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ABSTRACT
Isotopic analysis of dog (Canis lupus familiaris) bone recovered from archaeological
sites as proxies for human bone is becoming common inNorth America. Chronological
placement of the dogs is often determined through radiocarbon dating of dog bone. The
Great Lakes, their tributaries, and nearby lakes and streams were important fisheries for
Native Americans prior to and after sustained European presence in the region. Carbon
entering the foodweb in freshwater systems is often not in full isotopic equilibriumwith
the atmosphere, giving rise to spuriously old radiocarbon ages in fish, other aquatic
organisms, and their consumers. These freshwater reservoir offsets (FROs) have been
noted on human and dog bone in several areas of the world. Here we report the results
of multi-tracer Bayesian dietary modeling using δ15N and δ13C values on dog bone
collagen from mid-fifteenth to mid-sixteenth-century Iroquoian village sites at the
headwaters of the St. Lawrence River, New York, USA. Results indicate that fish was
an important component of dog diets. A comparison of radiocarbon dates on dog
bone with dates on deer bone or maize from the same sites indicate FROs ranging from
97± 24 to 220± 39 14Cyr with a weighted mean of 132± 8 14Cyr. These results suggest
that dog bone should not be used for radiocarbon dating in the absence of modeling to
determine fish consumption and that previously reported radiocarbon dates on human
bone from the larger region are likely to have FROs given the known importance of fish
in regional human diets.

Subjects Anthropology, Biochemistry, Biophysics, Paleontology
Keywords Freshwater reservoir offsets, Dogs, Radiocarbon dating, St. Lawrence River, Bayesian
dietary modeling

INTRODUCTION
The canine surrogacy approach is becoming increasingly popular in North American
archaeology to assess human diets through isotope analyses when Native American human
bone is unavailable for destructive analysis. The assumption is that dogs (Canis lupus
familiaris) had diets similar to those of the humans with whom they lived (Edwards, Jeske
& Coltrain, 2017). These analyses of dog bone may also include radiocarbon assays to
determine the chronological placements of the dog remains under study or more broadly
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of features and layers within the particular sites where the dog bones were found. Dog bone
may also be radiocarbon dated when used for other analyses such as ancient DNA (e.g.,
Perri et al., 2019).

The North American Great Lakes region, including the lakes, their tributaries, nearby
smaller lakes and their tributaries, and the St. Lawrence River were important Native
American fisheries (Cleland, 1982). The zooarchaeological record attests to the importance
of freshwater fish in regional subsistence systems prior to sustained European presence in
the region (e.g., Hawkins et al., 2019). Ethnohistoric records indicate the importance of
freshwater fish in both human (Heidenreich, 1971) and dog (Lovis & Hart, 2015) diets in
this and surrounding areas during the seventeenth-century AD and after.

Freshwater bodies may harbor ancient carbon, eroded from bedrock and unconsolidated
sediments and soils, which is metabolized and incorporated into fish tissues and the tissues
of fish consumers (e.g., Keaveney & Reimer, 2012; Hart, Taché & Lovis, 2018). As a result,
radiocarbon ages on the bones of fish and fish consumers may be significantly older than
the actual ages of the bones. Such freshwater reservoir offsets (FRO) have been documented
on human bone in regions where freshwater fish were consumed by comparing dates on
human bone to dates on the bone of terrestrial herbivores and plant remains from a given
archaeological site or site component—so-called contextual dates (e.g., Schulting et al.,
2014; Lillie et al., 2016). FROs may also be present in radiocarbon dates on charred cooking
residues adhering to pottery that incorporate carbon from fish (Heron & Craig, 2015).

Given that dogs in ethnohistorically recorded seventeenth-century AD lower Great
Lakes Iroquoian villages and towns were scavengers and were also fed leftover food
prepared for human consumption (Heidenreich, 1971), and that there is ample evidence
for human consumption of freshwater fish in the ethnohistorical record and at Iroquoian
archaeological sites dating to earlier centuries, it is likely that freshwater fish were
components of dog diets. Here we examine stable carbon (δ13C) and nitrogen (δ15N)
isotope values using Bayesian dietary mixing models to test the hypothesis that dog diets
at mid-fifteenth to mid-sixteenth-century AD Iroquoian villages at the headwaters of the
St. Lawrence River included substantial amounts of fish.

