
Screening of immunosuppressive factors for biomarkers of
breast cancer malignant phenotypes and subtype-specific
targeted therapy
Zhuoqi Liu Equal first author, 1 , Ping Wang Equal first author, 2 , Yunlei Song 3 , Jiaxuan Liu 2 , Qiang Liu 4 , Chao Wang 5 , Caiyun Qian 1 ,
Shuhua Zhang 6 , Weifeng Zhu 1 , Xiaohong Yang 1 , Fusheng Wan Corresp., 1 , Daya Luo Corresp. 1, 7

1 Department of Biochemistry and Molecular Biology, School of Basic Medical Sciences, Nanchang University, Nanchang, China
2 Queen Mary School, Nanchang University, Nanchang, China
3 Key Laboratory of Prevention and treatment of cardiovascular and cerebrovascular diseases of Ministry of Education, Gannan Medical University,
Ganzhou, China
4 National Cancer Center/Cancer Hospital, Chinese Academy of Medical Sciences and Peking Union Medical College, Beijing, China
5 School of Basic Medical Sciences, Nanchang University, Nanchang, China
6 Jiangxi Cardiovascular Research Institute, Jiangxi Provincial People's Hospital, Nanchang, China
7 Jiangxi Province Key Laboratory of Tumor Pathogens and Molecular Pathology, Nanchang University, Nanchang, People’s Republic of China

Corresponding Authors: Fusheng Wan, Daya Luo
Email address: wanfs01@163.com, luodaya@ncu.edu.cn

To screen and validate immunosuppressive factors in luminal- and basal-like breast cancer
cell lines and tissue samples associated with malignant phenotypes. The mRNA microarray
datasets, GSE40057 and GSE1561, were downloaded and remodelled, and differentially
expressed genes (DEGs) were identified. Weighted Gene Co-expression Network Analysis
(WGCNA) and Gene Ontology (GO) and KEGG pathway enrichment analysis were
performed to explore the immune-related events that related to the basal-like trait. The
online resources, GOBO, Kaplan-Meier Plotter and UALCAN, were employed to screen for
immunosuppressive factors associated with breast cancer malignant phenotypes.
Immunohistochemistry was used to evaluate VEGFA and MIF levels in breast tumours and
normal breast tissues; qPCR and western blot were used to validate the expression of
clinical immune-oncology (IO) therapeutic targets CD274 (PD-L1) and IL8 in cell lines. The
results showed that there were varies immune-related events contribute to the trait of
basal-like breast cancer. First, TGFβ1 and IL8 have higher average expression levels in
more malignant cell lines; Second, MIF and VEGFA have higher average expression levels
in more malignant breast cancer tissue, and the high expression levels of them were
associated with poor survival rate. Third, IO targets CD274 and IL8 were confirmed that
more suitable for the treatment of basal-like breast cancer. In view of the above, during
the formation and development of breast cancer, immune-related genes are always
activated, and immunosuppressive factors, IL8, TGFβ1, MIF and VEGFA are up-regulated.
Such molecules could be used as biomarkers for breast cancer prognosis . However,
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because individual immune-related factors can play several biological roles, the
mechanistic relationship between immunosuppressive factors and breast cancer malignant
phenotypes and the feasibility of their application as drug targets require further
investigation.
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1 Introduction

2 Breast cancer, the most diagnosed cancer and the second most fatal malignancy in women 

3 around the world, happens to one in eight women("Cancer facts $figures 2016," 2016). With the 

4 advent of gene expression profiling over the last 15 years, breast cancers have been classified 

5 into luminal A, luminal B, human epidermal growth factor receptor 2 (HER2 or ERBB2)-

6 enriched, basal-like, and claudin-low(Liu & Wang, 2015; Prat et al., 2015). Among these 

7 categories, basal-like breast cancer has garnered significant attention among researchers, as it 

8 accounts for ~75% of the highly malignant triple negative subtype. This biologically aggressive 

9 neoplasia takes on several malignant phenotypes, including early onset, higher histological 

10 grade, increased distant recurrence and visceral metastases, insensitivity to endocrine and 

11 targeted therapy and poor prognosis(Bahnassy et al., 2015). Although biomarkers for breast 

12 cancer prognosis and therapy(Jezequel et al., 2012) have markedly improved treatment decisions, 

13 inconsistent diagnostic criteria for basal-like breast cancer and controversial research findings 

14 necessitate the discovery of more specific molecular markers(Tomao et al., 2015).

