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ABSTRACT
Biogeography and macroecology are at the heart of the debate on ecology and
evolution. We have developed the BioDinamica package, a suite of user-friendly
graphical programs for analysing spatial patterns of biogeography and macroecology.
BioDinamica includes analyses of beta-diversity, species richness, endemicity, phylo-
diversity, species distribution models, predictive models of biodiversity patterns, and
several tools for spatial biodiversity analysis. BioDinamica consists of a sub-library
of Dinamica-EGO operators developed by integrating EGO native functions with R
scripts. The BioDinamica operators can be assembled to create complex analytical and
simulation models through the EGO graphical programming interface. In addition,
we make available ‘‘Wizard’’ tutorials for end users. BioDinamica can be downloaded
free of charge from the Dinamica EGO submodel store. The tools made available in
BioDinamica not only facilitate complex biodiversity analyses, they also help develop
state-of-the-art spatial models for biogeography and macroecology studies.

Subjects Biodiversity, Biogeography, Conservation Biology, Ecology, Evolutionary Studies
Keywords Spatial patterns, GIS, Modelling, Species distribution models, Beta-diversity,
Phylogenetic spatial analyses

INTRODUCTION
Biogeographical and macroecological studies have multiplied largely over the last decade
(Ladle et al., 2015). Proportionally, novel methods of analyses have also been developed.
Many of these methods focus on spatial pattern representation, such as areas of endemism,
species richness and beta-diversity (Vilhena & Antonelli, 2015; Oliveira, Brescovit & Santos,
2015), while others aim to predict these patterns (Graham & Hijmans, 2006; Ferrier et al.,
2007). Similarly, there has been an increasing number of studies including phylogenetic
trees due to the growing availability of data (Hinchliff et al., 2015) and hence the possibility
of testing explicit evolutionary components through biogeography analyses. As a result,
biogeographical and macroecological methods that apply phylogenetic data to understand
evolutionary geographical patterns have also multiplied, e.g., phylogenetic beta diversity,
phylogenetic endemism and phylodiversity (Graham & Fine, 2008; Donnellan & Cook,
2009). In addition to biogeographical andmacroecological analyses, all these novel methods
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are extremely important for conservation studies (Whittaker et al., 2005; Mcgoogan et al.,
2007; Fenker et al., 2014).

There are few computer programs that make available in a single environment several
analytical tools for biogeography and macroecology analyses—e.g., Passage (Rosenberg &
Anderson, 2011). Even this software has only few available analyses, yet they do not directly
involve maps. Software, like DIVA-GIS (Hijmans et al., 2001), that perform biogeographic
analyses using maps remain rare. However, even DIVA-GIS package contains only a very
limited set of functions. Most of the tools available for biogeography analyses are only
present in R packages, which are difficult to be used by biologists or other specialists
who do not master programming language. Friendly graphical interface programs are
uncommon, and when available are limited to just a few specific analyses—e.g., for
species distribution models (SDM) Open Modeller (Souza Muñoz et al., 2011), Maxent
(Phillips, Dudík & Schapire, 2004), Modeco (Guo & Liu, 2010) and for biogeographical
analyses PASSAGE (Rosenberg & Anderson, 2011) and DIVA-GIS (Hijmans et al., 2001).

Biogeography software to date do not encompass a wide set of relevant analyses. Some
promising methods, such as Generalized Dissimilarity Model (GDM), for instance, (Ferrier
et al., 2007) is eleven years old, but still little used (e.g., Ferrier et al., 2012; Carnaval et al.,
2014; Rosauer et al., 2014), possibly because it is only available as a R package. Similarly,
other methods, such as the Geographical Interpolation of Endemism—GIE (Oliveira,
Brescovit & Santos, 2015), which identifies areas of endemism without the use of grid
cells as sample units, have been barely used due to the absence of a friendly software—
performing GIE requires a series of GIS standalone procedures. Even widely used methods,
such as SDMs, have their functions dispersed in several R packages and various software.
Moreover, processes required for modelling species distribution are often not available
in SDM software, requiring the use of GIS and statistical software to perform a thorough
analysis.

