
Fuzzysplit: demultiplexing and trimming
sequenced DNAwith a declarative language
Daniel Liu1,2

1 Torrey Pines High School, San Diego, CA, USA
2 Department of Psychiatry, University of California, San Diego, La Jolla, CA, USA

ABSTRACT
Next-generation sequencing technologies create large, multiplexed DNA sequences
that require preprocessing before any further analysis. Part of this preprocessing
includes demultiplexing and trimming sequences. Although there are many existing
tools that can handle these preprocessing steps, they cannot be easily extended to
new sequence schematics when new pipelines are developed. We present Fuzzysplit,
a tool that relies on a simple declarative language to describe the schematics of
sequences, which makes it incredibly adaptable to different use cases. In this paper,
we explain the matching algorithms behind Fuzzysplit and we provide a preliminary
comparison of its performance with other well-established tools. Overall, we find
that its matching accuracy is comparable to previous tools.

Subjects Bioinformatics
Keywords Demultiplexing, Adapter trimming, Stringmatching, FASTQ,Domain-specific language

INTRODUCTION
Advances in next-generation DNA sequencing technology allow large quantities of
multiplexed DNA to be sequenced. Many methods, including the Genotyping by
Sequencing (GBS) (Elshire et al., 2011) strategy, require sequenced DNA to first undergo
preprocessing before further processing and analysis (e.g., identification of single
nucleotide polymorphisms). The preprocessing step usually involves demultiplexing
reads by barcodes/indexes and trimming adapters from reads.

The core of most preprocessing steps involve searching algorithms that find matching
regions within the DNA sequence for some pattern sequence. The searching algorithm
must also be fuzzy or approximate (i.e., allow mismatches or edits) to account for
sequencing errors (Kircher, Heyn & Kelso, 2011). For example, when demultiplexing, reads
of DNA are split into different files according to the barcode matched in the DNA
sequence. Also, adapters in the DNA sequences need to be matched to identify the region
to be trimmed. In the GBS method, restriction enzyme sites may also be matched.
When handling paired-end reads, there may be combinatorial barcodes that require
matching, for both the forward and the reversed reads.

Currently, there are many existing tools that implement a subset or all of those
matching and trimming features above. Popular tools include FASTX-Toolkit (Gordon &
Hannon, 2010), Axe (Murray & Borevitz, 2018), Flexbar (Dodt et al., 2012; Roehr, Dieterich &
Reinert, 2017), Cutadapt (Martin, 2011), and AdapterRemoval (Lindgreen, 2012;

How to cite this article Liu D. 2019. Fuzzysplit: demultiplexing and trimming sequenced DNA with a declarative language. PeerJ 7:e7170
DOI 10.7717/peerj.7170

Submitted 11 February 2019
Accepted 22 May 2019
Published 19 June 2019

Corresponding author
Daniel Liu, daniel.liu02@gmail.com

Academic editor
Sven Rahmann

Additional Information and
Declarations can be found on
page 13

DOI 10.7717/peerj.7170

Copyright
2019 Liu

Distributed under
Creative Commons CC-BY 4.0

http://dx.doi.org/10.7717/peerj.7170
mailto:daniel.�liu02@�gmail.�com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7170
http://www.creativecommons.org/licenses/by/4.0/
http://www.creativecommons.org/licenses/by/4.0/
https://peerj.com/

Schubert, Lindgreen & Orlando, 2016), Trimmomatic (Bolger, Lohse & Usadel, 2014),
Skewer (Jiang et al., 2014), and GBSX (Herten et al., 2015). However, they are mostly
restricted to handling only a few types of DNA read schematics. With the development of
new and more complex pipelines, the schematics of each read of DNA may change.
For example, the aforementioned tools must be modified to handle out-of-read barcodes
and unique molecular identifiers (Kivioja et al., 2012; Islam et al., 2014; Girardot et al.,
2016). These modifications entail the development of more tools or features that can
handle those specific formats of reads.

We aim to streamline the development of future pipelines by creating a general
programming language that can easily handle different file formats and read schematics by
describing them using a simple declarative language. The benefits of this approach is twofold.
First, new schematics can be rapidly tested without first developing new tools or adapting
previous tools to handle specific formats of DNA sequences. Second, by offloading the
formatting of the DNA sequences to a special language, the source code of the tool itself does
not need to scale in complexity in order to handle more DNA schematics and file formats
(e.g., interleaved paired-end data, out-of-read barcodes, FASTQ formats).

In this paper, we introduce our idea of applying a domain-specific language (DSL) to match
patterns in DNA sequences by discussing the algorithms necessary for matching arbitrary
combinations of different patterns.We implement these algorithms in our Fuzzysplit tool, and
we show empirical results for its accuracy and speed in comparison to other tools.

FUZZYSPLIT
We present Fuzzysplit, a tool that can process a multitude of different input formats
according to template files. The template files rely on a simple declarative DSL that defines
the location and parameters of patterns to mirror the arrangement of barcodes, adapters,
or other patterns that need to be matched. The templates are automatically repeated to
handle multiple consecutive groups of lines within the input files.

Fuzzysplit’s template files relies on three types of patterns that can be arranged to mirror
the input text:

� Fuzzy patterns. These patterns are matched by measuring similarity between a piece
of text and a subpattern (e.g., the reference barcode and the DNA sequence) through
different edit distance metrics. Fuzzysplit supports Hamming distance, which allows
substitution edits (Hamming, 1950), Levenshtein distance, which allows insertions,
deletions, and substitutions (Levenshtein, 1966), and Damerau-Levenshtein distance,
which is Levenshtein distance but with transpositions (Damerau, 1964). Fuzzysplit
allows multiple fuzzy subpatterns (e.g., different barcodes) to be specified in a fuzzy
pattern, but only one subpattern will be chosen as the matching subpattern. Fuzzysplit
also supports wildcard characters like the undetermined N nucleotide.

� Fixed-length wildcard patterns. Each of these match a segment of text of a certain
length if all characters in that segment are allowed by the pattern.

� Interval-length wildcard patterns. This matches a segment of text whose length lies
within an interval and all characters in that segment are allowed by the pattern. Both

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 2/14

http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

fixed-length and interval-length wildcard patterns are useful in matching sequences that
contain repeating characters, like poly- A tails. Also, they can be used to match
subsequences where the nucleotide can be anything, in order to cover the DNA area
between the 5′ adapters/barcodes and 3′ adapters/barcodes.

Note that we distinguish the two wildcard patterns because they are implemented
differently. Also, note that interval-length wildcard patterns are a generalization of
fixed-length wildcard patterns. Fuzzysplit’s patterns are based off of popular search tools
like agrep (Wu & Manber, 1992a) that make use of symbols that describe patterns.
In addition to those patterns, Fuzzysplit also supports:

� Defining variables that hold statistics, like length and subpattern index, for a matched
pattern in the template files. The data of the matched pattern can be referenced by other
patterns by using the variables. Also, these variables allow Fuzzysplit to output to
different files depending on which patterns/subpatterns are matched. This is a
generalization of demultiplexing.