15 Malignant tumour phenotypes, such as invasiveness, metastasis, drug resistance and poor 

16 prognosis, depend on both the distinct genetic and epigenetic characteristics of the tumour as 

17 well as other factors in the tumour microenvironment(Gandellini et al., 2015). The tumour 

18 microenvironment is composed of tumour cells, various types of stromal cells and the 

19 extracellular matrix, in which tumour cells and stromal cells interact by releasing a variety of 

20 cytokines, chemokines and growth factors(M. Xu et al., 2012). In the last few years, it has 

21 become obvious that tumour cells, as well as other cells and factors that accumulate in tumour-

22 bearing hosts, play a critical role in patient outcome(Schlößer et al., 2014). On one hand, a 

23 variety of immune cells can be induced to kill tumour cells. On the other hand, tumour cells have 

24 many strategies for escaping immune attack, including the release of immunosuppressive factors. 

25 The presence of immunosuppressive factors induces local immune escape in the tumour 

26 microenvironment, which thwart anti-tumour immune responses and pose a major obstacle to 

27 many immunotherapeutic or conventional therapeutic approaches. Fortunately, the high 

28 expression of those immunosuppressive factors may also be studied as therapeutic targets. 

29 Nowadays, there are multiple immune-oncology (IO) therapeutic targets have been available in 

30 clinical therapy(Szekely et al., 2018). However, due to the multifaceted functions of many 

31 immunosuppressive factors in different tumour types and stages of development, there remains 

32 controversy regarding their true and fundamental roles in tumour pathology. This ambiguity 

33 prevents the clinical application of immunosuppressive factors as diagnostic and therapeutic 

34 biomarkers. 

35 In this paper, by comparing gene expression patterns between basal- and luminal-like breast 

36 cancer cell lines and tissue samples, which have different levels of aggressiveness and 

37 malignancy, we attempt to screen and verify the immunosuppressive factors associated with a 

38 malignant phenotype and investigate the significance of IO targets in the clinical treatment of 
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39 breast cancer. These immunosuppressive factors could be used as additional markers to identify 

40 malignant breast cancer and further tailor therapies for individual breast cancer patients.

41  Materials and Methods 

42 Gene Expression Microarray Analysis

43 The expression monitoring arrays raw data for were downloaded from Gene Expression 

44 Omnibus (GEO) database(Barrett et al., 2012)with accession number: GSE40057(Luo et al., 

45 2013) and GSE1561(Farmer et al., 2005). The GSE40057 analyzed 10 breast cancer cell lines 

46 and 2 immortalized breast epithelium cell lines with the Affymetrix Human Genome U133 Plus 

47 2.0 Array; GSE1561 contained 49 breast cancer tissue samples and were tested on Affymetrix 

48 U133A chips. Principal components analysis (PCA), K-means clustering and differentially 

49 expressed genes (DEGs) screening were performed in R using Bioconductor and associated 

50 packages(Gentleman et al., 2004).

51 Weighted Gene Co-expression Network Analysis (WGCNA) and Gene ontology (GO) and 

52 KEGG pathway Enrichment Analysis

53 For genome-wide expression profile data of tissues and cell lines, the missing value were first 

54 removed and the genes whose average expression level less than 0.5 were filtered. Secondly, all 

55 samples performed well in hierarchical clustering, and no outliers needed to be removed. Step-

56 by-step method of WGCNA package(Langfelder & Horvath, 2008) in R was used to construct 

57 the module and co-expression network. Soft thresholds were generated by the pickSoftThreshold 

58 function of WGCNA package, with tissue data set to 28 and cell line data set to 10. Adjacency 

59 matrix and the topological overlap matrix (TOM) were calculated according to the corresponding 

60 soft threshold. Based on TOM, the corresponding dissimilarities between each gene were 

61 calculated and 400 genes were randomly selected for the visualization of TOM. At the same 

62 time, we constructed the hierarchical cluster tree of all genes based on the dissimilarity matrix. 

63 Using the dynamic tree cut method, the branches of the hierarchical cluster tree were cut to 

64 identify modules. Subsequently, with the hierarchical clustering data of module eigengene data, a 

65 height cut of 0.25 was chosen, and similar modules were merged to build the final co-expression 

66 network. Finally, the visualization of module eigengene data we performed and module-trait 

67 associations were quantified. GO and KEGG pathway enrichment analyses were performed for 

68 genes in each module using the DAVID functional annotation clustering tool 

69 (http://david.abcc.ncifcrf.gov)(Huang da, Sherman, & Lempicki, 2009)

70 GOBO analysis 

71 GOBO (http://co.bmc.lu.se/gobo/), an online resource with mRNA microarray profiling data 

72 from 51 breast derived cell lines(Ringner, Fredlund, Hakkinen, Borg, & Staaf, 2011), was used 

73 to validate the mRNA expression levels of four immunosuppressive factor genes screened from 

74 cell lines of GSE40057. 
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75 UALCAN and Kaplan-Meier survival analyses

76 UALCAN (http://ualcan.path.uab.edu/index.html), an interactive web resource that contain large 

77 amount of cancer transcriptome data derived from TCGA and MET500 transcriptome 

78 sequencing(Chandrashekar et al., 2017), was used to explore the mRNA expression levels of 6 

79 immunosuppressive factor genes screened from tissue samples of GSE1561 in different breast 

80 cancer subtypes and normal breast tissue. Kaplan-Meier Plotter (http://kmplot.com/analysis/), an 

81 open web-based resource(Gyorffy, Surowiak, Budczies, & Lanczky, 2013), was used to 

82 determine the relationship between survival rate and mRNA expression levels of 6 

83 immunosuppressive factor genes screened from tissue samples of GSE1561. 

