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ABSTRACT

Abundance, species diversity, and horizontal distributions of barnacle cyprids
offshore of La Jolla, southern California were described from May 2014 to August
2016 to determine how the nearshore barnacle larval assemblage changed before,
during, and after the 2015-16 El Nifio. The entire water column was sampled at five
stations located within one km of shore with water depths of 4, 6, 8, 10, and 12 m
during 33 cruises that encompassed the time when El Nifio conditions impacted the
area. Nearshore temperature and thermal stratification was concurrently measured
using a CTD. Six identified cyprid species, including Chthamalus fissus, Pollicipes
polymerus, Megabalanus rosa, Tetraclita rubescens, Balanus glandula, and

B. trigonus, along with four unknown species, were collected in our samples.

DNA barcoding was used to confirm identifications in a subset of the larvae. C. fissus
was more than eight times more abundant than any other species, and while
abundance varied by species, cyprid density was highest for all species except for
M. rosa before and after the El Nifio event, and lower during the environmental
disturbance. There were significant differences in cross-shore distributions among
cyprid species, with some located farther offshore than others, along with variability
in cross-shore distributions by season. C. fissus cyprids were closest to shore during
spring-summer cruises when waters were the most thermally stratified, which
supports previous findings that C. fissus cyprids are constrained nearshore when
thermal stratification is high. Relative species proportions varied throughout the
study, but there was no obvious change in species assemblage or richness associated
with El Nifio. We speculate that barnacle cyprid species diversity did not increase
at our study site during the 2015-16 El Nifo, as it has in other areas during previous
El Niflo Southern Oscillation events, due to the lack of anomalous northward flow
throughout the 2015-16 event.

Subjects Biodiversity, Ecology, Marine Biology, Molecular Biology, Biological Oceanography
Keywords Barnacle cyprids, Chthamalus fissus, DNA barcoding, El Nifio, Larvae, Species diversity

INTRODUCTION

The warm phase of El Nifio Southern Oscillation (ENSO) in the Eastern Pacific is
associated with widespread oceanic disturbance, as both environmental and advective
processes can change during El Nifio events. This in turn may affect marine communities,
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especially planktonic organisms that do not swim effectively against currents and are thus
subject to changes in ocean circulation (Ohman et al., 2018). Southern California
experienced El Nifo conditions from April 2015 to May 2016 (McClatchie et al., 2016), and
barnacle larval abundance in nearshore waters off La Jolla, southern California was
lower during El Nifio than it was before or after the disturbance (Hagerty, Reyns ¢ Pineda,
2018; Pineda, Reyns ¢ Lentz, 2018). The 1982-83 El Nifio also impacted southern
California, and two barnacle species usually found farther south appeared offshore of San
Diego: Megabalanus coccopoma and M. californicus (Newman & McConnaughey, 1987).
The 1997-98 ENSO event coincided with enhanced larval recruitment of Balanus
glandula, Chthamalus fissus, and C. dalli barnacles in central and northern California
(Connolly & Roughgarden, 1999). Similarly, coastal abundances of crab zoeae increased
markedly in California during springs of El Nifo years, due to northward transport from
Baja California waters (Lynn ¢ Bograd, 2002; Pérez-Brunius, Lopez & Pineda, 2006),
and the arrival of rare copepods increased species richness during 1997-98 and 2015-16
El Nifo conditions (McClatchie et al., 2016).

Non-planktonic organisms have experienced similar fluctuations in abundance and
species composition associated with El Nifio in southern California: forage fish numbers
decreased and fish assemblages showed both an increase in southern species and a decrease
in northern species during the 2015-16 ENSO event (McClatchie et al., 2016). Species
evenness of tidepool fish in La Jolla and San Diego increased during El Nifio in 1997-98,
when abundance of the dominant species dwindled (Davis, 2000). Additionally, the strong
1997-98 El Niflo corresponded with a northern range shift of eastern tropical Pacific
fishes into southern California, and some Panamic fish species were recorded in California
for the first time (Lea & Rosenblatt, 2000). The present study was conducted in and
focuses on southern California, but El Nino affects marine ecosystems in many locations
(Arntz & Tarazona, 1990; Coffroth, Lasker & Oliver, 1990; Warwick, Clarke & Suharsono,
1990; Carballo, Olabarria & Osuna, 2002; Navarrete et al., 2002; Garcia, Vieira ¢
Winemiller, 2003).