� Allowing both optional and required patterns.

� Referencing data (e.g., barcodes, adapters, etc.,) that is stored in other list files from
within the template files. Fuzzysplit also provides a selection operator that allows specific
items to be selected from a list file based on some variable.

� Parallel processing of batches of input data through multithreading.

Overall, allowing arbitrary arrangements of patterns and match variables are the two
core components of Fuzzysplit, as they allow Fuzzysplit to match a wide range of different
formats. In addition to the arrangement of patterns, the template files also enable users to
fine-tune exactly how each pattern is matched with pattern-specific parameters.

Availability
Fuzzysplit is implemented in Java without any external libraries. Its compiled binaries and
source codes are available here: https://github.com/Daniel-Liu-c0deb0t/Java-Fuzzy-Search.
It is available under the MIT license.

EXAMPLE
We show an example of how Fuzzysplit can be used through a demonstration that handles
a simplified version of demultiplexing on a FASTQ file.

In a FASTQ file, each read is stored as four lines. It is important to note that changes to the
second line, which contains the DNA sequence, must cause the same changes to the fourth
line, which contains the quality scores for each nucleotide in the DNA sequence.

The following template file can be used to match 5′ barcodes in an input FASTQ file:

{i}

1 {f required, trim, name = "b", edits = 1, pattern = f"b.txt"}{i}

{i}

2 {r trim, length = %b.length%}{i}

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 3/14

https://github.com/Daniel-Liu-c0deb0t/Java-Fuzzy-Search
http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

In the template file, each pattern is denoted by {...}. The first character for each pattern
indicates its pattern type: f for fuzzy pattern, r for fixed-length wildcard pattern, and i

for interval-length wildcard pattern. After the pattern type, parameters can be specified
in the form of k = v (i.e., some parameter k is set to v). Usually, the parameters are
hard-coded values, like adapter sequences and pattern lengths, but they can also reference
other, already matched patterns. Since the template file has exactly four lines, it will match
every four lines in the input file. Each line of the template file will attempt to match
its corresponding line in the input file by checking if the patterns appear, and whether they
appear in the correct specified order.

We use multiple interval-length wildcard patterns without any parameters ({i}) to
match any number of any characters. Note that it is possible to restrict the set of acceptable
characters by specifying something like pattern = "a-z0-9".

We also use a fuzzy pattern for the barcode. It pulls the actual barcodes from another list
file named b.txt (the f before the quotes symbolizes that it is a file path), and allows up to
one edit between each barcode and the DNA sequence. It is a required pattern, which
means that if it is not matched, then the entire read is not matched by the template file.
Also, the barcode is trimmed from the actual DNA sequence once it is matched.
Variables that allow the template file to refer to the statistics of the fuzzy pattern match
are created using the name b.

To ensure that trimming the barcode also trims the corresponding quality scores, we use
a fixed-length wildcard pattern that can match any character. The length of the pattern
references the variable (which resides in %...%) that contains the length of the barcode
match, which means that the same number of characters will be removed from both the
DNA sequence and the quality score sequence when they are trimmed.

We number the second and fourth lines with increasing indexes to ensure that they are
processed by the tool in that order. They are not required for this example because the
patterns are matched line by line, but in some cases, it is necessary to match in a certain
order so variables get created before they are used.

A comprehensive list of available options and features is available here: https://github.
com/Daniel-Liu-c0deb0t/Java-Fuzzy-Search#Fuzzysplit-tool.

The following command is used to run Fuzzysplit demultiplexing:

java -jar fuzzysplit.jar \

input.fastq \

--pattern template.txt \

--matched matched_%b.pattern_name%.fastq \

--unmatched unmatched.fastq

This matches reads from input.fastq using template.txt. Reads that match
a certain barcode are trimmed and put into a specific file with that barcode’s name.
Reads that do not match any barcodes are not trimmed and put into the unmatched file.

It is easy to extend this to paired-end demultiplexing by duplicating the template file
and adjusting some parameters. The template file for forward reads can be

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 4/14

https://github.com/Daniel-Liu-c0deb0t/Java-Fuzzy-Search#Fuzzysplit-tool
https://github.com/Daniel-Liu-c0deb0t/Java-Fuzzy-Search#Fuzzysplit-tool
http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

{i}

1 {f required, trim, name = "f", edits = 1, pattern = f"f.txt"}{i}

{i}

2 {r trim, length = %f.length%}{i}

The template file for reversed reads can be

{i}

3 {f required, trim, name = "r", edits = 1,

pattern = f"r.txt"[%f.pattern_idx%]}{i}

{i}

4 {r trim, length = %r.length%}{i}

This allows the reversed template to match for barcodes that are corresponding to ones
defined for the forward reads. Also, the reversed reads are matched after forward reads
due to the line numbers. This ensures that the reversed template has access to variables
created during the forward match. Note that the line marked with 3 and the subsequent
line should be on the same line when actually running Fuzzysplit.

TEMPLATE MATCHING ALGORITHM
The core of Fuzzysplit is the matching algorithm for the template files and the input data
files. We first examine how each specific type of pattern is matched and then we introduce
the overarching algorithm that ties them all together.

Fuzzy patterns
As each fuzzy pattern may have multiple subpatterns, multiple fuzzy string searches
are required to find the matching locations of all subpatterns in a fuzzy pattern.

Fuzzysplit uses the following well-known recurrence to search for a string subpattern P
of length |P| in some text T of length |T| with the Levenshtein distance metric (Levenshtein,
1966):

dði; 0Þ ¼ 0 (1)

dð0; jÞ ¼ j (2)

dði; jÞ ¼ dði� 1; j� 1Þ; if Ti ¼ Pj
1þmin dði� 1; j� 1Þ; dði� 1; jÞ; dði; j� 1Þf g; otherwise

�
(3)

where d(i, j) indicates the Levenshtein edit distance between P1 : : : j and T1 : : : i for a
match in T that ends at index i (Sellers, 1980). This property allows us to find match
locations within a certain number of edits, where substitutions, insertions, and deletions
all cost one edit. With dynamic programming, finding all matches runs in O(|P| · |T|)
time. Fuzzysplit supports allowing transpositions to cost one edit (Wagner & Lowrance,
1975) and allowing custom wildcard characters by using variations on the algorithm
above. Furthermore, Fuzzysplit allows partial overlaps between each subpattern and the
ends of the text. These options allow the matching algorithm to be fine-tuned for specific
use cases.

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 5/14

http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

There are many ways to improve the efficiency of the algorithm above, especially with
bit-vectors (Myers, 1999; Hyyrö, Fredriksson & Navarro, 2005; Wu & Manber, 1992b).
We use Ukkonen’s cutoff heuristic (Ukkonen, 1985) to improve the average time
complexity to O(k · |T|), where k is the maximum number of edits allowed. We choose this
instead of the faster bit-vector techniques in order to retain length information about
the matches. This technique is also used by Cutadapt (Martin, 2011).