84 Immunohistochemistry (IHC)

85 VEGFA and MIF levels in normal and breast cancer tissues were evaluated by IHC, which use 

86 polyclonal antibodies (1:250 dilution, DF7470 and DF6404, Affinity Biosciences, Cincinnati, 

87 USA) on commercial tissue arrays (Shanghai Outdo Biotech Co., Shanghai). The array consists 

88 of 10 normal and 90 breast tumour specimens. Each sample was given a modified histochemical 

89 score (MH-score), which is affected by both the proportion and the intensity of cells stained at 

90 each intensity, to reflect the staining intensity. The intensity of each grade is the average of MH-

91 score of all samples in that grade.

92 Cell culture and total RNA isolation

93 Breast cancer cell lines MDA-MB-231 and T47D were cultured in DMEM media supplemented 

94 with 10% fetal bovine serum (FBS), MCF7 was cultured in RPMI-1640 Medium with 10%FBS, 

95 BT549 was cultured in RPMI-1640 Medium with 0.023 IU/ml insulin and 10%FBS. Total RNA 

96 was extracted using the TRIzol® reagent (Invitrogen, Carlsbad, CA, USA).

97 qRT-PCR analysis of mRNA expression of CD274 and IL8

98 2 μg of the total RNA was reverse-transcribed using RevertAid™ First Strand cDNA Synthesis 

99 Kit (Thermo, Boston, USA). SYBR® Premix Ex Taq™II (TaKaRa, Shiga, Japan) was used to 

100 conduct quantitative RT-PCR. The primer sequences used for RT-PCR are as follows: CD274-

101 Forward: CGTTGTGCTTGAACCCTTGA, CD274-Reverse: ACACAAGGAGCTCTGTTGGA; 

102 IL8-Forward: GAGACAGCAGAGCACACAAG, IL8-Reverse: 

103 TTGGGGTGGAAAGGTTTGGA; β-actin-Forward: GAACGGTGAAGGTGACAG, β-actin-
104 Reverse: TAGAGAGAAGTGGGGTGG. Each sample was run in triplicate. According to the 

105 manufacturer’s suggested protocols, Applied Biosystems® 7500 Real-Time PCR Systems 

106 (Thermo, Boston, USA) were used in the real time PCR reaction. ΔΔCt method was used to 

107 calculate fold change in gene expression.

108 Western blot analysis of protein expression of CD274 and IL8

109 Total proteins were extracted from cells in RIPA Lysis Buffer (Vazyme, Piscataway, NJ, USA) 

110 containing protease inhibitors. 40 μg of protein from each sample was denatured, fractionated by 
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111 10% SDS-PAGE, and transferred to PVDF membranes (Immobilon®-P Transfer Membrane, 

112 Millipore, Milan, Italy). After blocking of non-specific antigens with 5% skim milk solution, 

113 blots were incubated overnight at 4℃ with primary rabbit monoclonal antibodies against IL8 

114 (1:1000 working dilution, DF6998, Affinity Biosciences, Cincinnati, USA) or CD274 (1:1000 

115 working dilution, DF6526, Affinity Biosciences, Cincinnati, USA) or β-actin (1:1000 working 

116 dilution, Santa Cruz Biotechnology, Inc., Santa Cruz, CA, USA) in 5% skim milk 0.05% TBS-

117 Tween 20 buffer. Antibody binding to the membrane was detected with a secondary antibody 

118 (goat anti-rabbit IgG 1:5000, ZSGB Biosciences, Beijing, China) conjugated to horseradish 

119 peroxidase and visualized by enzyme-linked chemiluminescence (EasySee® Western Blot Kit, 

120 TransGen Biotechnology, Beijing, China) with the Scientific MYECL Imager (Thermo, Boston, 

121 USA). Densitometric analysis performed with ImageJ software was to normalize the signal of 

122 IL8 and CD274. The intensity of the two bands was normalized against the signal of b-actin.

123 Statistical analysis

124 Each experiment was repeated at least 3 times. DEGs were identified by Bioconductor ‘limma’ 

125 package using a moderated t-tests (P<0.05) and comparisons of multiples of change (basal vs. 