To determine changes in the barnacle cyprid assemblage in nearshore waters of La Jolla,
southern California throughout El Nifio, we measured abundance and species diversity, and
characterized the horizontal distribution of late-stage barnacle larvae, or cyprids, during 33
collection cruises from May 2014 to August 2016, encompassing the time when the study area
experienced El Nifo conditions. During each cruise, we sampled the entire water column
at five stations roughly perpendicular to the coast and within one km of shore. Pineda, Reyns
¢ Lentz (2018) found that abundance and settlement of C. fissus barnacle larvae decreased,
thermal stratification was lower, and high-frequency internal waves were less energetic at
our sampling site during the 2015-16 El Niflo compared to after this period. When
stratification is high, internal motions such as internal tidal bores that have the potential to
transport larvae are more energetic (Pineda, 1999; Pineda & Lopez, 2002). Hagerty, Reyns &
Pineda (2018) found that C. fissus cyprids were constrained to shore when thermal
stratification was high, but it is unclear if other species adhere to the same pattern.

Marine invertebrate larvae, and barnacle larvae in particular, can be extremely difficult
to identify to species by morphology (Chen, Hoeg ¢ Chan, 2013; Wong et al., 2014).
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DNA barcoding is an effective complementary method for obtaining species identifications
(Bucklin, Steinke ¢ Blanco-Bercial, 2011). The barcoding process usually involves the
extraction of genomic DNA from an organism, followed by amplification via PCR of a
target barcode marker, and then sequencing. Resulting DNA sequences can be matched to
reference sequences from previously identified individuals (Govindarajan et al., 2015).
The mitochondrial COI gene is a barcode marker that can successfully distinguish between
barnacle species (Chen, Hoeg ¢ Chan, 2013; Wong et al., 2014).

We hypothesized that larval barnacle species diversity would increase during the 2015-
16 El Nifo year due to advection from southern regions. Specifically, we addressed the
following questions: What species of barnacle cyprids are present offshore of La Jolla? Do
abundance and species diversity of barnacle cyprids in the area change during El Nifio
conditions? Is cross-shore distribution of cyprids species-specific? Because of the
importance of identifying species-specific patterns, we used DNA barcoding to confirm
our morphological larval identifications.

MATERIALS AND METHODS

Sample collections

All field collections were made under the California Department of Fish and Wildlife
scientific collection permit SC-10523. Plankton samples were collected offshore of Bird
Rock, La Jolla, California, USA and included five sampling stations at distances of 280, 460,
640, 820, and 1,000 m from shore at water depths of 4, 6, 8, 10, and 12 m, respectively
(Fig. 1A). This study site was selected because of the large population of C. fissus barnacles
on its shoreline, and because larvae of the predominant barnacle species in the area have
been collected in surrounding waters (C. fissus, B. glandula, Pollicipes polymerus;
Hoffman, 1989; Pineda, 1991, 1999; Pineda & Lépez, 2002; Tapia ¢ Pineda, 2007; Tapia
et al., 2010). Plankton sampling was conducted on a 7.6 m boat, and consisted of 33 collection
cruises: nine in spring-summer (May-July) and six in fall-winter (October-December) of
2014, eight in spring-summer (April-July) and four in fall-winter (October-December) of
2015, and six in summer (June-August) of 2016. All cruises were conducted during the day
without consideration for lunar phase or tidal cycle. An Ebara 50DWXU6.4S Dominator
submersible semivortex pump was used to filter two m® of seawater in discrete two m depth
bins from the surface to the bottom at each of the five sampling stations during each cruise.
The pump was oscillated throughout the two m sampling intervals so that the entire

water column was sampled at all stations. Each cruise resulted in 20 plankton samples unless
sea state conditions or equipment failure interrupted sampling. Seawater was filtered through
a 118-um mesh net to capture barnacle cyprids, and plankton collected on the filter were
immediately preserved in 100% ethanol.

Barnacle cyprids were enumerated and identified to species based on published
morphological descriptions (Lewis, 1975; Brown & Roughgarden, 1985; Miller et al., 1989;
Miller ¢~ Roughgarden, 1994; Shanks, 2001) using a dissecting microscope. Additionally,
morphologically distinct cyprids were selected for DNA barcoding, preserved individually
in ethanol, and refrigerated until molecular analysis was carried out. DNA barcoding
was completed to ground truth morphological identifications and classify cyprids with
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Figure 1 Study location. (A) Sampling site offshore of Bird Rock, La Jolla, southern California, USA.
Circles indicate plankton sampling stations 280, 460, 640, 820, and 1,000 m from shore at a bottom depth of
4, 6, 8, 10, and 12 m, respectively, moving offshore from right to left. Bottom depth contours every two m
relative to Mean Lower Low Water (MLLW), with the shallowest contour at MLLW. Lidar data from
the 2013 NOAA Coastal California TopoBathy Merge Project, https://coast.noaa.gov/dataviewer/#/lidar/
search/where:ID=2612. (B) Locations of adult barnacle collections (X): Bird Rock, La Jolla, California,
USA; Dike Rock, La Jolla, California, USA; Alisitos, Baja California (Carignan et al., 2012).