For fuzzy searching with Hamming distance (Hamming, 1950), Fuzzysplit uses the
Bitap algorithm (Baeza-Yates & Gonnet, 1989; Wu & Manber, 1992b) to allow
matching with the Hamming distance metric. It has a worst-case time complexity of
O k � Tj j � Pj j=wd eð Þ, where w is the length of a computer word. We use 63-bit words in
Fuzzysplit.

We adopt the use of n-grams to quickly eliminate subpatterns before attempting one of
the more time-consuming algorithms above. Fuzzysplit splits each subpattern into
overlapping n-grams. If the text does not contain any n-grams of a specific subpattern,
then we do not need to match that subpattern. However, for shorter subpatterns, edits
within the text may cause none of the n-grams to match. Therefore, we only use the
n-gram method to eliminate a subpattern P if its length satisfies the following inequality:

jPj > ðkþ 1Þðn� 1Þ þ k (4)

where n is the n-gram size. The inequality represents the worse-case scenario where the
edits are evenly spaced in the text and they split the text into segments that are just
one short of the n-gram size. It is easy to see that if the inequality is satisfied for a
subpattern, then it must have at least one n-gram that matches with a n-gram from the text
if they are supposed to match within an edit distance of k by the Hamming (1950) or
Levenshtein (1966)metric. This equation only covers Hamming and Levenshtein distance,
but extending it to consider transpositions is trivial.

By default, Fuzzysplit automatically chooses the maximum n-gram size possible for all
subpatterns in order to maximize the number of subpatterns eliminated. This is because
the frequency of each unique n-gram is non-increasing as the n-gram size gets longer.
For a subpattern P, the maximum n-gram size possible can be obtained by solving the
inequality above for n:

n <
jPj � k
kþ 1

þ 1 (5)

We use the minimum of all such maximum n-gram sizes in order to satisfy the n-gram
size constraint for all subpatterns. In Fuzzysplit, n-grams should not be used if there
are wildcard characters within the subpatterns or the text, as they are not considered when
generating n-grams.

Fixed-length wildcard patterns
Searching for a fixed-length wildcard pattern in some text T is trivial in O(|T|) time by
simulating a sliding window the length of the pattern and checking if the characters in
the window are all part of the pattern.

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 6/14

http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

Matching multiple interval-length wildcard patterns
Unlike matching fixed-length wildcard patterns and fuzzy patterns, we match multiple
consecutive interval-length wildcard patterns at the same time. For a list of interval-
length wildcard patterns P of length jPj, we wish to match each pattern Pi 2 P to
contiguous, non-overlapping segments of the text T, in order. Each interval-length
wildcard pattern Pj only matches some segment of text Ta : : : b if minj � b - a + 1 �
maxj, and every character in Ta : : : b is present in the set of allowed characters for Pj

(i.e., ∀i ∈ {a : : : b}, the character Ti ∈ Aj, where Aj is the set of allowed characters of Pj).
For example, the j-th interval-length wildcard pattern represented by "A-Z", where
minj = 0 and maxj = 3, matches "ABC" and ""(empty sequence), but not "123" and
"ABCD", as it matches any sequence of uppercase letters of some length between zero
and three.

We formulate the solution to the problem of matching multiple interval-length wildcard
patterns P with a segment of text T as a recursive function. We define the recursive
function as f(i, j), which returns a nonzero value iff P1...j matches some T1 : : : i:

f ð0; 0Þ ¼ 1 (6)

f ði; jÞ ¼
Xi�minj

k¼i�maxj

f ðk; j� 1Þ � ½Tc 2 Aj; 8c 2 fkþ 1 . . . ig� (7)

where [F] evaluates to 1 for some expression F if F is true. Otherwise, it evaluates to 0.
The answer to whether the entire P1 ... jPj matches the entire T1 : : : |T| is given by whether
f ðjTj; jPjÞ 6¼ 0.

The intuition behind the algorithm is that it attempts to continue a match for a previous
pattern by matching the current pattern right after the previous pattern’s match location
in the text. A continuation is only possible if there is a valid number of characters in
the text after the previous pattern and all of those characters are allowed by the current
pattern. More formally, for each i ∈ {1 : : : |T|} and j 2 f1 . . . jPjg, we assume that the
current pattern Pj must end at i in the text. That implies that Pj must start at some index
k + 1 where i - maxj � k � i - minj in order to satisfy the length restriction for
interval-length patterns. Furthermore, each character in Tk + 1 : : : i must be allowed by
the current pattern Pj. This whole transition relies on calculating the answers for the
previous patternPj�1 that ends at different indexes in the text, which is essentially solving
the exact same problem. This eventually leads to the base case where an empty list of
interval-length patterns matches an empty piece of text.

A naive implementation using dynamic programming to cache intermediate function
calls results in a loose upper bound of OðjTj3 � jPjÞ for the time complexity, which is very
inefficient. We improve the time complexity by using two methods:

� We can speed up the check for whether a pattern allows all of the characters in a
segment of text by precomputing the longest length of contiguous characters that
ends at a certain index and only has characters that are allowed by a certain

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 7/14

http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

pattern. We show this value for each interval-length pattern Pj and ending index i as
l(i, j), where

lð0; 0 . . . jPjÞ ¼ 0 (8)

lði; jÞ ¼ lði� 1; jÞ þ 1; if Pj allows Ti

0; otherwise

�
(9)

� We notice that the overlap between the segment in the text where the current pattern
Pj has to start its match ([i - maxj + 1, i - minj + 1]) and the segment where the

text characters are all allowed by Pj ([i - l(i, j) + 1, i]) is the only region in the text
where Pj can begin, if it must end at index i. That means that we only need to query a
consecutive region for whether the previous pattern that ends anywhere in that
region matches the text. For this task, we keep separate prefix sums of f(i, j) for each
interval-length pattern:

pð0; 0Þ ¼ 1 (10)

pði; jÞ ¼ pði� 1; jÞ þ f ði; jÞ (11)

Finding the sum of some segment f(a : : : b, j) for some pattern Pj becomes p(b, j) -
p(a - 1, j), an O(1) time operation.

The optimizations above directly lead to the following recursive solution:

f ði; jÞ ¼ pði�minj; j� 1Þ � pðmaxfi�maxj; i� lði; jÞg � 1; j� 1Þ (12)

We implement this in Fuzzysplit for a total run time complexity of OðjPj � jTjÞ by using
jPj � jTj dynamic programming matrices for l, p, and f.

Overarching algorithm
Fuzzysplit uses a greedy overarching algorithm that matches a list of arbitrary patterns
P1...jPj from one line of the template file with its corresponding line of input text T1 : : : |T|.