Given the growing interest in spatial analyses in biogeographic and macroecology,
we have developed a set of user-friendly tools embedded in the Dinamica-EGO
software (Soares-Filho, Rodrigues & Follador, 2013). Dinamica-EGO is a freeware
(http://www.dinamicaego.com) for developing from simple to complex spatially
explicit models, which has been applied to many environmental studies (see https:
//csr.ufmg.br/dinamica/publications). We coupled a series of Dinamica EGO operators
with R code (R Core Team, 2017) to buildmore than 50 biogeographic andmacroecological
analytical functions (Table 1), all of which with a user-friendly graphical interface.
These functions are stored in a sub library of Dinamica-EGO, named BioDinamica, thus
allowing the user to build complex biodiversity models in a single integrated environment.
In addition to the direct application of these tools to biogeography, biodiversity and
macroecology (e.g., phylodiversity, species distribution models, phylogenetic endemism,
areas of endemism, etc.), some of the available functions, such as generalized linear models
(GLM), geographically weighted regression (GWR), and raster PCA projection (principal
components analysis) are also applicable to several other study fields. BioDinamica
takes advantage of Dinamica EGO high performance computing, nonetheless, requiring
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computer resources as those available on common laptop computers, such as a minimum
of 4GB of RAM and Windows or Linux operating system.

SURVEY METHODOLOGY
Overview
Functions provided include areas of endemism, species richness, phylodiversity, beta-
diversity endemicity, species distribution models (SDMs), beta-diversity predictive models
(GDM), interpolators, spatial analysis of ordination (PCA, PCR, NMDS), spatial statistical
analysis (GLM, LM) and tools for conservation analysis, such as theMinimumConvexHull
(Table 1). All functions include R codes as well as specific R packages which are enveloped
by the Dinamica EGO Operator called ‘‘Calculate R Expression’’. Although functions can
be broken up for inspection, reuse, or further development, the users do not need to deal
with the R code; instead they only need to configure or connect the parameters of these
new hybrid operators by visually editing their inputs and outputs ports.

To facilitate the use of Biodinamica functions, we have standardized the operators’
inputs (Fig. 1). Thus, functions for analyses of spatial diversity patterns (species richness,
beta-diversity, areas of endemism, etc.) have as input a table in csv format with points of
occurrence of species in three columns: sp, x and y (species name, longitude and latitude
in decimal degrees) and a mask of the study area in shapefile format (Fig. 1). Analyses
using phylogenetic data (phylodiversity, phylogenetic beta-diversity, phylogenetic-GDM,
etc.) include a phylogenetic tree in newick format, along with the inputs for analyses of
diversity pattern (species points and mask, as mentioned above). Analyses that rely on
predictor variables (such as GDM, SDMs, interpolation and prediction by GLM, LM,
SAR) use as input raster files only in the GeoTiff format. Spatial interpolation needs only
a table in csv format with input variable values and respective geographic coordinates
(columns: dependent, x and y). Predictor-based interpolations (GLM, LM, GWR, SAR)
use as input a table in csv format including the values of dependent variable and their
coordinates (dependent, x , y), together with the raster predictor variables. All analyses
outputs textual logs including specific statistics (Fig. 1). For analyses of spatial patterns,
the functions output figures and graphs as well aimed to facilitate interpretation of results
(Fig. 1). To use BioDinamica, one only needs to install Dinamica-EGO (http://csr.ufmg.
br/dinamica/) and the package BioDinamica. Complete documentation is available at
(http://csr.ufmg.br/dinamica/dokuwiki/doku.php?id=biodinamica) and online discussion
list for questions and bugs at (https://groups.google.com/forum/#!forum/dinamica-ego).
The online supplementary material of BioDinamica comes with BioDinamica installation
guide and a guide that provides a brief explanation of its functions.

Mapping spatial biodiversity patterns
BioDinamica includes several functions for spatial analyses of diversity patterns, such as
beta-diversity, phylogenetic beta-diversity, endemicity, species richness, phylodiversity, and
phylogenetic endemism. All these functions employ hexagonal tiles (equal area hexagons)
as sample units, but also allow continuous interpolating of point data by using spatially
explicit models. The interpolation models available in BioDinamica are the Spline method
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Table 1 Description of main functions, inputs and outputs of BioDinamica.