Full-size Ka] DOL: 10.7717/peerj.7186/fig-1

unfamiliar morphology that we were otherwise unable to match to known species.
After barcoding, morphological identifications were assessed, and cyprids that were
unknown prior to barcoding were compared to reference sequences.
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Morphologically distinct adult barnacles were collected from boulders in the intertidal
at three locations to serve as a baseline for barnacle species in the area: onshore of the
plankton sampling location at Bird Rock, La Jolla, California, USA; north of sampling
location at Dike Rock, La Jolla, California, USA; south of sampling location at Alisitos, Baja
California, Mexico (Fig. 1B). Collections were conducted on May 7, 2016 at Bird Rock,
May 9, 2016 and June 20, 2016 at Dike Rock, and June 22, 2016 at Alisitos. The goal was to
find ~5 representative individuals for each different species, which resulted in 55 barnacles
total. All adults were dissected; a small piece of tissue was removed, preserved in
ethanol, and refrigerated until molecular analysis was carried out.

Molecular analysis

Molecular analysis methods were slightly modified from the methods outlined by
Govindarajan et al. (2015). For cyprids, the whole larva was placed into PCR tubes.

For adults, Qiagen DNEasy Blood & Tissue extraction kits were used to extract DNA from
the small piece of tissue removed during dissection. The mitochondrial COI gene was
amplified using HCO2198 and LCO1490 primers (Folmer et al., 1994) or jgHCO2198
(Geller et al., 2013) and mlCOIintF primers (Leray et al., 2013). The PCR cycle for Folmer
primer amplifications was: (a) an initial denaturation at 95 °C for 3 min; (b) 35 cycles
of 95°C 30 s, 48 °C 30 s, 72 °C 60 s; and (c) a final extension at 72 °C for 5 min.

A touchdown protocol was used for amplifications with the Geller-Leray primers

(Leray et al., 2013). PCR products were visualized with a 1% agarose gel stained with
Biotium GelRed, and purified with Qiagen Qiaquick PCR Purification kits. After
purification, DNA was qualified and quantified with a NanoDrop One Microvolume UV-Vis
spectrophotometer and sequenced in both directions (Eurofins Scientific, Brussels, Belgium).
Geneious 9.1.7 (Biomatters Limited, Auckland, New Zealand) was used to assemble and
align chromatograms, and sequences were compared to reference sequences in GenBank
using Basic Local Alignment Search Tool, accessed on 7 June 2017. All sequences generated
in this study were submitted to GenBank (MK496547-MK496616).

Diversity measurements
Species diversity was assessed for each cruise using Hurlbert’s (1971) modification of
Sanders (1968) rarefaction index:

=)

where E(S,) is the expected number of species in a sample of #n individuals selected at
random from a collection containing N individuals, S species, and N; individuals in the ith
species (Hurlbert, 1971). Rarefaction is used to compare sample collections of different sizes
by reducing them to a common size (1), since species richness usually increases with N
(Hurlbert, 1971). Mean E(S,,) was calculated for each sampling period, and a randomization
test (Manly, 1997) was completed to determine if differences in E(S,,) values were significant.
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Cyprid distributions

Cyprid concentration (no. m™) at each station was multiplied by station depth to
standardize samples to cyprid density (no. m™>) to account for vertical dilution of larvae
when comparing cyprid concentrations at stations of varying depths. Cyprid density across
the five sampling stations for each species was averaged for each cruise. The mean
distance from shore (MDS; Hagerty, Reyns ¢~ Pineda, 2018; referred to as “average distance
offshore” in Shanks ¢ Shearman, 2009) of each cyprid species for each cruise was
calculated as:

>~ (No. m~2 at a given station X Distance from shore of station)
> (No. m~2 at all stations)

MDS =

A one-way ANOVA was used to test for differences in MDS among cyprid species;
ANOVA assumptions were met.

Environmental variables
Temperature and depth measurements were recorded before and after sampling at each
station with a SonTek CastAway-CTD. Mean temperature for each cruise was calculated as
the average of all CTD temperature measurements, and thermal stratification was
calculated for each station. Analysis of 1,251 CTD profiles indicated that thermal
stratification is an excellent proxy for density stratification (top-to-bottom temperature
difference is correlated with top-to-bottom density difference: r = 0.987). Furthermore,
given the relatively widespread deployment of temperature loggers on moorings, our
calculations allow comparisons of thermal stratification to be made with other studies that
have collected temperature profile data (Hagerty, Reyns & Pineda, 2018; Pineda, Reyns ¢
Lentz, 2018). Salinity was not considered because stratification at our study location is
mainly dependent on vertical differences in temperature (Hagerty, 2017).

Thermal stratification was defined as change in temperature m~' (AT °C m™"), as in
Hagerty, Reyns ¢ Pineda, 2018, and calculated as:

(Temperature at surface — Temperature at bottom)

Thermal stratification =
(Depth of bottom temperature — Depth of surface temperature)

Zonal stratification (Hagerty, Reyns ¢ Pineda, 2018) was calculated by averaging
thermal stratification at the three offshore stations-640, 820, and 1,000 m from shore with
bottom depths of 8, 10, and 12 m, respectively—for each cruise. These stations were
chosen to represent zonal thermal stratification because they were frequently associated
with the highest stratification at our study site.