First, it partitions the list of patterns into continuous chunks of either fixed-length patterns
(both fuzzy patterns and fixed-length wildcard patterns) or interval-length patterns.
The result is adjacent chunks with alternating general pattern types. The general idea of the
overarching algorithm is to search for candidate match locations for each entire chunk
of fixed-length patterns and checking whether the interval-length patterns immediately
before that chunk matches the text. We show a sketch of the algorithm in Algorithm 1.
Note that the first and last patterns must be separately handled to take into account start
and the end of the line of input text in the actual implementation.

To search for a matching location with an entire fixed-length pattern chunk, Fuzzysplit
goes through each pattern in the chunk and uses each of them as the starting pattern until
there is no more patterns left or if a valid match is found. The starting pattern is first
searched by itself throughout the input text. For each match index of the starting pattern,
Fuzzysplit first attempts to match the interval-length chunk before the current fixed-length
chunk, and then it matches rest of the patterns in the fixed-length chunk that are after
the starting index. If valid matches are found for both the interval-length chunk and the

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 8/14

http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

fixed-length chunk, then Fuzzysplit repeats the same algorithm with the next pair of
interval-length and fixed-length pattern chunks. Note that if all the patterns in a
fixed-length chunk are not required and none of the patterns actually match the text, then
the interval-length chunks before and after the fixed-length chunk are merged into a
larger interval-length chunk.

Unfortunately, the algorithm we describe is not efficient, as the matching operation for
the interval-length chunk and the fixed-length chunk is repeated for each starting pattern
and for each match location. We optimize the algorithm with two simple strategies.
First, we cache the result of matching each fixed-length pattern at some location in the
input text so they can be accessed in O(1) time without having to be matched again at
that location. Then, we cache the dynamic programming matrix used for matching
interval-length patterns, which can be extended without recalculating previously calculated
dynamic programming values. This is possible because the start location in the input text
to start matching the interval-length chunk is always the same no matter where the
current fixed-length chunk matches, as the algorithm never backtracks on previous chunk
matches. Only the end location of the interval-length pattern changes as different
candidate match locations of the current fixed-length chunk are examined. Overall, the
worst-case amortized time complexity for matching the interval-length chunk across all of
the candidate match locations of the current fixed-length chunk is linear to the length
of the input text.

The algorithm we describe greedily picks the first encountered valid match for the
current interval-length and fixed-length chunks that is valid. This is efficient, as it can
terminate early if a required pattern is not matched, but it does not lead to the most
optimal match. In some cases, previous greedy matches of fixed-length chunks may

Algorithm 1 Matching one line of input text with its corresponding patterns from the template file.

1: start 0

2: for interval-length chunk Pi...j�1 and fixed-length chunk Pj...k 2 all chunks do

3: for s 2 fj . . . k j Pj...s�1are all not requiredg do
4: loc list of candidate match locations of Ps in Tstart...jTj

5: for mlo and mhi 2 loc do

6: end end location in T when matching Psþ1...k against the prefix of Tmhi ...jTj

7: if end exists and Pi...j�1 matches Tstart...mlo then

8: start end þ 1

9: continue outer-most loop and handle the next pair of chunks

10: end if

11: end for

12: end for

13: return required pattern not matched match found

14: end for

15: return match found

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 9/14

http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

cause later chunks to run out of space in the text. We choose to implement this greedy
algorithm instead of an backtracking exhaustive search algorithm that finds the best
possible match due to time complexity concerns.

We also use a greedy approach for matching within a chunk of fixed-length patterns
after a starting pattern match candidate has been found for the chunk. The fixed-length
patterns are matched one by one, without any backtracking. For fuzzy patterns,
Fuzzysplit greedily selects the match with the lowest edit distance.

Multithreading
As reads can be handled independently of each other, parallelizing the matching process is
very feasible with the producer-consumer paradigm. Fuzzysplit uses the main thread to
read in batches of reads from all input files and place them in a queue. Meanwhile, it
spawns multiple worker threads that handle batches of reads from the queue in parallel.
Each thread handles one batch of reads (each read is handled independently of other
reads, even within a batch) and then outputs them as soon as it is done. The output step is
synchronized to allow only one thread to write out to some file at a time. Batching reads
allow a reduction in output synchronization at the expense of increase memory usage.
Furthermore, the main thread may block to wait for the worker threads by using a
semaphore, in order to constrain the amount of reads stored in memory at one time.

RESULTS
Adapter trimming
We test Fuzzysplit on the simple task of searching for 3′ adapters. The input data is one
FASTQ file with 10 million reads. Around 75% of the reads have a randomly generated
3′ adapter that is 30 nucleotides long. Each read’s adapter has a 50% chance of having no
edits, and 50% chance of having one edit. In total, each DNA sequence is padded with
random nucleotides to around 130 nucleotides long, with or without the adapter.
We generate two sets of data, one with substitution edits only, and another with
insertions, deletions, and substitutions. The data simulation scripts are available here:
https://github.com/Daniel-Liu-c0deb0t/Java-Fuzzy-Search/tree/master/scripts.

We measure the run times for a few different settings and we show them in Fig. 1.
Each run time is relative to the baseline at 100%. The baseline is mostly the default settings
in Fuzzysplit: allowing up to one edit based on the Levenshtein (1966)metric, using a single
thread, and using the default adaptable n-gram setting (in this case, it uses an n-gram
size of 15 due to the adapter length being 30 nucleotides long). Each setting shown in Fig. 1
is a modification relative to the baseline. Also, all tests were ran on the data set with
insertions, deletions, and substitutions except for the run that uses the Hamming (1950)
metric. Note that Fuzzysplit perfectly found all reads with adapters.

We find that increasing n-gram sizes does indeed lower the run time, as it is better at
eliminating subpatterns before the Levenshtein (1966) edit distance is calculated. Running
the program with two threads does improve the run time. We do not show more than
two threads because the run time gets worse due the testing machine being limited to
only two CPU cores. However, we expect the run time to continue to improve with

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 10/14

https://github.com/Daniel-Liu-c0deb0t/Java-Fuzzy-Search/tree/master/scripts
http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

multithreading if more cores are available. Finally, as expected, matching with the
Hamming (1950) metric drastically improves the run time.

Demultiplexing
We first generate 48 random barcodes of varying length between 8 and 15 nucleotides long.
Then we generate 10 million reads, where each read’s DNA sequence has a 50% chance
of having one of the 48 5′ barcodes. Overall, each DNA sequence consists of a possible
barcode sequence and 100 random nucleotides. Each barcode can have up to one insertion,
deletion, or substitution edit, similar to how the adapters were generated.

We test the run time for Fuzzysplit, Cutadapt (Martin, 2011), and GBSX (Herten et al.,
2015), and we show the results in Fig. 2. Fuzzysplit was ran using two threads, the
default n-gram setting, and allowing one edit with the Levenshtein metric. For Cutadapt
(Martin, 2011), each barcode was anchored to the 5′ end and we used 0.125 as the edit
threshold for Levenshtein distance. GBSX (Herten et al., 2015) was also ran with allowing
one edit with Levenshtein (1966) distance, but checking for enzymes and 3′ adapters were
disabled to match the other tools. Overall, Fuzzysplit is slower than the other tools
since it trades speed for much greater flexibility.