126 luminal, GSE40057>2-fold, GSE1561>1.5-fold). The association of MIF and VEGFA 

127 expression and clinico-pathological data was analyzed by one-way ANOVA in SPSS 17.0 (SPSS 

128 Inc. Chicago, IL). 

129 Results

130 Identification of DEGs

131 To study the gene expression profiles of different breast cancer cell lines and tissue-based 

132 microarray datasets, GSE40057 and GSE1561 from the GEO database were downloaded, re-

133 modelled, analysed and compared (Fig. 1). The results showed that the number of statistically 

134 significant DEGs between luminal-like and basal-like groups of cell lines and tissue samples 

135 were 2188 and 1963, respectively. 

136 WGCNA and GO and KEGG pathway Enrichment analyses of each gene module

137 To investigate what causes the difference of malignant degree between basal-like and luminal-

138 like breast cancer, the sets of genes related to basal- and luminal-like breast cancer were first 

139 screened by constructing a gene co-expression network by WGCNA. And then 25 and 6 gene 

140 modules for GSE40057 (cell lines) and GSE1561 (tissue samples) were identified, respectively 

141 (Fig. 2A and 2C). The member genes involved in the same module are highly interconnected and 

142 were further analyzed in GO and KEGG pathway enrichment analysis. For cell lines, module 

143 lightyellow, lightgreen, darkmagenta etc. have stronger correlation with luminal-like trait; 

144 module black, orange, royalblue etc. have stronger correlation with basal-like trait (Fig. 2B). For 

145 tissue samples, module tan has stronger correlation with luminal-like trait and module red, grey 

146 etc. have stronger correlation with basal-like trait (Fig. 2D). Interestingly, the subsequent 
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147 enrichment analyses for each module genes showed that the enrichment results of module black 

148 in tissue samples were relatively uniform in immune-related events, such as T cell costimulation, 

149 peptide antigen binding, leukocyte migration (Table 1) and Allograft rejection, Antigen 

150 processing and presentation, Graft-versus-host disease, etc. (Table 2). Genes in other modules do 

151 not show that uniform enrichment results whether in immune-related aspect or any other special 

152 aspects.

153 The expression of immune-related genes and immune-oncology targets

154 According to the Cancer Inflammation & Immunity Crosstalk PCR Array profile from Qiagen 

155 (http://www.sabiosciences.com/rt_pcr_product/HTML/PAHS-181Z.html), a total of 85 key 

156 genes (Table S1), including 16 immunosuppressive factors were enrolled for subsequent 

157 analysis. The Venn diagram (Fig. 3A) shows the intersection between immune-related genes and 

158 DEGs from GSE40057 and GSE1561; The Venn diagram (Fig. 3B) shows the intersection 

159 between 29 clinical IO targets (Table S1)(Szekely et al., 2018) and DEGs from GSE40057 and 

160 GSE1561. There are 15 immune-related genes in GSE40057 (Table S2), including 4 

161 immunosuppressive factors, CD274 (PDL1), CSF2, IL8 (CXCL8) and TGFβ1; 31 immune-

162 related genes in GSE1561 (Table S2), including 6 immunosuppressive factors, CXCL12, CXCL5, 

163 IDO1, MIF, PTGS2 and VEGFA; and 6 immune-related genes in both; 2 IO targets in GSE40057, 

164 CD274 and IL8; 2 IO targets in GSE1561, CXCL12 and IDO1. Interestingly, compared with the 

165 luminal-like cell lines and tissue samples, most immune-related genes identified in basal-like 

166 malignancies are upregulated, except CXCL12 (Fig. 3C and 3D). 

167 GOBO analysis for the immunosuppressive factors screened from cell lines

168 GOBO analysis showed that CSF2, IL8 and TGFβ1 expression have an inconsistent expression 

169 pattern across cell lines; there is no information on GOBO for CD274. IL8 have higher average 

170 expression levels in basal-like cell lines (p<0.01) and TGFβ1 have higher average expression 

171 levels in basal-like and triple negative cell lines (p<0.01) (Fig. 4).

172 UALCAN and Kaplan-Meier survival analyses for the immunosuppressive factors screened 

173 from tissue

174 UALCAN analysis showed that only CXCL12 has lower expression level in basal-like (triple 

175 negative) breast cancer as in comparison with luminal-like breast cancer; while CXCL5, IDO1, 

176 MIF, PTGS2 and VEGFA all have higher expression in basal-like breast cancer (Fig. 5). 

177 Analysis of overall survival showed that higher CXCL12, CXCL5, IDO1 and PTGS2 mRNA 

178 expression levels were correlated with a comparatively higher survival rate (p<0.01), while 

179 higher MIF and VEGFA expression levels were correlated with a lower survival rate (p<0.01) 

180 (Fig. 6). 