RESULTS

Cyprid abundance and species diversity

Molecular analysis resulted in 70 successful sequences: 26 cyprids and 44 adults. In all
cases, morphological identifications were affirmed by the barcoding results. We found that
the Geller-Leray primer set (Geller et al., 2013; Leray et al., 2013) worked better for our
samples than the Folmer set (Folmer et al., 1994). During the first round of barcoding,
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Table 1 Number of cyprids on which barcoding was attempted, and number of successfully barcoded
cyprids, from each sampling period.

Sampling period No. attempted No. barcoded
Spring-Summer 2014 27 4

Fall-Winter 2014 0 0
Spring-Summer 2015 46 13
Fall-Winter 2015 8 2

Summer 2016 11 7

we started with the Folmer set and switched to the Geller-Leray set after achieving little
success. A contributing factor may have been contamination with rose Bengal, as some
near-bottom samples with heavy sediment content had been stained, and we discovered
during our first round of barcoding that DNA from stained cyprids could not be amplified
with our procedure (0 of 16 stained cyprids were successfully barcoded). Easton ¢
Thistle (2014) successtully amplified and sequenced DNA from 122 copepods stained with
rose Bengal using a Chelex®-based procedure, which is thought to remove any inhibitory
compounds from samples. Of the 27 cyprids that did not come from rose Bengal
samples during the first round of barcoding, Folmer primers were used for 13 and
Geller-Leray primers were used for the remaining 14. DNA was successfully amplified and
sequenced for five cyprids using the Geller-Leray method (36%), but only two cyprids
were successfully barcoded using the Folmer method (15%). The Folmer primers were not
used during the second round of barcoding, when 19 barcodes were obtained from
50 attempted cyprids (38% success rate using only Geller-Leray primer set). Table 1
outlines how many cyprids were barcoded from each sampling period.

Six species of cyprids were identified, belonging to five genera and four families:
C. fissus, B. glandula, P. polymerus, Tetraclita rubescens, Megabalanus rosa, and B. trigonus
(Figs. 2A-2F). Chthamalus spp., B. glandula, and P. polymerus cyprids were identified
morphologically, and were confirmed by molecular analysis (Table 2). C. fissus cyprids
were given a tentative morphological identification of Chthamalus spp., because larvae of
C. fissus and C. dalli are morphologically identical (Miller et al., 1989). However, C. fissus is
the most abundant local barnacle and C. dalli is rare in San Diego, California (Morris,
Abbott & Haderlie, 1980). Indeed, all of our barcoded Chthamalus cyprids and adults were
identified as C. fissus. Three additional cyprid species, T. rubescens, M. rosa, and
B. trigonus, were identified molecularly (Table 2). There were four distinct morphotypes of
unknown cyprids, which were not successfully sequenced due to a failure to amplify their
DNA, which could be due to low quality or insufficient quantity of DNA (Figs. 2G-2]).
Six species of adults were identified, matching the identifications of the known cyprid
species other than B. trigonus, and one additional species. Three adults—one collected at
Dike Rock and two collected in Alisitos, Baja California—matched an unclassified Sessilia,
Balanoidea sp. MM-2014 (GenBank: HG970516.1), collected from a soft coral in the genus
Leptogorgia in Florida, USA (Malay ¢» Michonneau, 2014).

Cyprid abundance varied by species, but was highest for most species in spring-summer
2014 and summer 2016 (Figs. 3C-3E). P. polymerus cyprids had relatively similar densities
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Figure 2 Cyprid species identified from plankton samples. (A) Pollicipes polymerus. (B) Chthamalus
fissus. (C) Balanus glandula. (D) Tetraclita rubescens. (E) Balanus trigonus. (F) Megabalanus rosa. (G-])
four unknown species. Full-size k&) DOT: 10.7717/peer;j.7186/fig-2

throughout all sampling periods until a large peak in density in summer 2016 (Fig. 3C). In
contrast, M. rosa had higher relative abundances during spring-summer periods than during
fall-winter periods (Fig. 3E). C. fissus was by far the most abundant cyprid found in
samples (maximum density = 346 cyprids m>), followed by P. polymerus (max. = 122 m ™)
while T. rubescens (max. = 30 m™2), B. trigonus (max. = 28 m ), M. rosa (max. = 12 m™?),
and B. glandula (max. = 12 m ) were found at low densities (Fig. 4). Cyprids were
present in relatively large numbers starting in 2014 (average density = 121 cyprids m ™~ in
spring-summer 2014), decreased in fall-winter 2014 and remained low throughout 2015
(average density did not exceed 38 cyprids m~> during these sampling periods), and
increased again in summer 2016 (average density = 152 cyprids m ). The highest density for
the dominant species, C. fissus, and the two least abundant species, B. glandula and M. rosa,
were collected during spring-summer 2014. The highest densities of P. polymerus,
T. rubescens, and B. trigonus occurred in summer 2016 (Fig. 3).