Tool
group

Function name Function Inputs Outputs Reference

Biogeography GIE—Geographic
Interpolation of En-
demism

Identify Areas of
Endemism

Species points of
occurence, map
of study area

Raster maps,
figures and
reports

Oliveira, Brescovit
& Santos (2015)

Biogeography SCI—Species Com-
position Interpola-
tion

Map beta-diversity
and map partitions
of beta-diversity
(turnover and
nestedness)

Species points of
occurence, map
of study area

Raster maps,
figures and
reports

Oliveira, Vasconce-
los & Santos (2017)

Biogeography PCI—Phylogenetic
Composition Inter-
polation

Map phylogenetic
beta-diversity and
map partitions
of beta-diversity
(turnover and
nestedness)

Species points of
occurence, phylo-
genetic tree, map
of study area

Raster maps,
figures and
reports

Biogeography SR—Species rich-
ness interpolation

Map species rich-
ness

Species points of
occurence, map
of study area

Raster maps,
figures and
reports

Biogeography RSR—Resampling
of species richness
interpolation

Resampling data
for reduce effect
of sampling
differences to
map species
richness

Species points of
occurence, map
of study area

Raster maps,
figures and
reports

Oliveira et al.
(2019)

Biogeography GDM—Generalized
Dissimilarity Model

Map beta-diversity
by environmental
predictors

Species points of
occurence, map
of study area and
rasters of envi-
ronmental pre-
dictors

Raster maps,
figures and
reports

Ferrier et al. (2007)

Biogeography Phylo-GDM—
Phylogenetic Gener-
alized Dissimilarity
Model

Map phylogenetic
beta-diversity by
environmental
predictors

Species points of
occurence, phylo-
genetic tree, map
of study area and
rasters of envi-
ronmental pre-
dictors

Raster maps,
figures and
reports

Rosauer et al.
(2014)

Biogeography PD—Phylogenetic
Diversity Interpola-
tion

Map phylogenetic
diversity

Species points of
occurence, phy-
logenetic tree and
map of study area

Raster maps,
figures and
reports

Oliveira et al.
(2019)

(continued on next page)
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Table 1 (continued)

Tool
group

Function name Function Inputs Outputs Reference

Biogeography WE—Weight En-
demism

Map of Weight en-
demism index by
cell

Species points of
occurence, map
of study area

Raster maps,
figures and
reports

Williams &
Humphries (1994)

Biogeography PE—Phylogenetic
Weight Endemism

Map of phyloge-
netic Weight en-
demism index by
cell

Species points of
occurence, phy-
logenetic tree and
map of study area

Raster maps,
figures and
reports

Rosauer et al.
(2009)

Biogeography PS—Phylogenetic
Spatialization

Map phylogentic
information

Species points of
occurence, phy-
logenetic tree and
map of study area

Raster maps,
figures and
reports

Biogeography SRM—Species rich-
ness Model

Map species rich-
ness by model pre-
diction (GLM,
SAR, Universal
Kriging)

Species points of
occurence, map
of study area and
rasters of envi-
ronmental pre-
dictors

Raster maps,
figures and
reports

Biogeography RSRM—Resampling
of species richness
Model

Resampling data
for reduce effect
of sampling dif-
ferences to map
species richness
and predict values
by model (GLM,
SAR, Universal
Kriging)

Species points of
occurence, map
of study area and
rasters of envi-
ronmental pre-
dictors

Raster maps,
figures and
reports

Biogeography PDM—Phylogenetic
Diversity Model

Map phylogenetic
diversity by model
prediction (GLM,
SAR, Universal
Kriging)

Species points of
occurence, map
of study area and
rasters of envi-
ronmental pre-
dictors

Raster maps,
figures and
reports

Adapted from:
Oliveira et al.
(2019)

Biogeography WEM—Weight En-
demism Model

Map weight en-
demism index by
model prediction
(GLM, SAR, Uni-
versal Kriging)

Species points of
occurence, map
of study area and
rasters of envi-
ronmental pre-
dictors

Raster maps,
figures and
reports

Adapted from:
Williams &
Humphries (1994)

(continued on next page)

O
liveira

etal.(2019),PeerJ,D
O

I10.7717/peerj.7213
5/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.7213


Table 1 (continued)

Tool
group

Function name Function Inputs Outputs Reference

Biogeography PEM—Phylogenetic
Weight Endemism
model

Map phylogenetic
weight endemism
index by model
prediction (GLM,
SAR, Universal
Kriging)

Species points of
occurence, map
of study area and
rasters of envi-
ronmental pre-
dictors

Raster maps,
figures and
reports

Adapted from:
Rosauer et al.
(2009)