There are 65 documented Iroquoian archaeological village and related sites south of the
headwaters of the St. Lawrence River and east of Lake Ontario in present-day northern
New York (Fig. 1). A recent program of radiocarbon dating maize (Zea mays ssp. mays)
kernels and white-tailed deer (Odocoileus virginianus) bone from 18 of these sites and
Bayesian modeling of the resulting 43 14C ages suggests that the total occupation span
was less than 100 years, from the mid fifteenth-century AD to the mid-sixteenth-century
AD (Abel, Vavrasek & Hart, in press). Given the large number of village components it
is likely that each village was occupied for a short period of time and not reoccupied.
Changes in pollen and charcoal records from an area lake core demonstrate anthropogenic
impacts to the region from land clearance during this time span. This was followed by a
period of recovery after abandonment of the area by Iroquoians and before the onset of
historical land clearance beginning in the nineteenth century AD (Brown, 2002). There
is little evidence for human occupations of the area immediately prior to the Iroquoian
occupations, the last well-defined occupations occurring several hundred years earlier (Abel
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Figure 1 Locations of Iroquoian sites at the headwaters of the St. Lawrence River USA. Large labeled
dots are sites with radiocarbon dated dog bone.

Full-size DOI: 10.7717/peerj.7174/fig-1

& Fuerst, 1999). These various lines of evidence suggest that materials recovered from each
of the Iroquoian sites relate to a one- or two-decade occupation.

After modeling dog diets, we next determine if radiocarbon dates on dog bones result in
FROs. We do this by comparing 14C ages on dog bone collagen with contextual 14C ages on
white-tailed deer bone collagen or maize kernels from the same sites. We then discuss the
likelihood that radiocarbon dates on human tissue (collagen) will have significant FROs.

MATERIALS & METHODS
Samples of dog and deer bone included in this analysis are from collections obtained
by the New York State Museum in the early twentieth century. With the exception of
the St. Lawrence site samples, which are identified as all having come from the same pit
feature by the excavator, these collections generally lack other than site-level provenance
data. However, the samples used from each site were obtained from a specific collector
increasing confidence that they came from the same site deposits. There is no evidence
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for use of consolidants on any of the bone. For Durfee and Pine Hill the dates available
for comparison with those on dog bone were on maize kernels. For Durfee there is only
site-level provenance data, while for Pine Hill, both maize samples are documented as
having come from the same pit feature.

Dog and deer bone fragments were submitted to the W. M. Keck Carbon Cycle
Accelerator Mass Spectrometry Laboratory of the University of California, Irvine
(KCCAMS). These were first decalcified with 0.5N HCl, then gelatinized at 60 ◦C and
pH 2, and finally ultrafiltered to obtain molecular weight fractions >30 kDa (Beaumont
et al., 2010). Ultrafiltered collagen aliquots were measured to a precision of <0.2h for
δ15N (traceable to AIR) and <0.1h for δ13C (traceable to PDB). Maize samples were
submitted to KCCAMS or the University of Georgia Center for Applied Isotope Studies
(CAIS) where they received standard acid–base-acid pretreatments prior to combustion.
All maize δ13C values were measured to a precision of <0.1h relative to standards traceable
to PDB both facilities on pretreated aliquots. Maize samples were measured to a precision
of <0.2h for δ15N (traceable to AIR) at KCCAMS. AMS dates were corrected for isotopic
fractionation and reported according to established conventions (Stuiver & Polach, 1977).
Each facility’s website can be visited for additional information on their respective protocols
(https://sites.uci.edu/keckams/protocols/; http://cais.uga.edu/).