Hamming

2 threads

Baseline

No n-grams

5-grams

10-grams

47%

85%

100%

126%

120%

114%

Time

Figure 1 Comparison of adapter trimming run times of different settings relative to the single-
threaded baseline (100%) that uses 15-grams for filtering and computes Levenshtein distance.
Lower is better. The overall run time of the baseline is approximately 10 min. All parameter variants
are relative to the baseline. E.g., 10-grams means that matches are filtered with 10-grams instead of the
default 15-grams in this case. Full-size DOI: 10.7717/peerj.7170/fig-1

Fuzzysplit

Cutadapt

GBSX

100%

84%

55%

Time

Figure 2 Comparison of demultiplexing run times of other tools relative to Fuzzysplit (100%). Lower
is better. Fuzzysplit takes approximately 10 min to run. Full-size DOI: 10.7717/peerj.7170/fig-2

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 11/14

http://dx.doi.org/10.7717/peerj.7170/fig-1
http://dx.doi.org/10.7717/peerj.7170/fig-2
http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

The difference percentages for all three tools are shown in Fig. 3, where each difference
D is defined as

D ¼ 1
with barcode

X
b

wrongb þmissingb (13)

The difference metric counts both the number of reads that are missing from a file
and the number of reads that are not supposed to be in that file, and divides the sum by
the total number of reads that have a barcode. Overall, the difference percentage of
Fuzzysplit is comparable to that of Cutadapt (Martin, 2011), and GBSX (Herten et al.,
2015) is less accurate than either tools. Note that Cutadapt and Fuzzysplit both resulted in
more false positives than false negatives over all barcodes, while the opposite was true
for GBSX.

LIMITATIONS
The flexibility of Fuzzysplit comes at a steeper learning curve for using the tool, since
custom template files must be written for each format. Also, error messages become less
user-friendly due to the tool being more generalized. Furthermore, binary file formats
like BAM cannot be directly processed, since the tool can only match patterns in plain text
formats. The tool is also unable to interpret quality scores in FASTQ formats and perform
quality trimming or filtering, because they do not involve matching patterns within the
input text, and they are specific to certain input formats.

Also, Fuzzysplit’s method of splitting the input data with a delimiter and matching each
splitted portion of the input with its corresponding line in the template file results in
its inability to easily handle the FASTA format that allows the DNA sequence to fill an
arbitrary number of lines. For future work, this issue can be addressed by allowing greedy
pattern matches that possibly span multiple lines.

CONCLUSION
We created a new flexible pattern matching tool that can be used for trimming and
demultiplexing. Overall, we find that it is comparable to existing tools in terms of matching
accuracy. However, it is much more flexible than previous tools due to how it uses a
simple declarative language to represent how each pattern should be matched.

Fuzzysplit

Cutadapt

GBSX

0.74%

0.6%

2.26%

Difference

Figure 3 Demultiplexing difference percentages of different tools. Lower is better.
Full-size DOI: 10.7717/peerj.7170/fig-3

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 12/14

http://dx.doi.org/10.7717/peerj.7170/fig-3
http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

ADDITIONAL INFORMATION AND DECLARATIONS

Funding
The author received no funding for this work.

Competing Interests
The author declares that he has no competing interests.

Author Contributions
� Daniel Liu conceived and designed the experiments, performed the experiments,
analyzed the data, contributed reagents/materials/analysis tools, prepared figures and/or
tables, authored or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

Fuzzysplit code is available at GitHub: https://github.com/Daniel-Liu-c0deb0t/
Java-Fuzzy-Search.

REFERENCES
Baeza-Yates RA, Gonnet GH. 1989. A new approach to text searching. In: ACM SIGIR Forum.

Vol. 23. Cambridge: ACM, 168–175.

Bolger AM, Lohse M, Usadel B. 2014. Trimmomatic: a flexible trimmer for illumina sequence
data. Bioinformatics 30(15):2114–2120 DOI 10.1093/bioinformatics/btu170.

Damerau FJ. 1964. A technique for computer detection and correction of spelling errors.
Communications of the ACM 7(3):171–176 DOI 10.1145/363958.363994.

Dodt M, Roehr JT, Ahmed R, Dieterich C. 2012. FLEXBAR–Flexible barcode and adapter
processing for next-generation sequencing platforms. Biology 1(3):895–905
DOI 10.3390/biology1030895.

Elshire RJ, Glaubitz JC, Sun Q, Poland JA, Kawamoto K, Buckler ES, Mitchell SE. 2011.
A robust, simple genotyping-by-sequencing (GBS) approach for high diversity species.
PLOS ONE 6(5):e19379 DOI 10.1371/journal.pone.0019379.

Girardot C, Scholtalbers J, Sauer S, Su S-Y, Furlong EE. 2016. Je, a versatile suite to handle
multiplexed NGS libraries with unique molecular identifiers. BMC Bioinformatics 17(1):419
DOI 10.1186/s12859-016-1284-2.

Gordon A, Hannon G. 2010. FASTX-Toolkit. Available at http://hannonlab.cshl.edu/fastx_toolkit
(accessed 28 January 2019).

Hamming RW. 1950. Error detecting and error correcting codes. Bell System Technical Journal
29(2):147–160.

Herten K, Hestand MS, Vermeesch JR, Van Houdt JK. 2015. GBSX: a toolkit for experimental
design and demultiplexing genotyping by sequencing experiments. BMC Bioinformatics
16(1):73 DOI 10.1186/s12859-015-0514-3.

Hyyrö H, Fredriksson K, Navarro G. 2005. Increased bit-parallelism for approximate and multiple
string matching. Journal of Experimental Algorithmics 10:2–6 DOI 10.1145/1064546.1180617.

Islam S, Zeisel A, Joost S, La Manno G, Zajac P, Kasper M, Lönnerberg P, Linnarsson S. 2014.
Quantitative single-cell RNA-seq with unique molecular identifiers. Nature Methods
11(2):163–166 DOI 10.1038/nmeth.2772.

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 13/14

https://github.com/Daniel-Liu-c0deb0t/Java-Fuzzy-Search
https://github.com/Daniel-Liu-c0deb0t/Java-Fuzzy-Search
http://dx.doi.org/10.1093/bioinformatics/btu170
http://dx.doi.org/10.1145/363958.363994
http://dx.doi.org/10.3390/biology1030895
http://dx.doi.org/10.1371/journal.pone.0019379
http://dx.doi.org/10.1186/s12859-016-1284-2
http://hannonlab.cshl.edu/fastx_toolkit
http://dx.doi.org/10.1186/s12859-015-0514-3
http://dx.doi.org/10.1145/1064546.1180617
http://dx.doi.org/10.1038/nmeth.2772
http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

Jiang H, Lei R, Ding S-W, Zhu S. 2014. Skewer: a fast and accurate adapter trimmer for
next-generation sequencing paired-end reads. BMC Bioinformatics 15(1):182
DOI 10.1186/1471-2105-15-182.