Biogeography Sampling Effort Map density of
samples

Sampling points
and map of study
area

Raster maps
and figures

Oliveira et al.
(2019)

Biogeography SDM—Species Dis-
tribution Models

Modeling species
distribution by en-
vironmental pre-
dictors and several
algorithms of SDM

Species points of
occurence, map
of study area and
rasters of envi-
ronmental pre-
dictors

Raster maps,
figures and
reports

Elith & Leathwick
(2009)

Biogeography Niche overlap Test niche overlap
by SDM rasters

SDM rasters Report table Broennimann et al.
(2012)

Biogeography Minimum Convex
Hull

Create minimum
convex hulll poly-
gon

Species points of
occurence, map
of study area

Raster maps –

SDM tool AUC—Area Under
Curve

Calculate Area Un-
der Curve statistic

Species points
of occurence
(presence and
absence), raster
with continuous
values (SDM for
instance)

Reports Hanley & McNeil
(1982)

SDM tool Statistic for valida-
tion of Binary maps

Calculate preci-
sion, sensitivity,
Kappa Cohen, Ac-
curacy, Specificity
and True Skill
Statistic (TSS)

Species points
of occurence
(presence and
absence), raster
with binary val-
ues (SDM with
threshold for in-
stance)

Reports Stehman (1997)

(continued on next page)
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Table 1 (continued)

Tool
group

Function name Function Inputs Outputs Reference

SDM tool Create Point sam-
ples

Create points
based on binary
maps. Convert
SDMmaps in poits
of occurence for
other analyses in
BioDinamica

Species points
of occurence
(presence and
absence), raster
with binary val-
ues (SDM with
threshold for in-
stance)

Table –

SDM tool Sum of Maps Calculate sum of
maps in a folder

Folder with
rasters (SDM
binary, for
example)

Rasters –

SDM tool Calculate area of
Distributions

Calculate area of
distributions based
on binary maps of
SDM

Raster with bi-
nary values (SDM
with threshold
for instance)

Table –

SDM tool Extract values to
Points

Create a table with
values of maps
(rasters) based on
spatial position of
points

CSV with points
(x , y)

Table –

SDM tool Change Maximum
and Minimum val-
ues

Rescale values of
rasters to values
between 0 and 1

Raster Rasters –

Statistica
and Ordi-
nation

Correlation Calculate correla-
tion between maps

Folder with
rasters to analysis

Reports –

Statistica
and Ordi-
nation

Clustering of vari-
ables

Compute sets of
variables with high
correlation inside
groups and low
correlation be-
twwen them

Folder with
rasters to analysis

Reports, ta-
bles and fig-
ures

Chavent et al.
(2012)

Statistica
and Ordi-
nation

Global Moran I Compute Moran I
index of spatial au-
tocorrelation

Raster file Reports –

Statistica
and Ordi-
nation

Spatial Variogram Create graphic of
variogram by dis-
tance

Raster file Figure –

(continued on next page)

O
liveira

etal.(2019),PeerJ,D
O

I10.7717/peerj.7213
7/20

https://peerj.com
http://dx.doi.org/10.7717/peerj.7213


Table 1 (continued)

Tool
group

Function name Function Inputs Outputs Reference

Statistica
and Ordi-
nation

Unsupervised Clas-
sification

Classification of
rasters in clusters
of pixels based on
k-means, random
forest and Cluster-
ing Large Applica-
tions

Folder with
rasters to analysis

Rasters Kaufman &
Rousseeuw (1990)

Statistica
and Ordi-
nation

PCA—Principal
Component Analy-
sis

Create rasters with
axis of PCA based
on variables (in
raster format)

Folder with
rasters to analysis

Rasters Hotelling (1933)

Statistica
and Ordi-
nation

PCA project—
Principal
Component
Analysis for
projection

Create rasters with
axis of PCA based
on variables (in
raster format) and
project to another
scenario

Folder with
rasters to analysis
and folder
with rasters for
projection

Rasters Hotelling (1933)

Statistica
and Ordi-
nation

PCR—Principal
Component Regres-
sion

Create rasters with
axis of PCR anal-
ysis based on vari-
ables (in raster for-
mat)

CSV table with
input points
(samples) with
value of depen-
dent variable
(continuous val-
ues) and folder
with rasters to
analysis

Rasters Jolliffe (1982)