181 Expression of MIF and VEGFA in breast tissue microarrays
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182 To validate whether MIF and VEGFA protein expression is associated with breast cancer 

183 malignancy, immunohistochemical detection was performed in tissue microarray with 90 

184 primary tumour tissues and 10 normal breast tissue samples (p<0.01) (Fig. 7). The results show 

185 that MIF expression is increased dramatically in the metastasis group (p<0.05) and that VEGFA 

186 expression positively correlates with tumour grade (p<0.05) (Table 3).

187 CD274 (PD-L1) and IL8 are highly expressed in basal-like breast cancer cell lines

188 To validate the expression pattern of the two IO targets- CD274 and IL8, qRT-PCR and western 

189 blot were used to detect the expression of mRNA and protein from 4 breast cancer cell lines: 2 

190 basal-like (BT549 and MDA-MB-231) and 2 luminal-like (MCF7 and T47D)(Neve et al., 2006). 

191 qRT-PCR results (Fig. 8A) show that CD274 and IL8 were upregulated in the basal-like breast 

192 cancer cell lines, BT549 and MDA-MB-231 (p<0.01). Similar to qRT-PCR results, western blot 

193 analysis (Fig. 8B) indicates that CD274 and IL8 protein were increased in BT549 and MDA-

194 MB-231, compared to MCF7 and T47D cell lines.

195 Discussion 

196 The breast tumour microenvironment consists of epithelial tumour cells and the extracellular 

197 matrix (ECM), including stromal cells such as fibroblasts, adipocytes, endothelial and resident 

198 immune cells, a multitude of soluble factors, and more recently identified regulatory mediators, 

199 such as microRNAs, metabolites and exosomes(Dittmer & Leyh, 2015). Although cancer 

200 progression has been associated with genetic mutations and epigenetic changes in tumour cells, 

201 increasing evidence suggests that it is not entirely driven by cancer cell processes and may be 

202 influenced by the interplay between cancer cells and their surrounding microenvironment (i.e., 

203 tumour-stroma crosstalk)(Criscitiello, Esposito, & Curigliano, 2014). There is evidence 

204 demonstrating that both stroma and tumour cells evolve upon tumour initiation and progression, 

205 which makes the tumour-stroma environment distinct from that of healthy tissue(Quail & Joyce, 

206 2013). Upon its conversion from normal stroma, tumour stroma thwarts anti-cancer activities and 

207 promotes cancer progression(Granot & Fridlender, 2015). Based on the aforementioned reasons, 

208 the molecular changes in tumour cells often do not reflect all the changes that occur during 

209 tumour-stroma crosstalk in the microenvironment(Morandi & Chiarugi, 2014).

210 In this paper, 2 original datasets, GSE40057 and GSE1561, were downloaded from the GEO 

211 database. To avoid the inaccuracy produced by ‘edged’ samples, only 8 cell lines from 

212 GSE40057 and 32 tissue samples from GSE1561, representing basal-like and luminal-like 

213 groups were chosen for subsequent analyses due to their great difference in malignant degree. In 

214 the WGCNA, all genes of the microarray were assigned into corresponding modules based on 

215 the weighted gene co-expression network, and the correlations of each module with luminal and 

216 basal trait were calculated. Genes involved in the same module are highly interconnected and 

217 relate to a specific trait, which different from DEGs that only show us the differences in 

218 expression levels between groups. Therefore, we chose WGCNA analysis instead of 

219 conventional differential expression gene analysis to screen biological characteristics related to 
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220 malignant phenotype of breast cancer. GO and KEGG pathway enrichment analyses for each 

221 module showed that genes in module black of tissue samples were uniformly enriched in 

222 immune-related events, and this module obviously showed a closer correlation with basal-like 

223 rather the luminal-like breast cancer, indicating that there are some immune-related events may 

224 play pivotal role in the malignant phenotype of basal-like breast cancer. However, the 

225 enrichment results of modules in cell lines not obviously relate to immune-related events. This 

226 may because of the tumour-stroma crosstalk in vivo, which is not included in cell lines. 

227 Therefore, in the field of tumour immune research, the selection of model cell lines or tissue 

228 samples may lead to different results, and both of them have their own unique advantages in 

229 scientific research. 