All six identified cyprid species were collected during spring-summer of 2014 and 2015,
as well as during the 2016 sampling period, but B. trigonus cyprids were not found in
fall-winter of 2014, and T. rubescens cyprids were not collected in fall-winter of 2015
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Table 2 Tentative morphological identification, DNA sequence length, Basic Local Alignment Search Tool (BLAST) results (accessed 7 June
2017), and final species identification for barcoded cyprids.

Cyprid #—GenBank Accession #  Morphological ID Sequence length (bp)  BLAST results Final ID

% Query coverage % Identity
1—MK496547 Chthamalus spp. 328 100 99 Chthamalus fissus
2—MK496548 Chthamalus spp. 313 100 98 Chthamalus fissus
3—MK496549 Chthamalus spp. 315 100 99 Chthamalus fissus
4—MK496550 Chthamalus spp. 581 100 100 Chthamalus fissus
5—MK496551 Chthamalus spp. 313 100 100 Chthamalus fissus
6—MK496552 Chthamalus spp. 313 100 99 Chthamalus fissus
7—MK496553 Chthamalus spp. 312 100 99 Chthamalus fissus
8—MK496554 Chthamalus spp. 310 100 100 Chthamalus fissus
9—MK496555 Chthamalus spp. 312 100 100 Chthamalus fissus
10—MK496556 Chthamalus spp. 311 100 100 Chthamalus fissus
11—MK496557 Chthamalus spp. 312 100 99 Chthamalus fissus
12—MK496558 Balanus glandula 468 100 100 Balanus glandula
13—MK496559 Balanus glandula 310 100 100 Balanus glandula
14—MK496560 Balanus glandula 273 100 100 Balanus glandula
15—MK496561 Pollicipes polymerus 307 100 100 Pollicipes polymerus
16—MK496562 Unknown A 306 100 100 Tetraclita rubescens
17—MK496563 Unknown A 238 90 100 Tetraclita rubescens
18—MK496564 Unknown A 306 100 100 Tetraclita rubescens
19—MK496565 Unknown A 306 100 100 Tetraclita rubescens
20—MK496566 Unknown A 307 100 100 Tetraclita rubescens
21—MK496567 Unknown A 291 100 100 Tetraclita rubescens
22—MK496568 Unknown B 306 100 99 Megabalanus rosa
23—MK496569 Unknown B 312 100 99 Megabalanus rosa
24—MK496570 Unknown B 311 100 99 Megabalanus rosa
25—MK496571 Unknown B 314 100 99 Megabalanus rosa
26—MK496572 Unknown C 278 100 99 Balanus trigonus

(Figs. 3 and 4). Species assemblage varied by sampling period, but C. fissus cyprids

dominated the samples during all five periods (Fig. 4). C. fissus cyprids were collected

during all cruises except December 29, 2014 and November 20, 2015, when no cyprids

were found in our samples. The relative abundance of C. fissus was noticeably lower

compared to other species during spring-summer 2015 and summer 2016, mainly due to

an increase of M. rosa and P. polymerus cyprids (Fig. 4). Unknown cyprid species were not

collected during fall-winter cruises in 2014 or 2015 (Fig. 4).

Species diversity was highest on May 14, 2014 (E(S,0) = 5.92) and lowest on the 6th and
18th of November in 2014, and on the 16th and 20th of July in 2015, when C. fissus was
the only species present (Fig. 3B). E(S,o) measurements were more variable in

spring-summer 2014 and spring-summer 2015 (ranging 1-5.92) than during the other

sampling periods (Fig. 3B). Mean E(S,,) was comparable for most sampling periods,

except in fall-winter 2014, when it was low (Fig. 5).
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Figure 3 Time series of temperature, thermal stratification, species diversity, and cyprid density.
(A) Water temperature and thermal stratification during each cruise. (B) Cyprid species diversity
calculated for each cruise, where E(S,y) is the expected number of species in a random sample of
20 individuals. (C-E) Density of each cyprid species during each cruise, separated into three sections due to
the large range in densities across species. (C) Chthamalus fissus and Pollicipes polymerus. (D) Tetraclita
rubescens and Balanus trigonus. (E) Balanus glandula and Megabalanus rosa. Shaded region represents the

time period when ENSO conditions were impacting the study site.