Statistica
and Ordi-
nation

PCR project—
Principal
Component
Regression for
projection

Create rasters with
axis of PCR anal-
ysis based on vari-
ables (in raster for-
mat) and project
to another scenario

CSV table with
input points
(samples) with
value of depen-
dent variable
(continuous val-
ues), folder with
rasters to analysis
and folder with
rasters for projec-
tion

Rasters Jolliffe (1982)

(continued on next page)
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Table 1 (continued)

Tool
group

Function name Function Inputs Outputs Reference

Statistica
and Ordi-
nation

PLSR—Partial Least
Squares Regression

Create rasters with
axis of PLSR anal-
ysis based on vari-
ables (in raster for-
mat)

CSV table with
input points
(samples) with
value of depen-
dent variable
(continuous val-
ues) and folder
with rasters to
analysis

Rasters De Jong (1993)

Statistica
and Ordi-
nation

PLSR project—
Partial Least Squares
Regression for pro-
jection

Create rasters with
axis of PLSR anal-
ysis based on vari-
ables (in raster for-
mat) and project
to another scenario

CSV table with
input points
(samples) with
value of depen-
dent variable
(continuous val-
ues), folder with
rasters to analysis
and folder with
rasters for projec-
tion

Rasters De Jong (1993)

Statistica
and Ordi-
nation

CPPLS—Canonical
Powered Partial
Least Squares

Create rasters with
axis of CPPLS
analysis based on
variables (in raster
format)

CSV table with
input points
(samples) with
value of depen-
dent variable
(discrete values)
and folder with
rasters to analysis

Rasters Indahl, Liland &
Naes (2009)

Statistica
and Ordi-
nation

CPPLS project—
Canonical Powered
Partial Least Squares

Create rasters
with axis of CP-
PLS analysis based
on variables (in
raster format) and
project to another
scenario

CSV table with
input points
(samples) with
value of depen-
dent variable
(discrete val-
ues), folder with
rasters to analysis
and folder with
rasters for projec-
tion

Rasters Indahl, Liland &
Naes (2009)
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Figure 1 Graphical interface. (A) Interface; (B) inputs and (C) outputs of BioDinamica operators.
Full-size DOI: 10.7717/peerj.7213/fig-1

that derives a smooth prediction curve as a function of distance from observed points,
nearest neighbour and the kriging, which applies a spatial interpolation according to a
variogram distribution. Also available are analyses that predict spatial patterns (e.g., species
richness, endemicity, phylodiversity) using predictor variables (e.g., climate variables)
through generalized linear models (GLM), spatial autoregressive models (SAR), and
universal kriging

Analyses of beta-diversity and phylogenetic beta-diversity patterns allow beta-diversity
partitioning into two components, turnover and nestedness. These components can
be represented by using either hexagonal tiles or continuous interpolation in order to
visualize the spatial variation of each component. To map beta-diversity patterns, we have
implemented GDM (Ferrier et al., 2007). This model predicts the beta-diversity patterns
by using environmental predictors. Our implementation of GDM also allows applying the
beta-diversity model to scenario modelling (past, or future, for example). Some diversity
variables are more affected by sampling density and bias, such as species richness (Oliveira
et al., 2016). To cope with that, we have implemented a rarefaction technique (Oliveira
et al., 2019) that allows quantifying the relative richness between areas by standardizing
sampling effort.
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Implementation of new methods
We also included novel analytical methods in BioDinamica. The Geographic Interpolation
of Endemism (GIE) method identifies areas of endemism (AoE) (Oliveira, Brescovit &
Santos, 2015). This method had not yet been fully implemented into a single integrated
software environment. Hence, our GIE implementation needs not additional GIS software.
The AoE outputs include raster maps for all scales and consensus, figures with AoE
identification, tables describing how many and which species occur in each AoE, and
a report with statistical information. This method can be used to identify patterns of
congruent distribution among species for testing biogeographic hypotheses, such as
vicariance, and for conservation priority studies (e.g., Oliveira et al., 2019).

