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ABSTRACT
Genome-wide association studies (GWASs) and other computational biology
techniques are gradually discovering the causal gene variants that contribute to
late-onset human diseases. After more than a decade of genome-wide association
study efforts, these can account for only a fraction of the heritability implied by
familial studies, the so-called “missing heritability” problem. Computer simulations
of polygenic late-onset diseases (LODs) in an aging population have quantified the
risk allele frequency decrease at older ages caused by individuals with higher
polygenic risk scores (PRSs) becoming ill proportionately earlier. This effect is most
prominent for diseases characterized by high cumulative incidence and high
heritability, examples of which include Alzheimer’s disease, coronary artery disease,
cerebral stroke, and type 2 diabetes. The incidence rate for LODs grows exponentially
for decades after early onset ages, guaranteeing that the cohorts used for GWASs
overrepresent older individuals with lower PRSs, whose disease cases are
disproportionately due to environmental causes such as old age itself. This
mechanism explains the decline in clinical predictive power with age and the lower
discovery power of familial studies of heritability and GWASs. It also explains the
relatively constant-with-age heritability found for LODs of lower prevalence,
exemplified by cancers.
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INTRODUCTION
Throughout the ages, late-onset diseases (LODs) were considered the bane of the lucky
few who survived to an advanced age. Over the last couple of centuries, however,
continuous improvements in sanitation, life and work environments, vaccinations,
disease prevention, and medical interventions have extended the average life expectancy
by decades.

With a growing fraction of the population being of advanced age, the leading causes
of mortality are now heart disease, cancer, respiratory disease, stroke, and notably
Alzheimer’s disease (AD) and other dementias (Murphy et al., 2017). The need—and with
it, the effort being made—to determine the causes of LODs is ever increasing, and one of
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the targets of medicine has become combating aging itself in addition to specific
age-related diseases (Franceschi et al., 2018).

One of the major goals of computational biology is to identify gene variants that lead to
increased odds of LODs. Nevertheless, polygenic LODs remain resistant to the discovery
of sufficient causal gene variants that would allow for accurate predictions of an
individual’s disease risk (Manolio et al., 2009; Clarke & Cooper, 2010; Kumar et al., 2016).
This is despite the fact that LODs with varied symptoms and phenotypes show high
heritability in twin and familial studies (Zaitlen & Kraft, 2012).

At a young age, the human organism usually functions as well as it ever will. With time,
the organism’s functions decline, leading to the common image of aging as one of thinning
hair and a loss of pigmentation in what remains, increased wrinkling and altered
pigmentation of the skin, reductions in height, muscle and bone mass, joint pain, and
deficits in hearing, sight, and memory (Fedarko, 2018). The combination of genetic
liability, environmental factors, and the physiological decline of multiple organism systems
leads to individual disease presentation. Genetic variation may be either protective or
detrimental when compared to the average distribution of common gene variants that
defines human conditions as it applies to polygenic LODs.

Researchers engaged in genome-wide association studies (GWASs) often set an
unrealistic expectation that a combination of causal single nucleotide polymorphisms
(SNPs)—also known as a polygenic score—will, irrespective of the patient’s age,
completely predict an individual’s predisposition to an LOD to a degree matching the
maximum heritability found in familial studies (Naj, Schellenberg & Alzheimer’s Disease
Genetics Consortium (ADGC), 2017; Silva et al., 2015). The lost heritability debate, in
the case of LODs, often treats polygenic LODs as if they were binary hereditary phenotypic
features rather than facets of failure processes that arise in the human body (Oh, Lee &
Wagers, 2014) when it is past its reproductive prime and when evolutionary selection
is significantly relaxed compared to younger ages (Fedarko, 2018).