Bayesian two tracer dietary mixing models were run in MixSIAR v 3.1.10 (Stock et al.,
2018; Stock & Semmens, 2016) using δ13C and δ15N values on bone and maize. MixSIAR
uses a Markov Chain Monte Carlo (MCMC) simulation to model the proportions of
sources in a consumer’s diet based on the stable isotope values of the consumer and its
food. Additionally, MixSIAR incorporates the uncertainty in the trophic enrichment factor
between the food sources and the consumer in the model. Data for prey (source) animal
species were obtained from Booth (2014), Guiry et al. (2016), Morris (2015), Morris et al.
(2016) and Pfeiffer et al. (2016). Bone reported from these sources span approximately
AD 900–1,600 with 6 of 44 samples reported in Guiry et al. (2016) dating to the historical
era. Although adequate samples of terrestrial and aquatic prey species are not available
from northern New York, statistical tests (see below) comparing dog and deer data
from northern New York to that from southern Ontario show no statistically significant
differences supporting their use for the source groups. Additionally, the fish data derive
from the same main watersheds, Lake Ontario and the St. Lawrence River, that would have
been utilized by peoples in northern New York. Assayed fish bone is from archaeological
sites bordering the north shore of Lake Ontario and its tributaries in southern Ontario and
the St. Lawrence River in Quebec, with the exception 7 of 91 samples reported by Pfeiffer
et al. (2016) that are from more northerly southern Ontario sites. Given that the northern
New York sites border Lake Ontario and the St. Lawrence River, the isotope values reported
for the Ontario sites are reasonable proxies for the current analyses.

The diversity of potential food sources was placed into seven sources in the mixing
models. Additional models using the same seven sources as well as models using only
three sources were performed for individual dogs (Table S1). The seven-source model
was our preferred model as it provided the fewest total sources while taking into account
taxonomy, ecology, differences in body size (e.g., small, large), and statistically significant
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differences in stable isotope values. For example, fish isotope values were first compared
based on their ecological groupings as in Pfeiffer et al. (2016), and ultimately split into
three separate sources based on statistically significant differences among taxa in δ15N
values. Black bear and white-tailed deer were combined into one source as there were no
statistically significant differences between those species in either δ15N or δ13C values.
Sources for the seven source models include: (1) maize, (2) high δ15N fish, (3) medium
δ15N fish, (4) low δ15N fish, (5) bear (Ursus spp.) and deer (Odocoileus virginianus), (6)
small herbivorous mammals, and (7) turkey (Meleagris gallopavo), while the sources in
the three source models were (1) maize, (2) deer, and (3) all fish (Supplemental Data S1).
Stable isotope values for C3 plants were not included in the models as we have no isotopic
data for archaeological C3 plants and using modern data would likely fall among and not be
distinguishable from the ‘‘small herbivorous mammals’’ group. Collagen to collagen source
(prey) to consumer (dogs) trophic enrichment factors (TEF) for δ13C (+1.1h ± 0.2h)
and δ15N (+3.8h ± 1.1h) were derived from Bocherens et al. (2015), which is calculated
from an average of studies on different taxa as there is not a specific TEF calculated for these
archaeological dogs. The maize (source) to consumer (dogs) TEF was +5.0h ± 0.1h for
δ13C, and +3.0h ± 0.1h for δ15N (Ambrose et al., 1997). All Bayesian mixing models
met criteria of the Gelman–Rubin and Geweke tests and are reported in percent credible
intervals (posterior probabilities).

All radiocarbon date calibrations, tests for significant differences between dates,
and Bayesian modeling of radiocarbon dates were done in OxCal 4.3 (Bronk Ramsey,
2009a; Bronk Ramsey, 2009b). Calibrations and modeling used the IntCal13 Northern
Hemisphere terrestrial calibration dataset (Reimer et al., 2013). No artifacts manufactured
from European materials have been found on any of the sites in question relating to
the Iroquoian occupations, which indicates the sites were occupied prior to widespread
adoption of European materials in the late sixteenth and early seventeenth-century AD
(Loewen & Chapdelaine, 2016; Manning et al., 2018). However, because there is a plateau
in the calibration curve affecting calibrations in the sixteenth-century AD, modeled dates
are multimodal and may extend well into the seventeenth century AD. To correct for this
problem, a terminus ante quem (TAQ) of AD 1,600 ± 10 was used in modeling. The CQL
run file for each model is presented in Supplemental Code S1.