To identify spatial patterns of beta-diversity, we have implemented a new method
named Species Composition Interpolation (SCI) (Oliveira, Vasconcelos & Santos, 2017).
This method spatially interpolates beta-diversity patterns by using values of a NMDS of the
beta-diversity index matrix. Our implementation generates a raster map for each axis of the
specialized NMDS, and a multiband raster cube for visualization of the axes through a RGB
composite. The model also tests the spatial autocorrelation of the values of NMDS, which
is a premise for this analysis. As another option, the user can classify the resulting maps
into discrete regions (biogeographic regions) through techniques such as the k-means,
random forest and CLARA (Cluster for large applications) unsupervised classification
(Ade & Hestir, 2017). The latter technique allows choosing the number of classes, and then
the algorithm identifies the intervals of values that best fit that number of classes (Ade &
Hestir, 2017). We have also implemented an analysis analogous to SCI for phylogenetic
beta-diversity and the Phylogenetic composition interpolation (PCI) (Oliveira et al., 2019).

Evolutionary spatial patterns
BioDinamica provides a set of analytical tools for spatial mapping of evolutionary patterns.
Using phylogenetic data, it is possible to createmaps of phylogenetic beta-diversity (Graham
& Fine, 2008), phylogenetic diversity, phylogenetic endemism (Rosauer et al., 2009), and
to plot phylogenies on a map by using spatial interpolation. These analyses enable the
user to map the evolutionary patterns of the groups studied in the geographic space,
being useful for testing evolutionary hypotheses such as vicariance and dispersion across
space. In addition, we have implemented the Phylogenetic generalized dissimilarity model
(Phylo-GDM) (Rosauer et al., 2014). Finally, BioDinamica enables to perform scenario
projections based on phylogenies analyses by using predictor interpolation (GLM, LM and
SAR).

Species distribution models
Today, species distribution models (SDM) are one of the most widely used biogeographic
tools. We have implemented a set of SDM in BioDinamica (Bioclim, Boosted Regression
Trees—BRT, Classification and regression trees—CART, Generalized Additive Models—
GAM, Gradient boosting model—GBM, Generalized linear model—GLM, Mixture
discriminant analysis—MDA, Multivariate adaptive regression splines—MARS, Recursive
partitioning for classification trees—RPART, Maxlike—a maximum entropy tool—,
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MAXENT, Random forest—RF and Support vector machines—SVM). In addition to
SDMs, we have developed a set of ancillary tools for pre-processing and post-processing
SDM inputs and outputs. These analyses allow modelling distribution of species by means
of predictor variables (environmental variables). There is a wide range of uses for these
models, from setting priorities for biodiversity conservation to testing of biogeographic
and evolutionary hypotheses, such as events of niche divergence. In addition to SDMs
themselves, we have created a set of tools for pre-processing and post-processing SDMs’
inputs and outputs. For pre-processing, we have implemented two ways of creating pseudo-
absences: the traditional one, which draws random points out of the presence samples of
the species; and another based on sample evidence. The pseudo-absences based on sample
evidence are obtained by sampling the pseudo-absences in the best-sampled regions (by
using a kernel density map of sampling). In this way, the user provides occurrence points
for the study group of species and the function generates a sampling effort map. From this
map, the model draws samples (pseudoabsences) for areas more densely sampled. This
technique is based on a simple premise: there is a greater probability that an absence is
true when a well-sampled area (for a given taxonomic group) does not show occurrences
of a particular species. In addition, various techniques for data validation and partitioning
come with the SDMs package (Table 1).

Interpolation
BioDinamica provides two forms of spatial interpolation: interpolation based on spatial
data structure (spline, nearest neighbour and kriging); and statistical interpolation using
predictive models (GLM, LM, SAR, GWR and universal kriging). Several biodiversity
environmental data sets have an irregular spatial distribution and hence sampling gaps.
To cope with that, spatial interpolation is used to produce continuous surfaces of these
phenomena. For example, by using the Spline and Kriging spatial interpolation tools,
we can interpolate continuous variables based only on their spatial autocorrelation
structure as a predictor. For more complex problems, and where there is information
on possible predictors, we can interpolate the spatial distribution by using generalized
linear models (GLM). In addition to these methods, we have implemented hybrid models
that employ the spatial structure of the predictive variables (Spatial autoregressive model:
SAR). The BioDinamica analyses of biodiversity patterns (species richness, phylodiversity,
endemicity, beta-diversity and phylogenetic beta-diversity) interpolate results by using
either spline, nearest neighbour or kriging as an option. In addition, these patterns can also
be interpolated by predictive models (GLM, SAR and universal kriging). The spatial and
predictive interpolation techniques can be employed to test a wide range of biogeographic
hypotheses, such as tests of patterns in biodiversity, as well as a means of filling in sampling
gaps for biogeographic analyses.