230 Tumour cells have many strategies for avoiding immune attack, including decreased tumour 

231 antigen expression by HLA molecules on the tumour cell surface, downregulation of tumour 

232 antigen presentation by dendritic cells, release of immunosuppressive factors and activation of 

233 regulatory T cells(Raposo, Beirão, Pang, Queiroga, & Argyle, 2015). Among them, the release of 

234 immunosuppressive factors to induce immunosuppression is an important mechanism for tumour 

235 cell evasion of immune surveillance(Jiang & Shapiro, 2014). Immunosuppression is a reduction 

236 of the activation or efficacy of the immune system(Schlößer et al., 2014). Both tumour cells and 

237 stromal cells can be induced to synthesize and/or secret immunosuppressive factors to evade 

238 immune surveillance, contributing to tumour initiation and progression(Grivennikov, Greten, & 

239 Karin, 2010). To date, more than 20 immunosuppressive factors produced by tumour and/or 

240 stromal cells have been discovered, including transforming growth factor-β1 (TGFβ1)(Y. Wang, 

241 Wang, Wang, Zhang, & Jiang, 2015), prostaglandin E2 (PGE2)(Kalinski, 2012), vascular 

242 endothelial growth factor (VEGF)(Shibuya, 2013), interleukin-10 (IL-10)(Geginat et al., 2016), 

243 interleukin-4 (IL-4)(Egawa et al., 2013), cyclooxygenase-2 (COX-2)(H. Li et al., 2013), 

244 programmed cell death 1 (PDCD1)(Gatalica et al., 2014) and cytotoxic T-lymphocyte associated 

245 antigen 4 (CTLA4), etc(Lan et al., 2013). Although therapeutic agents that target 

246 immunosuppressive factors, such as BMS-936559, Pidilizumab and Ipilimumab, have achieved 

247 breakthrough responses in cancer immunotherapy and represent one of the most promising 

248 strategies for tumour treatment(Schlößer et al., 2014), other immunosuppressive targets are still 

249 under investigation, as their roles in tumour malignancy are not completely understood. 

250 Analysis of cell lines showed that CD274, CSF2, IL8 and TGFβ1 were up-regulated in 

251 basal-like cells lines as compared with luminal-like cell lines. Further, GOBO analysis confirmed 

252 that IL8 and TGFβ1 have higher average expression levels in basal-like and triple negative cell 

253 lines, indicating that IL8 and TGFβ1 may be associated with malignant phenotype. Analysis of 

254 tissue samples revealed that CXCL5, IDO1, PTGS2, MIF and VEGFA were up-regulated in 

255 basal-like tissues as compared with luminal-like tissues, which also confirmed by UALCAN 

256 analysis. Besides, Kaplan-Meier survival analysis showed that breast cancer patients with higher 

257 MIF and VEGFA expression levels were correlated with a lower survival rate. These suggest that 

258 the higher expression levels of MIF and VEGFA contribute to the malignant phenotype of breast 

259 cancer. Our results of IHC also validated it. 
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260 Cancer-derived IL8 may result in the recruitment and activation of tumour-associated 

261 neutrophils (TAN) and myeloid-derived suppressor cells (MDSCs) to contribute to the tumour 

262 microenvironment and immune suppression, and also activate endothelial cells for 

263 angiogenesis(Waugh & Wilson, 2008). IL8 functions by activating PI3K-Akt and PLC-PKC 

264 signaling pathways, respectively. These two signaling pathways have been demonstrated 

265 associated with angiogenesis, cell survival, and migration(Cheng et al., 2008). Over-expressed 

266 IL8 is associated with an accelerated breast cancer progression, a higher tumour load, and the 

267 presence of distant metastasis, ultimately leading to poor survival(Singh, Simoes, Howell, 

268 Farnie, & Clarke, 2013). TGFβ1 is a well-known family involved in various tumour progressions, 

269 such as induction of epithelial–mesenchymal transition, mediation of cancer migration and 

270 invasion(J. Xu, Lamouille, & Derynck, 2009). Over-expression of MIF has been demonstrated in 

271 multiple cancers progression, such as ovarian cancer(Krockenberger et al., 2012), hepatocellular 

272 carcinoma(D. Wang et al., 2014), gastric cancer(He et al., 2006) and other malignant cancers . 

273 Several literatures have elucidated the multiple roles of MIF in breast cancer microenvironment, 

274 including increasing the recruitment of immune suppressive cells(Simpson, Templeton, & Cross, 

275 2012), promoting angiogenesis and breast cancer cell trans-endothelial migration(Martinez et al., 

276 2014). In addition, MIF also acts on tumour cells to facilitate cell proliferation and cell 

277 survival(Lue et al., 2007). Thus far, VEGFA protein has been elucidated as a major factor that 

278 contribute to the tumour angiogenesis and malignant progression in variety of cancers(Q. Li et al., 

279 2017; Yang, Xiong, Zuo, Liu, & Zhang, 2018). In recent years, there are amount of anti-

280 angiogenic drugs has been designed and showed significant effects in chemotherapy. 

281 Unfortunately, some of these drugs (e.g. Bevacizumab) showed limited effects in specific breast 

282 cancer conditions(Bergh et al., 2012; Varinska, Gal, Mojzisova, Mirossay, & Mojzis, 2015). 