Following Keaveney & Reimer (2012:1210), FROs were calculated by subtracting
uncalibrated dog bone 14C ages from those on deer bone or maize, and FRO standard
deviations were calculated through propagation of errors (√σ 2

dog+ σ 2
context). In cases

where there were multiple dates on either deer bone or maize from a given site, they
were combined with the OxCal R_Combine();in each case the dates were not significantly
different at the 95% level of confidence, and their weighted mean was used in FRO
calculations (Ward &Wilson, 1978).

RESULTS
δ13C and δ15N values for dogs in our sample, dogs from southern Ontario sites, and seven-
source model source groups are presented in Fig. 2. As is evident the isotope values for dogs
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Figure 2 Scatter plot of δ13C and δ15N values for dogs and prey groups used in the seven source
Bayesian dietary mixing model.

Full-size DOI: 10.7717/peerj.7174/fig-2

from New York plot among those for dogs from southern Ontario. Mann–Whitney U tests
indicate no statistical difference between New York (n= 10) and southern Ontario (n= 24)
dog isotope values: permutation p= 0.544 for δ13C and 0.681 for δ15N. Mann–Whitney U
tests also indicate no statistical difference between New York (n= 8) and a random sample
of southern Ontario deer values (n= 20): permutation p= 0.478 for δ13C and 0.892 for
δ15N. These results suggest use of isotopes from southern Ontario in the Bayesian mixing
models for potential prey sources is warranted.
Results of the Bayesian dietary mixing modeling for the dogs as a group are presented in

Table 1. The sum of mean values for fish for the seven-source model is 0.250, while maize
is 0.475, and the sum of remaining terrestrial resource means is 0.275. Dietary mixing
modeling results for individual dogs are presented in Table S1. Sums of mean values for
fish in the seven-source models for individual dogs range from 0.228 to 0.444. Given these
results, it is evident that we can reject the null hypothesis that freshwater fish were not an
important component of dog diets.

Results of radiocarbon assays on dog and contextual deer bone and maize are presented
in Table 2 by site. C/N ratios for all bone samples are within the acceptable range for
radiocarbon dating and isotopic assay (Ambrose et al., 1997; Beaumont et al., 2010; Van
Klinken, 1999). The 14C ages on dog bone collagen are consistently older than those
on the context materials (Table 3). Tests of sample significance (Ward &Wilson, 1978)
between 14C ages on dog bone and 14C ages on deer bone or maize were performed with
the R_Combine (); command in OxCal. In each case the T -value exceeds the 0.05 χ2

critical value (3.84) for one-degree of freedom (Table 3), indicating the dog 14C ages are
significantly older than those of deer bone or maize. Calculations of offsets for 14C ages on
dog bone compared to dates on deer bone or maize are presented in Table 3. The offsets
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Table 1 Bayesian dietary mixing model results for all dogs as a group.

Mean SD 2.5% 5% 25% 50% 75% 95% 97.5%

Table 1A
Seven source model
Bear and deer 0.097 0.069 0.005 0.009 0.040 0.084 0.142 0.227 0.254
Maize 0.475 0.025 0.425 0.433 0.459 0.475 0.492 0.513 0.521
High δ15N fish 0.076 0.051 0.004 0.007 0.035 0.070 0.110 0.170 0.192
Low δ15N fish 0.088 0.072 0.001 0.003 0.031 0.071 0.130 0.222 0.264
Medium δ15N fish 0.086 0.063 0.005 0.009 0.034 0.073 0.123 0.208 0.239
Small mammal herbivores 0.081 0.055 0.004 0.007 0.036 0.073 0.117 0.184 0.203
Turkey 0.098 0.075 0.005 0.008 0.037 0.082 0.143 0.242 0.275
Table 1B
Three-source model
Maize 0.481 0.040 0.400 0.416 0.456 0.480 0.506 0.545 0.532
Deer 0.314 0.078 0.160 0.180 0.263 0.316 0.366 0.441 0.464
Fish 0.205 0.075 0.058 0.084 0.154 0.204 0.256 0.331 0.355

range from 97 ± 24 to 220 ± 39 14Cyr with a weighted mean of 132 ± 8. Schulting et al.
(2014) found a significant linear relationship between δ15N values and offsets between
human bone and FROs in human bone 14C ages from Lake Baikal, Siberia. A regression
of δ15N values on FRO means for our sample resulted in a moderate positive correlation
that is not significant (permutation p= 0.180). This may be a result of small sample size or
varying dog diets. Given the short occupation span of this geographically restricted area, it
seems less likely, but is possible, that it results from localized temporal or spatial differences
in fish δ15N values or carbon reservoirs.