Kircher M, Heyn P, Kelso J. 2011. Addressing challenges in the production and analysis of
illumina sequencing data. BMC Genomics 12(1):382 DOI 10.1186/1471-2164-12-382.

Kivioja T, Vähärautio A, Karlsson K, Bonke M, Enge M, Linnarsson S, Taipale J. 2012.
Counting absolute numbers of molecules using unique molecular identifiers. Nature Methods
9(1):72–74 DOI 10.1038/nmeth.1778.

Levenshtein VI. 1966. Binary codes capable of correcting deletions, insertions, and reversals.
Soviet Physics Doklady 10:707–710.

Lindgreen S. 2012. AdapterRemoval: easy cleaning of next-generation sequencing reads.
BMC Research Notes 5(1):337 DOI 10.1186/1756-0500-5-337.

Martin M. 2011. Cutadapt removes adapter sequences from high-throughput sequencing reads.
EMBnet.journal 17(1):10 DOI 10.14806/ej.17.1.200.

Murray KD, Borevitz JO. 2018. Axe: rapid, competitive sequence read demultiplexing using a trie.
Bioinformatics 34(22):3924–3925 DOI 10.1093/bioinformatics/bty432.

Myers G. 1999. A fast bit-vector algorithm for approximate string matching based on dynamic
programming. Journal of the ACM 46(3):395–415 DOI 10.1145/316542.316550.

Roehr JT, Dieterich C, Reinert K. 2017. Flexbar 3.0–SIMD and multicore parallelization.
Bioinformatics 33(18):2941–2942 DOI 10.1093/bioinformatics/btx330.

Schubert M, Lindgreen S, Orlando L. 2016. AdapterRemoval v2: rapid adapter trimming,
identification, and read merging. BMC Research Notes 9(1):88 DOI 10.1186/s13104-016-1900-2.

Sellers PH. 1980. The theory and computation of evolutionary distances: pattern recognition.
Journal of Algorithms 1(4):359–373 DOI 10.1016/0196-6774(80)90016-4.

Ukkonen E. 1985. Finding approximate patterns in strings. Journal of Algorithms 6(1):132–137
DOI 10.1016/0196-6774(85)90023-9.

Wagner RA, Lowrance R. 1975. An extension of the string-to-string correction problem.
Journal of the ACM 22(2):177–183 DOI 10.1145/321879.321880.

Wu S, Manber U. 1992a. Agrep–a fast approximate pattern-matching tool. In: Usenix Winter 1992
Technical Conference, San Francisco, California, USA. 153–162.

Wu S, Manber U. 1992b. Fast text searching: allowing errors. Communications of the ACM
35(10):83–91 DOI 10.1145/135239.135244.

Liu (2019), PeerJ, DOI 10.7717/peerj.7170 14/14

http://dx.doi.org/10.1186/1471-2105-15-182
http://dx.doi.org/10.1186/1471-2164-12-382
http://dx.doi.org/10.1038/nmeth.1778
http://dx.doi.org/10.1186/1756-0500-5-337
http://dx.doi.org/10.14806/ej.17.1.200
http://dx.doi.org/10.1093/bioinformatics/bty432
http://dx.doi.org/10.1145/316542.316550
http://dx.doi.org/10.1093/bioinformatics/btx330
http://dx.doi.org/10.1186/s13104-016-1900-2
http://dx.doi.org/10.1016/0196-6774(80)90016-4
http://dx.doi.org/10.1016/0196-6774(85)90023-9
http://dx.doi.org/10.1145/321879.321880
http://dx.doi.org/10.1145/135239.135244
http://dx.doi.org/10.7717/peerj.7170
https://peerj.com/

	Fuzzysplit: demultiplexing and trimming sequenced DNA with a declarative language
	Introduction
	Fuzzysplit
	Example
	Template Matching Algorithm
	Results
	Limitations
	Conclusion
	References

<<
 /ASCII85EncodePages false
 /AllowTransparency false
 /AutoPositionEPSFiles true
 /AutoRotatePages /None
 /Binding /Left
 /CalGrayProfile (Dot Gain 20%)
 /CalRGBProfile (sRGB IEC61966-2.1)
 /CalCMYKProfile (U.S. Web Coated \050SWOP\051 v2)
 /sRGBProfile (sRGB IEC61966-2.1)
 /CannotEmbedFontPolicy /Warning
 /CompatibilityLevel 1.4
 /CompressObjects /Off
 /CompressPages true
 /ConvertImagesToIndexed true
 /PassThroughJPEGImages true
 /CreateJobTicket false
 /DefaultRenderingIntent /Default
 /DetectBlends true
 /DetectCurves 0.0000
 /ColorConversionStrategy /LeaveColorUnchanged
 /DoThumbnails false
 /EmbedAllFonts true
 /EmbedOpenType false
 /ParseICCProfilesInComments true
 /EmbedJobOptions true
 /DSCReportingLevel 0
 /EmitDSCWarnings false
 /EndPage -1
 /ImageMemory 1048576
 /LockDistillerParams false
 /MaxSubsetPct 100
 /Optimize true
 /OPM 1
 /ParseDSCComments true
 /ParseDSCCommentsForDocInfo true
 /PreserveCopyPage true
 /PreserveDICMYKValues true
 /PreserveEPSInfo true
 /PreserveFlatness true
 /PreserveHalftoneInfo false
 /PreserveOPIComments false
 /PreserveOverprintSettings true
 /StartPage 1
 /SubsetFonts true
 /TransferFunctionInfo /Apply
 /UCRandBGInfo /Preserve
 /UsePrologue false
 /ColorSettingsFile (None)
 /AlwaysEmbed [true
]
 /NeverEmbed [true
]
 /AntiAliasColorImages false
 /CropColorImages true
 /ColorImageMinResolution 300
 /ColorImageMinResolutionPolicy /OK
 /DownsampleColorImages false
 /ColorImageDownsampleType /Average
 /ColorImageResolution 300
 /ColorImageDepth 8
 /ColorImageMinDownsampleDepth 1
 /ColorImageDownsampleThreshold 1.50000
 /EncodeColorImages true
 /ColorImageFilter /FlateEncode
 /AutoFilterColorImages false
 /ColorImageAutoFilterStrategy /JPEG
 /ColorACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /ColorImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000ColorACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000ColorImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasGrayImages false
 /CropGrayImages true
 /GrayImageMinResolution 300
 /GrayImageMinResolutionPolicy /OK
 /DownsampleGrayImages false
 /GrayImageDownsampleType /Average
 /GrayImageResolution 300
 /GrayImageDepth 8
 /GrayImageMinDownsampleDepth 2
 /GrayImageDownsampleThreshold 1.50000
 /EncodeGrayImages true
 /GrayImageFilter /FlateEncode
 /AutoFilterGrayImages false
 /GrayImageAutoFilterStrategy /JPEG
 /GrayACSImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /GrayImageDict <<
 /QFactor 0.15
 /HSamples [1 1 1 1] /VSamples [1 1 1 1]
 >>
 /JPEG2000GrayACSImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /JPEG2000GrayImageDict <<
 /TileWidth 256
 /TileHeight 256
 /Quality 30
 >>
 /AntiAliasMonoImages false
 /CropMonoImages true
 /MonoImageMinResolution 1200
 /MonoImageMinResolutionPolicy /OK
 /DownsampleMonoImages false
 /MonoImageDownsampleType /Average
 /MonoImageResolution 1200
 /MonoImageDepth -1
 /MonoImageDownsampleThreshold 1.50000
 /EncodeMonoImages true
 /MonoImageFilter /CCITTFaxEncode
 /MonoImageDict <<
 /K -1
 >>
 /AllowPSXObjects false
 /CheckCompliance [
 /None
]
 /PDFX1aCheck false
 /PDFX3Check false
 /PDFXCompliantPDFOnly false
 /PDFXNoTrimBoxError true
 /PDFXTrimBoxToMediaBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXSetBleedBoxToMediaBox true
 /PDFXBleedBoxToTrimBoxOffset [
 0.00000
 0.00000
 0.00000
 0.00000
]
 /PDFXOutputIntentProfile (None)
 /PDFXOutputConditionIdentifier ()
 /PDFXOutputCondition ()
 /PDFXRegistryName ()
 /PDFXTrapped /False

