driven by hLGT; regions of
the genome with high rates of hLGT have high diversity. However, when we focus
on the part of the genome that is inferred not to have undergone hLGT we find that levels
of non-synonymous and synonymous diversity are correlated, but in a manner which
demonstrates that pN/pS declines with increasing pS. A similar pattern has been
observed within the genomes of various eukaryotes (Castellano, James & Eyre-Walker,
2018; Gossmann, Woolfit & Eyre-Walker, 2011; Murray et al., 2017) as well as between
eukaryotic species (Chen, Glemin & Lascoux, 2017; Galtier, 2016; James, Castellano &
Eyre-Walker, 2017). This pattern is consistent with an influence of linked selection on the
genome—regions of the genome with high levels of linked selection have low pS, but
relatively high levels of pN. Linked selection can influence diversity in two ways. First,
both background selection and genetic hitch-hiking can reduce the effective population
size of a genomic region. Second, hitch-hiking can lead to non-equilibrium dynamics
which can affect the relative levels of selected and neutral diversity; after a hitch-hiking
event deleterious genetic diversity will return to its equilibrium value faster than neutral
diversity (Brandvain & Wright, 2016; Do et al., 2015; Gordo & Dionisio, 2005).

N. meningitidis and N. gonorrhoeae occupy distinct niches and one might presume
that they have undergone adaptive evolution. Such adaptation might have been
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achieved through the acquisition of new genes, and/or adaptation in their core genomes.
We have tested for adaptive evolution in the core genome using two approaches—a
McDonald–Kreitman test in which numbers of non-synonymous and synonymous
substitutions are compared to numbers of non-synonymous and synonymous
polymorphisms (Eyre-Walker, 2006; McDonald & Kreitman, 1991). We find significant
evidence of adaptation when we compare the substitution data to the polymorphism data
of N. meningitidis, but no evidence if we use the polymorphism data of N. gonorrhoeae.
These observations are consistent with a decrease in the Ne of N. gonorrhoeae or an
increase in N. meningitidis (Eyre-Walker, 2002). The difference in Ne is consistent with
the observation of higher diversity in N. meningitidis, lower pN/pS, more rapid decay
in LD and the lower asymptote in LD. However, it is difficult to resolve whether
N. gonorrhoeae has undergone population size contraction or N. meningitidis population
size expansion in the past. Finally, it is tempting to estimate the fraction of substitutions
fixed by adaptive evolution as 1 - 1/FI—see (Eyre-Walker, 2006). However, the
simultaneous introduction of multiple mutations by hLGT makes this estimate biased.

A central assumption in our analysis is that ClonalFrameML (Didelot & Wilson, 2015)
has correctly identified regions of the genome that have undergone hLGT. The method
identifies the presence of hLGT from a clustering of mutations along an inferred
clonal phylogeny; a sudden burst of mutations along a branch in the phylogeny, that are
spatially clustered together in the genome are inferred to be due to hLGT. It will therefore
be difficult for the method to detect hLGT with relatively similar or short sequences.
Furthermore, because we have used a concatenation of protein coding sequences in our
ClonalframeML analysis it may be difficult to detect hLGT at the start and end of genes,
because we will not have the flanking sequences which provide additional support for
hLGT. To investigate whether this latter effect is important, we plotted the number of
inferred hLGT events as a function of the distance from the start or end of genes. We found
that events are inferred slightly less often at the start/end of genes, but the effect is not
large (Fig. 5).
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Figure 5 hLGT tracts at the start and end of genes. The number of sequences inferred to be due to hLGT in both species as a function of the
distance from the (A) start and (B) end of genes, where the distance was the proportion of the gene length from the start and end.
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The fact that ClonalFrameML has probably missed some hLGT events suggests
that we may have underestimated the input of variation from hLGT in both species—i.e.
we have underestimated r/m. However, an inability to correctly detect all hLGT events
is unlikely to explain the differences in the relative contribution of hLGT and
mutation in the two species, since both species have been treated identically. An inability
to detect hLGT may, however, explain why pN and pS are correlated even in the
parts of the genome with no apparent hLGT and hence there may be little or no
variation in Ne across the genomes of N. meningitidis and N. gonorrhoeae; there is an
expectation that pN/pS is likely to be lower amongst hLGT fragments because the
polymorphisms will be dominated by mutations that are fixed between species.
Furthermore, it is possible that all the variation that is shared between N. meningitidis
and N. gonorrhoeae is a consequence of hLGT and we have not been able to identify
all hLGT events.

CONCLUSIONS
We have investigated the diversity in N. meningitidis and N. gonorrhoeae, and shown that
N. meningitidis is more diverse then N. gonorrhoeae. Both species have acquired most
of their variation through hLGT. N. meningitidis appears to have higher diversity in part
due to it’s higher effective population size. In both species LD decays relatively slowly
as a function of the distance between sites and there is some evidence of adaptive evolution
in the core genome of the two species.
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