Statistical and ordination
Statistical analysis and ordering are central to biogeography and macroecology. To validate
predictive models (such as SDM), we have built a binary map validation function. This
function performs tests for accuracy, precision, sensitivity, specificity, Kappa and true skill
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statistics (TSS). For continuous value maps, we have included the area under the curve
(AUC). For the analysis of spatial patterns, we have included the analysis of Moran I and
the Spatial Variogram.

One common problem in spatial modelling (including SDMs) is the high correlation
between variables. To analyse the correlation between raster maps, BioDinamica includes
a map correlation test and the Clustering of Variables analysis (Chavent et al., 2012).
Another strategy to avoid correlation between predictor variables is by means of principal
component analysis (PCA). In BioDinamica, we have implemented a function that creates
a raster cube of the axes of PCA. These raster maps can be used as predictors because
while they still represent the original variables, there is no more correlation between them.
In order to use PCA raster in models designed for scenario projection (such as climate
change scenarios), we have included the PCA projection option. This option employs the
PCA model generated with the current variables to produce a PCA raster under a different
scenario from the one whereby the variables were generated. Another implemented
ordering technique produces raster maps of axes that are free of correlation assigning
different weights to the variables to maximize their predictive ability. These ordination
methods are principal component regression (PCR); partial least squares regression (PLSR);
and canonical powered partial least square (CPPLS). In all of these techniques, the option
of projection is available for scenario modelling. The raster maps generated from PCA,
PCR and PLSR can be used as substitutes for the predictive variables in analyses in which
the dependent variable has continuous values. The raster generated from PCA and CPPLS
can be used as predictor variables in analyses in which the dependent variable has discrete
values. Furthermore, we have implemented spatialization by non-metric multidimensional
scaling NMDS. This function can be used to spatialize genetic data (genetic, phylogenetic
or phylogeographic distance matrix) or even morphometric data (by the morphological
distance matrix).

General tools
BioDinamica provides a set of general tools for biogeography andmacroecology analyses in
an integrated modelling environment. In general, techniques employed in biogeographic
analyses are only available as a series of standalone procedures in GIS software. For example,
it is often necessary to cross-tabulate explanatory variables (such as climatic data) with
species occurrence locations. BioDinamica ‘‘Extract values to points’’ function does this
easily. In addition, the function ‘‘Create sample points’’ transforms binary maps (such
as the ones from species distribution models) into occurrence points that can be input
directly into other BioDinamica analytical tools.

Proof of concept
For exemplifying the potential of BioDinamica, we use the software to explore three
patterns of bird diversity in the Amazon: beta-diversity, species richness, and endemism
by using as input the distribution polygons of bird species from Birdlife International
(http://www.birdlife.org). Oliveira, Vasconcelos & Santos (2017) have already explored
biogeographic patterns of Amazonian birds using museum data. Here, we test the
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congruence of beta-diversity patterns as observed in Oliveira, Vasconcelos & Santos (2017)
with those obtained from using occurrence polygons from the aforementioned dataset. We
also investigate other bird geographical patterns (richness and index of endemism), which
were not explored by Oliveira, Vasconcelos & Santos (2017). In addition, we investigate the
use of predictive models based on environmental variables (GLM and GDM) to spatially
predict these biodiversity patterns.

The polygons of species distribution are converted into sample points through the
function ‘‘Create samples’’ in BioDinamica by using 500 regular points per species. Points
outside of the study area are ignored. We employ 179,188 records of 446 species of birds
endemic to the Amazon. To spatially interpolate the sample data, we apply ‘‘Species
composition interpolation’’ (SCI), ‘‘Species richness interpolation’’ (SR) and ‘‘Endemism
by weighing endemism’’ (WE). All methods consist of spatial interpolation techniques.
In addition, we apply ‘‘Generalized Dissimilarity model’’ (GDM) for beta diversity and
‘‘Generalized linearmodel’’ (GLM) for predicting species richness and endemism (SRMand
WEM, respectively). For GDManalysis, we use hexagons as sample units (1 degree side) and
the geographic distance from sample units for estimating the effects of the environmental
covariates. In GLM, we use the Gaussian distribution for model estimation. In this analysis,
we employ all the 19 climatic variables from Wordclim (http://www.worldclim.org/) as
environmental predictors. For that, we convert these variables (related to temperature and
rainfall) into axes of a principal component analysis (PCA) to remove the correlations
between them and to reduce the number of variables. For this, we use only the first four axes
of PCA, which account for ≈90% of the variance since they proved statistically significant,
i.e., explaining more than expected by chance for the 19 variables (>5.26%).