Full-size K&l DOI: 10.7717/peer}.7186/fig-3

We conducted a randomization analysis (Manly, 1997) to test for differences in E(S0)

means among the five sampling periods: spring-summer 2014, fall-winter 2014, spring-

summer 2015, fall-winter 2015, and summer 2016. Random samples of #y; values were

taken without replacement from the vector comprising the entire series of E(S,o) (N = 23),
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Figure 4 Proportion and average abundance of cyprid species. Relative proportion of total cyprids for
each species (Chthamalus fissus, Balanus glandula, Pollicipes polymerus, Tetraclita rubescens, Mega-
balanus rosa, Balanus trigonus), and average cyprid abundance during sampling periods: (A) spring-
summer 2014 (N = 149 samples), (B) fall-winter 2014 (N = 108 samples), (C) spring-summer 2015
(N = 136 samples), (D) fall-winter 2015 (N = 78 samples), (E) summer 2016 (N = 120 samples). ENSO
conditions were impacting the area during spring-summer 2015 and fall-winter 2015 sampling periods.
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Table 3 MDS values for cyprid species. ENSO conditions were impacting the area during spring-summer 2015 and fall-winter 2015 sampling

periods.

Average MDS + SE Chthamalus fissus Balanus glandula Pollicipes polymerus Tetraclita rubescens Megabalanus rosa Balanus trigonus

SS 2014
FW 2014
SS 2015
FW 2015
S 2016

538.08 *+ 27.82
613.03 + 41.98
540.61 £ 59.47
599.37 + 68.78
512.70 + 22.14

649.28 *+ 49.56
819.28 + 73.48
835.63 + 134.20
724.38 + 98.46

587.89 + 51.34
537.21 + 65.00
667.71 + 73.67
524.02 + 32.49
625.54 + 27.19

726.54 = 130.80
730.00 = 170.76
760.00 + 169.70

596.50 * 63.62

746.99 * 37.19
656.21 + 103.59
795.37 + 68.75

789.57 * 52.57

550.00 + 51.96

640.00 + 0.00

733.63 * 52.04

Note:

Average MDS calculations (+1 SE) for each species during each sampling period: spring-summer 2014 (N = 9 cruises), fall-winter 2014 (N = 6 cruises), spring-summer
2015 (N = 8 cruises), fall-winter 2015 (N = 4 cruises), summer 2016 (N = 6 cruises). If the average MDS value was only based on measurements from one cruise, it was
excluded from this table.

where k is sample period, and i is the number of E(S,) values in each sample period. That
is, the 23 E(S,0) values were randomly redistributed among the five sampling period
groups. We then calculated the F one-factor ANOVA statistic, and this was repeated
10,000 times. The approximate p-value is the proportion of F values from the randomized
data sets that are larger than the F computed from our data set; p = 0.3932. This indicates
there were no significant differences in E(S,y) among the sampling periods.

Cyprid horizontal distributions and water column conditions

There were significant differences in MDS among cyprid species (ANOVA results:

F =15.13, p = 0.00016, df = 1), and a Tukey post hoc test was completed for pairwise
comparisons. M. rosa and B. glandula had significantly greater MDS values than C. fissus,
meaning M. rosa, and B. glandula cyprids were distributed significantly farther from
shore than C. fissus (g = 225.17, p = 0.000043 and g, = 172.45, p = 0.0072, respectively).
M. rosa was also significantly farther offshore than P. polymerus (g, = 168.51, p = 0.010).
Average MDS for C. fissus cyprids was greater during fall-winter than spring-summer
and summer sampling periods (Table 3), which means C. fissus cyprids were distributed
closer to shore in spring-summer. In contrast, P. polymerus cyprids were closer to shore on
average during fall-winter sampling periods (Table 3). While too few M. rosa cyprids
were collected in fall-winter of 2015 to make comparisons, the average MDS value for
M. rosa in fall-winter 2014 was lower than that of the spring-summer periods of 2014 and
2015, as well as that of summer 2016. Another notable result was that T. rubescens cyprids
were located closer to shore in summer 2016 compared to earlier sampling periods
(Table 3).

In general, water temperature was relatively low at the start of spring-summer sampling
periods, increased throughout spring-summer, remained high until fall, and then
decreased during fall-winter sampling periods (Fig. 3A). The highest temperatures were
recorded during fall-winter 2015, and the lowest measurement was during summer 2016.
Thermal stratification was high during spring-summer sampling, low during fall-winter
sampling, and the highest measurements occurred during the first few cruises of
summer 2016 (Fig. 3A). Overall mean temperature for each sampling period ranged
from 17.7 to 20.6 °C, and was higher in fall-winter than spring-summer (Fig. 5B).

Mean temperature was similar during both sampling periods in 2014 and summer 2016,
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ranging between 18.7 and 19.0 °C, but decreased to 17.7 °C in spring-summer 2015 and
increased to 20.6 °C in fall-winter 2015. Mean zonal stratification ranged from 0.05 to
0.38 °C m ™" and was lowest in fall-winter sampling periods (Fig. 5C). Mean zonal
stratification was highest in summer 2016, and was more variable in spring-summer/summer
sampling periods than fall-winter sampling periods (Figs. 3A and 5C).