 /CreateJDFFile false
 /Description <<
 /CHS <FEFF4f7f75288fd94e9b8bbe5b9a521b5efa7684002000500044004600206587686353ef901a8fc7684c976262535370673a548c002000700072006f006f00660065007200208fdb884c9ad88d2891cf62535370300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c676562535f00521b5efa768400200050004400460020658768633002>
 /CHT <FEFF4f7f752890194e9b8a2d7f6e5efa7acb7684002000410064006f006200650020005000440046002065874ef653ef5728684c9762537088686a5f548c002000700072006f006f00660065007200204e0a73725f979ad854c18cea7684521753706548679c300260a853ef4ee54f7f75280020004100630072006f0062006100740020548c002000410064006f00620065002000520065006100640065007200200035002e003000204ee553ca66f49ad87248672c4f86958b555f5df25efa7acb76840020005000440046002065874ef63002>
 /DAN <FEFF004200720075006700200069006e0064007300740069006c006c0069006e006700650072006e0065002000740069006c0020006100740020006f007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e007400650072002000740069006c0020006b00760061006c00690074006500740073007500640073006b007200690076006e0069006e006700200065006c006c006500720020006b006f007200720065006b007400750072006c00e60073006e0069006e0067002e0020004400650020006f007000720065007400740065006400650020005000440046002d0064006f006b0075006d0065006e0074006500720020006b0061006e002000e50062006e00650073002000690020004100630072006f00620061007400200065006c006c006500720020004100630072006f006200610074002000520065006100640065007200200035002e00300020006f00670020006e0079006500720065002e>
 /DEU <FEFF00560065007200770065006e00640065006e0020005300690065002000640069006500730065002000450069006e007300740065006c006c0075006e00670065006e0020007a0075006d002000450072007300740065006c006c0065006e00200076006f006e002000410064006f006200650020005000440046002d0044006f006b0075006d0065006e00740065006e002c00200076006f006e002000640065006e0065006e002000530069006500200068006f00630068007700650072007400690067006500200044007200750063006b006500200061007500660020004400650073006b0074006f0070002d0044007200750063006b00650072006e00200075006e0064002000500072006f006f0066002d00470065007200e400740065006e002000650072007a0065007500670065006e0020006d00f60063006800740065006e002e002000450072007300740065006c006c007400650020005000440046002d0044006f006b0075006d0065006e007400650020006b00f6006e006e0065006e0020006d006900740020004100630072006f00620061007400200075006e0064002000410064006f00620065002000520065006100640065007200200035002e00300020006f0064006500720020006800f600680065007200200067006500f600660066006e00650074002000770065007200640065006e002e>
 /ESP <FEFF005500740069006c0069006300650020006500730074006100200063006f006e0066006900670075007200610063006900f3006e0020007000610072006100200063007200650061007200200064006f00630075006d0065006e0074006f0073002000640065002000410064006f0062006500200050004400460020007000610072006100200063006f006e00730065006700750069007200200069006d0070007200650073006900f3006e002000640065002000630061006c006900640061006400200065006e00200069006d0070007200650073006f0072006100730020006400650020006500730063007200690074006f00720069006f00200079002000680065007200720061006d00690065006e00740061007300200064006500200063006f00720072006500630063006900f3006e002e002000530065002000700075006500640065006e00200061006200720069007200200064006f00630075006d0065006e0074006f00730020005000440046002000630072006500610064006f007300200063006f006e0020004100630072006f006200610074002c002000410064006f00620065002000520065006100640065007200200035002e003000200079002000760065007200730069006f006e0065007300200070006f00730074006500720069006f007200650073002e>
 /FRA <FEFF005500740069006c006900730065007a00200063006500730020006f007000740069006f006e00730020006100660069006e00200064006500200063007200e900650072002000640065007300200064006f00630075006d0065006e00740073002000410064006f00620065002000500044004600200070006f007500720020006400650073002000e90070007200650075007600650073002000650074002000640065007300200069006d007000720065007300730069006f006e00730020006400650020006800610075007400650020007100750061006c0069007400e90020007300750072002000640065007300200069006d007000720069006d0061006e0074006500730020006400650020006200750072006500610075002e0020004c0065007300200064006f00630075006d0065006e00740073002000500044004600200063007200e900e90073002000700065007500760065006e0074002000ea0074007200650020006f007500760065007200740073002000640061006e00730020004100630072006f006200610074002c002000610069006e00730069002000710075002700410064006f00620065002000520065006100640065007200200035002e0030002000650074002000760065007200730069006f006e007300200075006c007400e90072006900650075007200650073002e>
 /ITA <FEFF005500740069006c0069007a007a006100720065002000710075006500730074006500200069006d0070006f007300740061007a0069006f006e00690020007000650072002000630072006500610072006500200064006f00630075006d0065006e00740069002000410064006f006200650020005000440046002000700065007200200075006e00610020007300740061006d007000610020006400690020007100750061006c0069007400e00020007300750020007300740061006d00700061006e0074006900200065002000700072006f006f0066006500720020006400650073006b0074006f0070002e0020004900200064006f00630075006d0065006e007400690020005000440046002000630072006500610074006900200070006f00730073006f006e006f0020006500730073006500720065002000610070006500720074006900200063006f006e0020004100630072006f00620061007400200065002000410064006f00620065002000520065006100640065007200200035002e003000200065002000760065007200730069006f006e006900200073007500630063006500730073006900760065002e>
 /JPN <FEFF9ad854c18cea51fa529b7528002000410064006f0062006500200050004400460020658766f8306e4f5c6210306b4f7f75283057307e30593002537052376642306e753b8cea3092670059279650306b4fdd306430533068304c3067304d307e3059300230c730b930af30c830c330d730d730ea30f330bf3067306e53705237307e305f306f30d730eb30fc30d57528306b9069305730663044307e305930023053306e8a2d5b9a30674f5c62103055308c305f0020005000440046002030d530a130a430eb306f3001004100630072006f0062006100740020304a30883073002000410064006f00620065002000520065006100640065007200200035002e003000204ee5964d3067958b304f30533068304c3067304d307e30593002>