Genome-wide association studies can implicate a subset of SNPs that can typically
explain between 10% and 20% of the genetic heritability of a polygenic LOD (Visscher
et al., 2017). There are two complementary hypotheses explaining this so-called missing
heritability (Eyre-Walker, 2010; Yang et al., 2012; Thornton, Foran & Long, 2013; Agarwala
et al., 2013). The first is the hypothesis that LODs are caused by a combination of a
large number of relatively common alleles of small effect (Goldstein, 2009). GWASs have
been able to discover only a small number of moderate-effect SNPs, but a large number of
SNPs remain below GWASs’ statistical discovery power. The second hypothesis states
that LODs are caused by a relatively small number of rare, moderate- or high-effect alleles
with a frequency below 1% that likely segregate in various proportions into subpopulations
or families (Dickson et al., 2010; North & Beaumont, 2015) and are also under the
radar of GWASs’ discovery power.

Both scenarios can contribute to observational facts, but their relative weights vary
depending on the genetic architecture of an LOD (Park et al., 2011). Rare highly
detrimental alleles become indistinguishable in their presentation from the OMIM
cataloged conditions and will likely be diagnosed as a separate disease or syndrome.
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The population age distribution and individual disease progression of polygenic LODs are
best understood by considering the aging process itself as an ongoing loss of function,
which can be modulated by the genetic liabilities resulting from both common and rare
SNP distributions combined with changing environmental and lifestyle variables. It has
been determined (Anderson et al., 2011; Yang et al., 2015) that common variants very
likely explain the majority of heritability for most complex traits.

While the findings of GWASs can explain only a fraction of heritability, the
systematically collected SNP correlations provide a good indication of what to expect
regarding the effect sizes and allele frequency distribution of as yet undiscovered SNPs
(Eyre-Walker, 2010). Many studies focus on constructing hypotheses, defining the types of
gene variants that could explain the missing heritability, proving why these gene variants
are difficult to discover, and identifying the evolutionary processes that led to the
hypothesized and observed gene variant distributions (Manolio et al., 2009; Clarke &
Cooper, 2010; So et al., 2011; Zaitlen & Kraft, 2012; Thornton, Foran & Long, 2013; Wood
et al., 2014). These studies explore the effect sizes and allele frequencies that GWAS would
expect to find for LODs as well as the genetic architecture of complex traits and their
implications for fitness.

The age-related heritability decline of some LODs has been assumed for decades.
The precise magnitude of heritability change with age is typically unknown for most LODs,
and the effects are not understood and often ignored or overlooked. Most GWASs
recommend homogeneity in cohort age—that is, that the same age window should be
targeted—although it has been suggested (Li & Meyre, 2013) that individuals with an early
age of onset are likely to have greater genetic susceptibility. Discussing a replication study
design, Li & Meyre (2013) stated, “Once the risk of false positive association has been
ruled out by initial replication studies, the focus of the association can be extended to
different age windows.” Another common approach is to “age adjust” the effect (Zaitlen
et al., 2012) with the goal of removing or averaging out the effect of aging rather than
examining its consequences more thoroughly. Two recent studies (Lin et al., 2014;
Bjørnland et al., 2018) emphasize the need to explore “extreme phenotype sampling” in
order to improve GWAS discovery, including using cohorts that are diverse in age.

One of the first geneticists to build a conceptual foundation for disease susceptibility,
and the pioneer of the liability threshold approach, was D. S. Falconer in his studies of
inheritance estimated from the prevalence among relatives (Falconer, 1965) and his 1967
follow-up study exploring the prevalence patterns of LODs, specifically diabetes (Falconer,
1967), and their decreasing heritability with age. These concepts were not followed up
by systematic research, likely due to the difficulties involved in setting up large familial
studies and perhaps the perceived limited clinical use of this kind of expensive and
time-consuming project.

Detailed, high-granularity data on heritability by age are rare for most diseases.
The familial heritability, clinical, and epidemiological statistics were available for eight
prevalent LODs, AD, type 2 diabetes (T2D), coronary artery disease (CAD), and cerebral
stroke, and four late-onset cancers: breast, prostate, colorectal, and lung cancer.
These statistics served as the basis for this study’s analysis and conclusions. This study
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investigated the model in which the polygenic risk of an individual remains constant with
age and endeavored to establish how the higher odds of becoming ill of individuals
with higher polygenic liability may lead to a change of risk allele distribution as the
population ages and whether this alone may explain some of the known observational facts.