DISCUSSION

Six species of barnacle cyprids were identified in our samples: C. fissus, B. glandula,

P. polymerus, T. rubescens, M. rosa, and B. trigonus. Four cyprid morphotypes were not
identified, and could possibly include Balanoidea sp. MM-2014, as we collected adults
from that species in the intertidal habitats near our plankton sampling location. C. fissus,
B. glandula, and P. polymerus cyprids were identified morphologically and confirmed via
DNA barcoding. T. rubescens, M. rosa, and B. trigonus cyprids in our samples were

not easily identified by morphology and were unknown until molecular analysis was
completed. The results of barcoding not only confirmed our known morphological
identifications, but also helped us identify some of our unknown larval morphotypes,
providing confidence in our results and subsequent analyses when comparing abundances
and cross-shore distributions among species. While molecular analysis added certainty
to our results, we did have a low success rate overall for DNA barcoding (28%), which may
be due to DNA degradation in ethanol over time. Samples were collected between

May 2014 and August 2016, and barcoding was conducted in May 2016 and January 2017.
The success rate increased with more recently collected specimens: 14%, 27%, and 63%
success for cyprids collected in 2014, 2015, and 2016, respectively (Table 1). Additionally,
it is possible that cyprids could have been contaminated with trace amounts of rose
Bengal stain during the sorting process, because the same instruments were used to sort
stained and unstained samples. We found that the Geller-Leray primer set had higher
success than the Folmer primer set, suggesting that it is useful in barcoding and
metabarcoding of barnacle larvae.

There were some similarities in timing of density peaks across species, but abundance
varied both within and between sampling periods for each cyprid species. The highest
recorded densities occurred at different times for different species, which could be due
to variable timing of reproductive output, differences in mortality rates between species,
differences in larval duration, differences in behaviors, and larval dispersal and transport.
While larval distributions are known to be variable (Haury, McGowan ¢ Wiebe, 1978),
cyprid abundance was highest for five of the six species sampled at the beginning
(spring-summer 2014) or end (summer 2016) of our sampling, rather than during El Nifio.
El Nifo conditions did not arrive at our study site until April 2015, but the warm
water anomaly also known as the “Blob” began affecting southern California in mid-2014,
after our spring-summer 2014 sampling period started (Leising et al., 2015; Zaba &
Rudnick, 2016; Pineda, Reyns & Lentz, 2018). Densities of C. fissus, T. rubescens,

B. trigonus, and B. glandula cyprids had their peaks in spring-summer 2014 and summer
2016, before and after the warm water anomaly and El Nifio conditions affected the
area, which suggests that these species could have been negatively affected by the
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environmental disturbances. These results agree with findings reported by Pineda, Reyns ¢
Lentz (2018) of low barnacle nauplii and C. fissus cyprid abundances in La Jolla during the
“Blob” and El Nifo, as well as low barnacle settlement rates. C. fissus cyprids have
been shown to be more constrained nearshore when stratification is high (Hagerty, Reyns ¢
Pineda, 2018), and nearshore water column stratification and variability of the cross-shore
currents, which is indicative of internal wave energy, were lower during the disturbances
than after (Pineda, Reyns ¢» Lentz, 2018). A decrease in thermal stratification and internal
movements known to aid in behavioral control of horizontal distribution and transport
larvae shoreward, as well as a possible decrease in reproduction and increase in larval
mortality, could be related to the low abundances of C. fissus, T. rubescens, B. trigonus, and
B. glandula cyprids during the disturbances (Pineda, Reyns ¢ Lentz, 2018). Fraser ¢» Chan
(2019) found that adult Fistulobalanus albicostatus barnacles exposed to heat stress
significantly reduced their mating behavior and almost never released larvae. Water
temperature at our study site increased throughout spring-summer 2015 and remained high
throughout fall-winter 2015 during El Nino, so a potential explanation for lower cyprid
densities is reduced reproduction in response to heat stress. It is possible that P. polymerus
barnacles are more susceptible to changes associated with oceanic disturbances, since the
density of P. polymerus cyprids increased greatly in summer 2016, when El Nifio conditions
were no longer present. M. rosa cyprids had high densities in spring-summer 2014,
spring-summer 2015, and summer 2016, which could be related to the similarities in mean
temperature and higher mean zonal stratification during these periods, and to a lack of
response to El Nifo.