DISCUSSION
Freshwater fish was an important component of prehistoric human diets in many areas of
the world as is evident from the recovery of fish bone on archaeological sites (e.g.,Hawkins
et al., 2019), analysis of lipids recovered from pottery (e.g., Craig et al., 2013), and isotopic
analysis of human bone (e.g., Lillie et al., 2016). Analyses of dog bone from prehistoric
archaeological sites has demonstrated that fish was also an important component of
some dog diets (e.g., Fischer et al., 2007). Given the widely recognized phenomenon of the
freshwater reservoir effect on human bone as well as the bone of dogs that were fed fish
(e.g., Losey et al., 2018), it is important to consider the potential for FROs on dog bone
by assessing the likelihood that dogs on a given site were fed fish in areas with freshwater
bodies having the potential for ancient carbon reservoirs in the past.

Here we have demonstrated that dogs at mid-fifteenth to mid-sixteenth-century
Iroquoian sites at the headwaters of the St. Lawrence River had diets that included
freshwater fish and that radiocarbon dates on dog bone have offsets relative to terrestrial
sources. Because the dog diets included substantial amounts of fish that contributed to
collagen formation, these offsets are evidently FROs. While the offsets on dog bone are
modest compared to those in some areas (e.g., Losey et al., 2018), they are still significant
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Table 2 Radiocarbon dates used in analyses.

Lab # Site Material δ13C (h) δ15N (h) Collagen C/Natomic
14C age (BP)

UCIAMS-199804 Durfee dog bone −9.7 9.9 3.26 460± 15
UCIAMS-205978 Durfee maize −9.0 345± 15
UGAMS-31486 Durfee maize −10.1 336± 22
UGAMS-34185 Durfee maize −10.2 314± 22
UCIAMS-199798 Frank dog bone −14.3 8.9 3.28 535± 20
UCIAMS-199801 Frank dog bone −13.2 10.0 3.25 580± 15
UCIAMS-199802 Frank deer bone −22.9 3.8 3.23 410± 15
UCIAMS-199803 Morse dog bone −12.1 9.3 3.42 510± 20
UCIAMS-199806 Morse deer bone −22.3 7.5 3.41 410± 15
UCIAMS-204718 Morse deer bone −21.0 6.4 3.33 420± 25
UCIAMS-204721 Pine Hill dog bone −12.6 8.9 3.21 550± 25
UCIAMS-199800 Pine Hill dog bone −10.7 9.8 3.23 490± 15
UGAMS-37380 Pine Hill maize −9.2 353± 20
UGAMS-37381 Pine Hill maize −9.0 392± 20
UCIAMS-199807 Point Salubrious dog bone −14.7 9.0 3.33 515± 15
UCIAMS-199805 Point Salubrious deer bone −22.8 5.7 3.22 405± 15
UCIAMS-204715 St Lawrence dog bone −12.1 10.6 3.22 610± 25
UCIAMS-204717 St Lawrence dog bone −14.5 10.9 3.23 705± 30
UCIAMS-204714 St Lawrence deer bone −22.9 5.7 3.23 485± 25
UCIAMS-199799 Washburn dog bone −11.5 9.5 3.28 525± 15
UCIAMS-204722 Washburn deer bone −22.3 6.2 3.16 415± 30

Table 3 Calculation of freshwater reservoir offsets (FRO) for dog bone dates.