A set of computer simulations quantified the change in the risk allele representation for
these LODs as the population ages and determined how and why these changes affect
clinical predictive power and GWAS statistical discovery power with age more for some
LODs than for others.

METHODS
The model definition
According to Chatterjee, Shi & Garca-Closas (2016), the conditional age-specific incidence
rate of the disease, I(t|G) that is defined as the probability of developing the disease at
a particular age t, given that a subject has been disease-free until that age, can be modeled
using Cox’s proportional hazards model (Cox, 1972):

IðtjGÞ ¼ I0ðtÞ � exp
X
k

bkGk

 !
; (1)

where G ¼ ðG1; . . . ;GkÞ is the multiplicative effect of a set of risk factors on the baseline
hazard of the disease I0(t). The set of age-independent variables in G could include genetic
and environmental risk factors, as well as their interaction terms.

The following summary from Chatterjee, Shi & Garca-Closas (2016) is particularly
relevant to the methodology of this research: “logistic regression methods are preferred for
the evaluation of multiplicative interactions. For case-control studies, if it can be
assumed that environmental risk factors are independent of the SNPs in the underlying
population, then case-only and related methods can be used to increase the power of tests
for gene-environment interactions. To date, post-GWAS epidemiological studies of
gene-environment interactions have generally reported multiplicative joint associations
between low-penetrant SNPs and environmental risk factors, with only a few exceptions.”
This means that the polygenic score G ¼Pk bkGk, as the lifelong characteristic of
each individual, is used multiplicatively with I0(t), which encompasses environmental
and aging effects.

It is important to note that the simulations conducted in this research rely on the
model genetic architectures of the analyzed LODs, not a complete GWAS map of their
experimentally discovered SNPs, because GWAS-discovered sets can explain only a fraction
of these LODs’ heritability. Thesemodel genetic architecture SNPs are treated as “true” causal
variants for disease liability and heritability, as discussed in Chatterjee, Shi & Garca-Closas
(2016), rather than GWAS-linked SNPs. They are used as a priori known constant causal
SNPs that combine into individual polygenic risk scores (PRSs) for an LOD, as will be
described further. The study by Pawitan, Seng & Magnusson (2009), which followed the
mathematical foundation and simulational validation of the liability model developed in Noh
et al. (2006), served as a basis for the genetic architectures used in this study.

Oliynyk (2019), PeerJ, DOI 10.7717/peerj.7168 4/27

http://dx.doi.org/10.7717/peerj.7168
https://peerj.com/


Taking an aging population simulation approach allows for the identification of
individuals becoming ill and, with them, the corresponding allele distribution between
cases and controls, without intermediate steps and operating directly with the odds-ratio-
based PRSs common to GWASs and clinical studies. The core of the simulation is
Algorithm 1, operating on the known yearly incidence of an LOD and the PRSs for all
individuals based on a modeled LOD genetic architecture:

Descriptively, the algorithm works as follows. In this prospective simulation, each
next individual to be diagnosed with an LOD is chosen proportionately to that
individual’s relative PRS at birth relative to all other individuals in the as-yet-unaffected
population. The number of individuals diagnosed annually is determined using the
model incidence rate curve derived from clinical statistics. In this manner, the aging
process is probabilistically reproduced using a population simulation model rather than
a computational model. As the simulation progresses, the risk alleles are tracked for
all newly diagnosed individuals and the remaining unaffected population, and their
representation in the affected and remaining population is statistically analyzed.

The following sections describe the model genetic architectures, the LOD incidence
models and the statistical foundations of this research.