In spring-summer 2015, at the onset of El Nifio in southern California, average cyprid
abundance was lowest, mainly due to a decrease of the dominant C. fissus cyprids.
The relative proportion of C. fissus to total cyprids was lowest during this sampling period,
while it was highest in the previous sampling period, fall-winter 2014. This supports the
notion that the 2015-16 warm phase of ENSO event had a negative impact on C. fissus
larvae in particular. We anticipated changes in species composition during El Nifio
because such changes have occurred for barnacles and other planktonic organisms, as
well as fishes, in southern California and elsewhere (Newman ¢ McConnaughey, 1987
Arntz & Tarazona, 1990; Warwick, Clarke & Suharsono, 1990; Davis, 2000; Carballo,
Olabarria & Osuna, 2002; Navarrete et al., 2002; Garcia, Vieira & Winemiller, 2003; Lea ¢
Rosenblatt, 2000; McClatchie et al., 2016). However, our results did not indicate an increase
in species richness or a major change in the species assemblage. Relative proportions of
cyprid species varied across sampling periods and cruises, but it is unclear if El Nifio
caused the variability. We did find that all six known cyprid species and unknown cyprids
were present during all spring-summer and summer sampling periods. Unknown cyprids
were not collected during fall-winter 2014 or 2015; B. trigonus cyprids were not
present in samples from fall-winter 2014, and T. rubescens cyprids were not found in
fall-winter 2015. Zonal stratification was lowest during fall-winter sampling periods, so it is
possible that zonal stratification affects the cross-shore distribution of those species in a
similar way as C. fissus. C. fissus cyprids were distributed farther offshore at our study
site during fall-winter compared to spring-summer when waters were more stratified
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(Hagerty, Reyns & Pineda, 2018). As opposed to the 1997-98 El Niflo, when anomalous
poleward flow was observed in coastal Californian waters (Lynn ¢ Bograd, 2002;
Pérez-Brunius, Lopez ¢ Pineda, 2006), currently there is no evidence for northward flow
associated with the 2015-16 El Nifo (McClatchie et al., 2016), and we speculate that this
might partially explain the relative constancy of the barnacle larval assemblage and

why E(S,0) did not increase during El Nifio. The emergence of the “Blob,” prior to the 2015
El Nifio (Leising et al., 2015; Zaba ¢ Rudnick, 2016), may have helped obscure a clear
difference in species assemblages during El Nifo. In fact, at the conclusion of El Nifio in
summer 2016, mean temperature cooled, zonal stratification increased, and E(S,,) was less
variable.

Cross-shore distributions of cyprids appear to be species-specific. Across our five
sampling stations located within one km from shore, there were significant differences in
MDS values between species. The largest in size of the known cyprid species, M. rosa, was
distributed significantly farther from shore than C. fissus and P. polymerus, the two
smallest cyprids. Cyprids are negatively buoyant (DiBacco et al., 2011), and M. rosa cyprids
could be located deeper in the water column than the other two species. This could
cause a difference in their cross-shore distributions, as vertical distribution can control
horizontal transport through exposure to varying currents (Pineda ¢ Reyns, 2018). Further,
adult C. fissus barnacles dominate the intertidal habitat near our sampling site, and
P. polymerus adults are much more abundant than M. rosa. We only collected two adult
M. rosa specimens, found in the intertidal at Dike Rock, La Jolla, which is slightly north of
the plankton sampling location. Cross-shore larval distributions may be influenced by adult
habitat locations. Average MDS for C. fissus was lowest in summer 2016, when zonal
stratification was highest. This means that C. fissus cyprids were closest to shore when waters
were the most stratified, which further supports both the hypothesis that cyprids have more
behavioral control to accumulate nearshore in stratified waters and the previous finding
of more constrained nearshore distributions of C. fissus cyprids when thermal stratification is
high (Hagerty, Reyns & Pineda, 2018).

CONCLUSIONS

In this study, we hypothesized that species composition of barnacle cyprids in nearshore
waters off La Jolla, southern California would change during the 2015-16 ENSO
disturbance. Specifically, we predicted that species diversity would increase. Our findings
did not support this hypothesis, as there was no significant difference in E(S,),

an estimation of diversity, across sampling periods. Relative species proportions and
diversity varied slightly throughout the study, but there was not an increase in species
richness associated with the arrival of the warm phase of El Nifio. Mean E(S,,) was
slightly lower in fall-winter 2014 during the warm water anomaly and before El Nifo, but
it was comparable across all other sampling periods. We also wanted to determine if
there were any changes in cyprid abundance caused by the warm water anomaly and El
Nifo, and found that cyprid abundance decreased during the environmental
disturbances. Densities increased to pre-disturbance numbers or higher after El Nifo
conditions disappeared from the area.
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We also investigated how horizontal distributions of cyprids varied by species. There
were significant differences in MDS values between species, and distance from shore
fluctuated by season (spring-summer vs. fall-winter) for some species. Our results
reinforce previous findings that C. fissus cyprids are distributed closer to shore when the
water column is thermally stratified. It is unclear how MDS estimates for cyprid species
other than C. fissus reflect actual patterns, because only C. fissus cyprids were represented
in high numbers. Additional sampling in the area could help to better define cross-shore
distributions of all cyprid species. Further, supplemental sampling could result in the
collection of more of the unknown morphotypes, which would allow for additional
attempts at DNA barcoding and positive identifications to species.
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