283 Therefore, patients need to be evaluated before the implementing of anti-angiogenic therapy. 

284 Prospectively, VEGFA may act as a evaluation factor to identify the breast cancer patients who 

285 might benefit from anti-angiogenic therapy. 

286 Thus far, a range of IO targets have been available in clinical therapy(Szekely et al., 2018). 

287 Among our results, CD274, IL8, CXCL12 and IDO1 (Fig. 3B) are included in these IO targets. 

288 Since the Kaplan-Meier survival analysis showed that CXCL12 and IDO1 were not associated 

289 with the malignant phenotype of breast cancer, they did not studied by further experience. While 

290 high expression levels of CD274 and IL8 in basal-like breast cancer were validated by qRT-PCR 

291 and western blot, suggesting that clinical CD274 and IL8 target therapies may be more suitable 

292 for basal-like breast cancer. Other immunosuppressive factors in this study are also worth further 

293 studying in the field of subtype-specific IO target therapy for breast cancer in the future. 

294 Conclusions 

295 Through the use of online databases, model reconstruction and comparisons of the mRNA 

296 expression profiles of luminal-like and basal-like cell lines and primary breast cancer tissues, 4 

297 immunosuppressive factors associated with a malignant phenotype in breast cancer were 

298 identified and validated. Such molecules could be used as biomarkers for breast cancer malignant 
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299 phenotypes and prognosis. In addition, 2 immunosuppressive factors were confirmed as clinical 

300 IO therapeutic targets, and they may more suitable for the therapy of basal-like breast cancer. 

301 However, because the majority of immune-related factors have diverse roles in disease pathology 

302 and we still lack a complete understanding of the relationship between immunosuppressive 

303 factors and breast cancer malignancy, therefore, the feasibility of their clinical application as 

304 drug targets and prognosis predictors warrants further investigation.
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Figure 1
Unsupervised analysis.

(A) Principal components of all genes. The first two PCA are plotted. The three major groups
were colored in blue (basal-like), red (luminal-like) and green (edged samples). (B)
Hierarchical clustering of all samples. 8 cell lines from GSE40057 and 32 tissue samples from
GSE1561, representing basal-like (blue) and luminal-like (red) groups were chosen for
subsequent analysis.
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Figure 2
WGCNA of GSE40057 (A, B) and GSE1561 (C, D).

(A) 20283 genes were assigned to 25 modules. The gene dendrogram was shown in the top
portion, and the 25 gene modules were in the bottom portion. (B, D) Relationship between
modules and traits. The upper score in each box represents module significance (MS) score,
the larger the score, the higher the correlation between module and trait, and the lower
value represents the corresponding p-value. (C) 12752 genes were assigned to 6 modules.
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Figure 3
The expression of immune-related genes in cell lines and tissue samples.

(A) The Venn diagram shows the intersection between immune-related genes and DEGs from
GSE40057 and GSE1561. (B) The Venn diagram shows the intersection between 29 clinical IO
therapeutic targets and DEGs from GSE40057 and GSE1561: CD274 and IL8 from GSE40047;
CXCL12 and IDO1 from GSE1561. (C, D) Hierarchical clustering analysis of Immune-related
genes expression in Cell lines (C) and Tissue samples (D). Each row corresponds to an
Immune-related genes and each column corresponds to an independent cell or tissue
sample. The darker colour means a higher expression and the immune-related genes in red
letters are thought to be immunosuppressive factors. * = IO target
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Figure 4
CSF2, IL8 and TGFβ1 expression in human breast cancer cell lines with GOBO analysis.

(A) Box plots of CSF2, IL8 and TGFβ1 expression across 51 breast cancer cell lines grouped
into basal A (red), basal B (grey) and luminal (blue) subgroups. (B) Box plots of CSF2, IL8 and
TGFβ1 expression across 51 breast cancer cell lines grouped into triple negative (TN), HER2
positive and hormone receptor positive (HR). (C) CSF2, IL8 and TGFβ1 mRNA levels across 51
breast cancer cell lines.
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Figure 5
Expression of the six immuosuppressive factors in breast cancer based on breast cancer
subtypes.

CXCL5, IDO1, MIF, PTGS2 and VEGFA have higher expression in basal (triple negative) breast
cancer as compared with luminal breast cancer, while CXCL12 has lower expression in basal
(triple negative) breast cancer. *p<0.05, **p<0.005, ***p<0.001.
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Figure 6
Kaplan-Meier Plotter determined the relationship between survival rate and mRNA
expression levels of 6 immunosuppressive factors using microarray data of 3951
patients.

Higher CXCL12, CXCL5, IDO1 and PTGS2 mRNA expression levels were correlated with a
comparatively higher survival rate (p<0.01), while higher MIF and VEGFA expression levels
were correlated with a lower survival rate (p<0.01). HR=Hazard Ratio
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Figure 7
Immunohistochemical detection of MIF (Row 1) and VEGFA (Row 2) in breast cancer
tissue microarray.