Allele distribution models
An in-depth review by Pawitan, Seng & Magnusson (2009) extensively analyzed models
of genetic architecture and through simulations determined the number of alleles

Algorithm 1 Sampling individuals diagnosed with a disease proportionately to their polygenic odds
ratio and incidence rate.

for age = 1 to MaxAge do

numberIllThisYear = I(age)·N // N is unaffected population

for i = 1 to numberIllThisYear do

HRsum = 0 // will recalculate sum of all HRs

for u = 1 to N do

HRsum = HRsum+ORtoHR(Gu) // calculate the HR total

LOOKUP(add,HRsum,u) // add uth individual to the lookup table

end

rand = RandomNumber(0,HRsum) // pick a random number

ill = LOOKUP(find, rand,N) // found newly diagnosed

N = N -1 // decrement in number of healthy individuals

ProcessAndAnalyze(ill)

end

end

Note: an individual makes a sampling target proportionate to the hazard ratio (HR) in the LOOKUP()
table. Odds ratios (ORs) are converted to HRs, similar to the approach taken by Wang (2013). An
individual with an HR of 15 will be 150 times more likely to be sampled than an individual with an HR of
0.1. ProcessAndAnalyze() moves newly diagnosed individual from the healthy to the ill population pool,
accounts for allele distribution, case/control ORs, etc.
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required to achieve specific heritability and estimated the discovery power of GWASs.
They calculated allele distributions and heritability and ran simulations for six
combinations of effect sizes and minor allele frequencies (MAFs). Reliance on the
conclusions of Pawitan, Seng &Magnusson (2009) in this research makes it unnecessary to
repeat the preliminary steps of evaluating the allele distributions needed to achieve the
requisite heritability levels. The Pawitan, Seng & Magnusson (2009) alleles represent the
entire spectrum ranging from common, low-frequency, low-effect-size alleles to extremely
rare, high-effect, high-frequency alleles. The five most relevant architectures were
implemented in this study; see Table 1.

It is also handy for repeatable allele tracking, rather than generating the continuous
random spectrum of allele frequencies and effect sizes, to follow the Pawitan, Seng &
Magnusson (2009) configuration and discretize the MAFs into five equally spaced values
within the defined range, with an equal proportion of each MAF and an equal proportion
of ORs. For example, for scenario A, the MAFs are distributed in equal proportion at
0.073, 0.180, 0.286, 0.393, and 0.500, while the OR values are 1.15, 1.125, 1.100, 1.075, and
1.05, resulting in 25 possible combinations. Having multiple well-defined alleles with
the same parameters facilitated the tracking of their behaviors with age, LOD, and
simulation incidence progression.

An individual PRSs β can be calculated as the sum of the effect sizes of all alleles, which
is by definition a log(OR) (natural logarithm of OR) for each allele, also following Pawitan,
Seng & Magnusson (2009):

b ¼ logðORÞ ¼
X
k

aklogðORkÞ; (2)

where ak is the number of risk alleles (0, 1, or 2) and ORk is the ORs of additional liability
presented by the k-th allele.

Variance of the allele distribution is determined by:

var ¼ 2
X
k

pkð1� pkÞðlogðORkÞÞ2; (3)

where pk is the frequency of the k-th genotype (Pawitan, Seng & Magnusson, 2009).
The contribution of genetic variance to the risk of the disease is heritability:

h2 ¼ var
varþ p2=3

; (4)

Table 1 Genetic architecture scenarios.

Scenario MAF Odds ratio

(A) Common low 0.073–0.499 1.05–1.15

(B) Modest low 0.0365–0.2495 1.05–1.15

(C) Rare low 0.0146–0.0998 1.05–1.15

(D) Rare medium 0.0146–0.0998 1.28–2.01

(E) Rare high 0.0073–0.0499 1.63–4.05

Note:
Allele distributions as modeled by Pawitan, Seng & Magnusson (2009).
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where p2/3 is the variance of the standard logistic distribution (Noh et al., 2006). For
example, the number of variants needed for the Scenario A LODs is summarized in Table 2.