Site Context material Dog bone
UCIAMS #

Context date Lab# 14CDog
14CContext χ2 Ta FRO

Durfee Maize pooled mean 199804 UCIAMS-205978 UGAMS-31485
UGAMS-31486

460± 15 335± 11 45.4 125± 18

Frank Deer bone 199798 UCIAMS-199802 535± 20 410± 15 25.1 125± 25
Frank Deer bone 199801 UCIAMS-199802 580± 15 410± 15 64.2 170± 21
Morse Deer bone pooled mean 199803 UCIAMS-199806 UCIAMS-204718 510± 20 413± 13 16.6 97± 24
Pine Hill Maize pooled mean 204721 UGAMS-37380 UGAMS-37381 550± 25 373± 15 37.2 177± 29
Pine Hill Maize pooled mean 199800 UGAMS-37380 UGAMS-37381 490± 15 373± 15 30.4 117± 21
Point Salubrious Deer bone 199807 UCIAMS-199805 515± 15 405± 15 29.6 110± 21
St. Lawrence Deer bone 204715 UCIAMS-204714 610± 25 485± 25 12.5 125± 35
St. Lawrence Deer bone 204717 UCIAMS-204714 705± 30 485± 25 31.9 220± 39
Washburn Deer bone 199799 UCIAMS-204722 525± 15 415± 30 10.7 110± 34

Notes.
adf = 1, 0.05 χ2 critical point= 3.84.

given that dates on deer and maize suggest a short total occupation span for the area,
beginning in the fifteenth century AD. If assumed to be accurate the dates on dog bone
would extend the Bayesian-modeled occupation span into the fourteenth century AD
(Table 4). Our results combined with those of other recent assessments of radiocarbon
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Table 4 Radiocarbon Bayesian modeling results at 95.4% probability.

Model Start boundary Undated event End boundary Amodel Aoverall

Deer and maize dates 1421–1440 1431–1546 1513–1590 82.5 75.7
Deer, dog, and maize dates 1364–1396 1378–1563 1521–1606 78.6 76.2

dates on dog bone (e.g., Losey et al., 2018) indicate analysts should assess the potential for
FROs prior to radiocarbon-dating dog bone.

While our sample is small and limited to the St. Lawrence River headwaters, the δ13C and
δ15N values are not significantly different from those obtained on contemporaneous dog
bone from southern Ontario, which suggests similar levels of fish consumption. Published
chronological assessments of several Iroquoian ossuaries in southern Ontario are based on
one or a few radiocarbon dates on human tissue (e.g., Williamson & Pfeiffer, 2003; Pfeiffer
et al., 2017). Given evidence for the importance of fish in human diets from that area, there
is a possibility of FROs in radiocarbon dates on human bone and dentine collagen. For
example, a 14C age on maize from the Moatfield Ossuary of 620 ± 60 BP contrasts with
14C ages on human bone of 730 ± 40 BP, 810 ± 40 BP, and 910 ± 40 BP (Williamson,
Thomas & MacDonald, 2003:82). While the older ages on human tissue may have other
explanations, FROs cannot be discounted based on current data; freshwater fish were an
important component of the zooarchaeological record at the associated Moatfield village
site (Williamson, Thomas & MacDonald, 2003:53–73). The dates on human bone from
Moatfield and other Iroquoian ossuaries should be reevaluated in light of our results, as
should any radiocarbon dates on dog bone.

CONCLUSION
Freshwater reservoir offsets in radiocarbon dates on source material incorporating carbon
from aquatic resources is a global phenomenon. Research to date in archaeology has
focused primarily on fish, human bone, and charred cooking residues adhering to pottery.
Less attention has been paid to the bone of other animals who may have consumed fish.
Here we have demonstrated that offsets are evident in 14C ages on the bone of 10 dogs
from mid-fifteenth- to mid-sixteenth-century AD Iroquoian village sites at the headwaters
of the St. Lawrence River, USA. Bayesian dietary mixing models indicate that fish were
important components of the dogs’ diets. It is likely, then, that the offsets in the 14C ages
on dog bone relative to 14C ages on deer bone or maize kernels, are FROs. Archaeologists
pursuing the canine surrogacy approach to assess human diets in North America and
elsewhere through isotopic analysis should take the possibility of FROs into account
prior to obtaining radiocarbon dates on the analyzed dog bone. Our results also suggest
the need to reevaluate radiocarbon dates obtained on human bone in nearby southern
Ontario, where the archaeological and ethnohistoric records indicate fish were important
components of Iroquoian diets.
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