Beta-diversity results show spatial patterns very similar to those observed for Amazonian
birds through collection data (Oliveira, Vasconcelos & Santos, 2017). Interpolation (SCI)
and prediction using environmental variables (GDM) are quite similar as well (Fig. 2). This
is stressed by the high explanation of the model given the environmental variables (65%
of explanation). This may indicate that the beta diversity geographic patterns as associated
with the water basins of large rivers by Oliveira, Vasconcelos & Santos (2017) are, in fact,
related to climatic conditions throughout the Amazon. Although all of these analyses are
relatively complex, they are performed in a relatively short time. In a notebook with a
2.70 GHz Core i7 −7500U dual-core processor and 16GB of RAM, GDM runs in 3 min
and 42 s and SCI in 27 min and 44 s.

The analysis of species richness outputs different results between using techniques of
interpolation and prediction by GLM (Fig. 2). This can be caused by the low predictive
capacity of the explanatory variables (climatic variables). The richness patterns resulting
from interpolation (Fig. 2C) are very similar to those from analyses that only employ
the distribution polygons of the species (see https://biodiversitymapping.org/wordpress/
index.php/birds/). Thus, similarity between interpolated results with those observed in
the polygon data, together with a large difference between interpolated results and the
geographical distribution of environmental predictors, may indicate a low predictive
power of the environmental variables for mapping bird richness patterns in the Amazon.
The interpolated results more closely resemble the raw data from Birdlife International.
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Figure 2 Amazonian bird diversity patterns based on Birdlife International data analysed through
BioDinamica functions. (A) Species composition interpolated by nearest neighbour, RGB represents the
three axes of NMDS and (B) predicted by GDM; (C) species richness interpolated by nearest neighbour
and (D) predicted by GLM; (E) weight endemism index corrected interpolated and (F) predicted by GLM.

Full-size DOI: 10.7717/peerj.7213/fig-2

However, this type of analysis requires validation using independent data to determine
which patterns best reflect reality. The interpolation of species richness runs in 7 min and
50 s and the prediction by GLM in 4 min and 23 s.

The patterns of endemism (WE index) are consistent with that observed by Oliveira,
Vasconcelos & Santos (2017) for areas of endemism. The areas identified with the highest
number of species of most restricted distribution (Fig. 2) are coincident with the endemism
areas identified by aforementioned authors who used a different set of data. However, we
must be cautious with these similarities, since the patterns of endemicity (WE) are not
necessarily congruent with the areas of endemism. Interpolation via WE runs in 15 min
and 18 s and the prediction through GLM in 16 min.
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The short computer time demonstrates the efficiency of BioDinamica in processing large
datasets. In addition, BioDinamica allows compressing the dimensionality of predictor
variables through the ‘‘PCA function’’. Many other biogeographic patterns analyses
are also doable using this same dataset and other BioDinamica functions, such as GIE,
phylogenetic endemism, phylogenetic beta diversity, etc. This in turn demonstrates the
software versatility in exploring geographical patterns of biological data.

Wizard: a tutorial interface
All the functions of BioDinamica are available as graphical operators of Dinamica-EGO.
In addition, we provide model examples containing wizard tutorial. In this way, the
user is guided through an illustrated tutorial that helps setting up and running the
BioDinamica functions. Not only wizard tutorial illustrates applications, it also facilitates
access to literature references (Fig. 1). Lastly, BioDinamica installation comes with sample
datasets for training. Also available is an online guidebook with a comprehensive tutorial
on all BioDinamica functions (http://csr.ufmg.br/dinamica/dokuwiki/doku.php?id=
biodinamica).

CONCLUSIONS
BioDinamica encompasses a wide variety of tools for spatial analyses of biodiversity,
biogeography, macroecology and evolution. Developed using Dinamica-EGO freeware,
BioDinamica delivers high performance on a user-friendly interface. In particular, the
Dinamica-EGO platform allows the use of all functions into more complex models that
includes loops, iterations and bifurcation pipelines. In this way, the BioDinamica functions
become components of advanced models for conservation analyses and environmental
simulations developed by using EGO graphical programming language.
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