(A) and (D), Negative expression in Cancer adjacent normal breast tissue. (B) and (E),
Negative expression in Invasive ductal carcinoma. (C) and (F), Positive expression in Invasive
ductal carcinoma. (Original magnification × 200; inset × 400)
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Figure 8
qRT-PCR and Western blot results.

(A) show that CD274 and IL8 were upregulated in the basal-like breast cancer cell lines,
BT549 and MDA-MB-231 (p<0.0001). Similar to qRT-PCR results, western blot analysis (B)
indicates that CD274 and IL8 protein were increased in BT549 and MDA-MB-231, compared
to MCF7 and T47D cell lines. ***P<0.001, **P<0.01, *P<0.05
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Table 1(on next page)

TOP 10 GO terms of GO functional annotations for genes in module black
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1 Table 1. TOP 10 GO terms of GO functional annotations for genes in module black.

GO TERM_MF Count % P-Value

GO:0006955~immune response 72 24.91 5.94E-53

GO:0002250~adaptive immune response 30 10.38 1.38E-23

GO:0050776~regulation of immune response 31 10.72 2.30E-22

GO:0060333~interferon-gamma-mediated signaling pathway 20 6.92 1.40E-18

GO:0006954~inflammatory response 37 12.80 4.16E-18

GO:0050852~T cell receptor signaling pathway 23 7.96 1.79E-15

GO:0045087~innate immune response 34 11.76 6.47E-14

GO:0050900~leukocyte migration 20 6.92 6.71E-14

GO:0031295~T cell costimulation 17 5.88 7.59E-14

GO:0019882~antigen processing and presentation 14 4.84 2.48E-12

GO TERM_BP

GO:0042605~peptide antigen binding 11 3.81 6.26E-12

GO:0004888~transmembrane signaling receptor activity 18 6.23 3.51E-08

GO:0004872~receptor activity 18 6.23 4.30E-08

GO:0008009~chemokine activity 10 3.46 4.93E-08

GO:0032395~MHC class II receptor activity 7 2.42 5.49E-08

GO:0005102~receptor binding 22 7.61 1.30E-07

GO:0042288~MHC class I protein binding 7 2.42 2.83E-07

GO:0019864~IgG binding 6 2.08 3.50E-07

GO:0023026~MHC class II protein complex binding 6 2.08 3.11E-06

GO:0003823~antigen binding 11 3.81 4.10E-06

2 Note: GO, gene ontology; BP, biological process; MF, molecular function. 

3
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Table 2(on next page)

TOP 10 clusters of KEGG pathway enrichment analysis for genes in module black
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1 Table 2. TOP 10 clusters of KEGG pathway enrichment analysis for genes in module black

KEGG_PATHWAY Count % P-Value

hsa05330:Allograft rejection 19 6.57 9.37E-20

hsa04612:Antigen processing and presentation 24 8.30 2.51E-19

hsa05332:Graft-versus-host disease 18 6.23 2.87E-19

hsa05416:Viral myocarditis 20 6.92 5.00E-17

hsa04940:Type I diabetes mellitus 18 6.23 5.08E-17

hsa05150:Staphylococcus aureus infection 19 6.57 3.46E-16

hsa05320:Autoimmune thyroid disease 18 6.23 3.69E-15

hsa05152:Tuberculosis 27 9.34 2.08E-13

hsa04145:Phagosome 25 8.65 2.78E-13

hsa04514:Cell adhesion molecules (CAMs) 24 8.30 6.94E-13

2

3
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Table 3(on next page)

Relationship between MIF, VEGFA expression level and clinico-pathologic parameters of
breast cancer by tissue microarray
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Table3. Relationship between MIF, VEGFA expression level and clinico-pathologic parameters of 

breast cancer by tissue microarray

MIF, 100% VEGFA, 100%Variable    Number of 

cases High Low

P

High Low

P

Pathologic grade

1 16 11 

(68.8)

5 (31.2)

0.397

6 (37.5) 10 

(62.5)
0.017*

2,3 58 32 

(55.2)

26 

(44.8)

42 

(72.4)

16 

(27.6)

Clinical stage

I 17 3 (17.6) 14 

(82.4) 0.095

12 

(70.6)

5 (29.4)

1.000

II, III 73 30 

(41.1)

43 

(58.9)

51 

(69.9)

22 

(30.1)

Lymph node status

No metastasis 78 25 

(32.1)

53 

(67.9)
0.027*

48 

(61.5)

30 

(38.5) 0.524

Metastasis 12 8 (66.7) 4 (33.3) 9 (75.0) 3 (25.0)

1 The total number of samples in pathologic grade does not equal 90, as some samples are not included in any given 

2 grades. * p<0.05

3
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