 /KOR <FEFFc7740020c124c815c7440020c0acc6a9d558c5ec0020b370c2a4d06cd0d10020d504b9b0d1300020bc0f0020ad50c815ae30c5d0c11c0020ace0d488c9c8b85c0020c778c1c4d560002000410064006f0062006500200050004400460020bb38c11cb97c0020c791c131d569b2c8b2e4002e0020c774b807ac8c0020c791c131b41c00200050004400460020bb38c11cb2940020004100630072006f0062006100740020bc0f002000410064006f00620065002000520065006100640065007200200035002e00300020c774c0c1c5d0c11c0020c5f40020c2180020c788c2b5b2c8b2e4002e>
 /NLD (Gebruik deze instellingen om Adobe PDF-documenten te maken voor kwaliteitsafdrukken op desktopprinters en proofers. De gemaakte PDF-documenten kunnen worden geopend met Acrobat en Adobe Reader 5.0 en hoger.)
 /NOR <FEFF004200720075006b00200064006900730073006500200069006e006e007300740069006c006c0069006e00670065006e0065002000740069006c002000e50020006f0070007000720065007400740065002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740065007200200066006f00720020007500740073006b00720069006600740020006100760020006800f800790020006b00760061006c00690074006500740020007000e500200062006f007200640073006b0072006900760065007200200065006c006c00650072002000700072006f006f006600650072002e0020005000440046002d0064006f006b0075006d0065006e00740065006e00650020006b0061006e002000e50070006e00650073002000690020004100630072006f00620061007400200065006c006c00650072002000410064006f00620065002000520065006100640065007200200035002e003000200065006c006c00650072002000730065006e006500720065002e>
 /PTB <FEFF005500740069006c0069007a006500200065007300730061007300200063006f006e00660069006700750072006100e700f50065007300200064006500200066006f0072006d00610020006100200063007200690061007200200064006f00630075006d0065006e0074006f0073002000410064006f0062006500200050004400460020007000610072006100200069006d0070007200650073007300f5006500730020006400650020007100750061006c0069006400610064006500200065006d00200069006d00700072006500730073006f0072006100730020006400650073006b0074006f00700020006500200064006900730070006f00730069007400690076006f0073002000640065002000700072006f00760061002e0020004f007300200064006f00630075006d0065006e0074006f00730020005000440046002000630072006900610064006f007300200070006f00640065006d0020007300650072002000610062006500720074006f007300200063006f006d0020006f0020004100630072006f006200610074002000650020006f002000410064006f00620065002000520065006100640065007200200035002e0030002000650020007600650072007300f50065007300200070006f00730074006500720069006f007200650073002e>
 /SUO <FEFF004b00e40079007400e40020006e00e40069007400e4002000610073006500740075006b007300690061002c0020006b0075006e0020006c0075006f0074002000410064006f0062006500200050004400460020002d0064006f006b0075006d0065006e007400740065006a00610020006c0061006100640075006b006100730074006100200074007900f6007000f60079007400e400740075006c006f0073007400750073007400610020006a00610020007600650064006f007300740075007300740061002000760061007200740065006e002e00200020004c0075006f0064007500740020005000440046002d0064006f006b0075006d0065006e00740069007400200076006f0069006400610061006e0020006100760061007400610020004100630072006f0062006100740069006c006c00610020006a0061002000410064006f00620065002000520065006100640065007200200035002e0030003a006c006c00610020006a006100200075007500640065006d006d0069006c006c0061002e>
 /SVE <FEFF0041006e007600e4006e00640020006400650020006800e4007200200069006e0073007400e4006c006c006e0069006e006700610072006e00610020006f006d002000640075002000760069006c006c00200073006b006100700061002000410064006f006200650020005000440046002d0064006f006b0075006d0065006e00740020006600f600720020006b00760061006c00690074006500740073007500740073006b0072006900660074006500720020007000e5002000760061006e006c00690067006100200073006b0072006900760061007200650020006f006300680020006600f600720020006b006f007200720065006b007400750072002e002000200053006b006100700061006400650020005000440046002d0064006f006b0075006d0065006e00740020006b0061006e002000f600700070006e00610073002000690020004100630072006f0062006100740020006f00630068002000410064006f00620065002000520065006100640065007200200035002e00300020006f00630068002000730065006e006100720065002e>
 /ENU (Use these settings to create Adobe PDF documents for quality printing on desktop printers and proofers. Created PDF documents can be opened with Acrobat and Adobe Reader 5.0 and later.)
 >>
 /Namespace [
 (Adobe)
 (Common)
 (1.0)
]
 /OtherNamespaces [
 <<
 /AsReaderSpreads false
 /CropImagesToFrames true
 /ErrorControl /WarnAndContinue
 /FlattenerIgnoreSpreadOverrides false
 /IncludeGuidesGrids false
 /IncludeNonPrinting false
 /IncludeSlug false
 /Namespace [
 (Adobe)
 (InDesign)
 (4.0)
]
 /OmitPlacedBitmaps false
 /OmitPlacedEPS false
 /OmitPlacedPDF false
 /SimulateOverprint /Legacy
 >>
 <<
 /AddBleedMarks false
 /AddColorBars false
 /AddCropMarks false
 /AddPageInfo false
 /AddRegMarks false
 /ConvertColors /NoConversion
 /DestinationProfileName ()
 /DestinationProfileSelector /NA
 /Downsample16BitImages true
 /FlattenerPreset <<
 /PresetSelector /MediumResolution
 >>
 /FormElements false
 /GenerateStructure true
 /IncludeBookmarks false
 /IncludeHyperlinks false
 /IncludeInteractive false
 /IncludeLayers false
 /IncludeProfiles true
 /MultimediaHandling /UseObjectSettings
 /Namespace [
 (Adobe)
 (CreativeSuite)
 (2.0)
]
 /PDFXOutputIntentProfileSelector /NA
 /PreserveEditing true
 /UntaggedCMYKHandling /LeaveUntagged
 /UntaggedRGBHandling /LeaveUntagged
 /UseDocumentBleed false
 >>
]
>> setdistillerparams
<<
 /HWResolution [2400 2400]
 /PageSize [612.000 792.000]
>> setpagedevice