Following Pawitan, Seng & Magnusson (2009), the variants are assigned to individuals
with frequencies proportionate to MAF pk for SNP k, producing, in accordance with
the Hardy–Weinberg principle, three genotypes (AA, AB, or BB) for each SNP with
frequencies p2k, 2pk(1 - pk) and (1 - pk)

2. The mean value βmean of the population
distribution can be calculated using the following equation:

bmean ¼ 2
X
k

pk � logðORkÞ (5)

Customarily, the individual PRSs are normalized relative to Gmean, resulting in a zero
mean initial population PRS, making it easy to compare higher- and lower-risk individuals.
Figs. S13 and S14 in Article S1 depict the corresponding population distribution
of detrimental variants and PRSs for the common, low-effect-size genetic architecture.

A part of simulation functionality is to allocate the genetic architectures and calculate
the variance, using Eq. (3), of each genetic architecture instance described above.
Each genetic architecture listing is represented in the File S1 executable folder; for example,
the file “CommonLow.txt” lists the variants describing Scenario A (only three columns
are used for this simulation: SNP—internal use identifier, EAF—effect allele frequency,
and OR). In the case of Scenario A, var = 0.09098 for the single set of SNPs listed in this file.
Rearranging Eq. (4) and changing the multiple allows for the discovery of the number
of variant sets for each LOD, as seen in Table 2, and for the target heritability to be closely
approximated. Each simulation run calculates the PRS variance within the population
and records heritability and allele distributions for the case and control populations as the
simulated age progresses.

Evaluating GWAS statistical power
Genome-wide association studies statistical power is the estimate of the ability of GWASs
to detect associations between DNA variants and a given trait, and depends on the
experimental sample size, the distribution of effect sizes, and the frequency of these variants
in the population (Visscher et al., 2017). Statistical power calculations are very useful in a
case/control study design for determining the minimum number of samples that will achieve
adequate statistical power; conventionally, statistical power of 80% is considered to be
acceptable (Hong & Park, 2012). To achieve greater power, a disproportionately larger
number of cases and controls may be required, which is frequently unrealistic for cohort
studies. A number of statistical power calculators are available, for example, Sham & Purcell
(2014). This study utilized the Online Sample Size Estimator (2018).

Table 2 Heritability of analyzed LODs and an example of required variant numbers for common
low-effect variants: Scenario A.

Highly prevalent LODs Cancers

AD T2D CAD Stroke Prostate Colorectal Breast Lung

Heritability 0.795 0.69 0.55 0.41 0.57 0.40 0.31 0.095

Variants 3,575 2,125 1,175 625 1,250 600 400 100
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The progress made by GWASs over the last decade, particularly in relation to polygenic
traits, was to a large extent due to ever-increasing cohort sizes. Cohort size is one of the
principal factors limiting GWAS discovery power, making it an important benchmark
for this study. Here, the cohort size is defined as the number of cases and controls
needed to achieve 80% statistical discovery power when the case/control allele frequency
changes with cohort age for a subset of representative alleles in the model genetic
architectures. For each such allele in the simulated population, the allele frequency for
cases and controls is tracked as age progresses. The difference between these MAFs gives
the non-centrality parameter (NCP) l for two genetic groups (Sham & Purcell, 2014;
Luan et al., 2001):

� ¼ N � p1 � p2 � ðb1 � b2Þ2; (6)

where N is the overall population sample size and p1 and p2 the fractions of cases and
controls, and β1 and β2 are the case and control mean log(OR) for an allele of interest.
The values p1 = p2 = 0.5, or an equal number of cases and controls, are used throughout
this publication.

Having obtained NCP l from Eq. (6), Luan et al. (2001) recommended using SAS or
similar statistical software to calculate the statistical power, using the following SAS
statement:

StatPower ¼ 1� PROBFðFINVð0:99999995; 1;N � 4Þ; 1;N � 4; �Þ: (7)

The conversion of this equation to its R equivalent, which was used to process the
simulation output, is:

StatPower ¼ 1� pf ðqf ðPSign; 1;N � 4Þ; 1;N � 4; �Þ; (8)

where PSign = 0.99999995 corresponds to a 5� 10-8 significance level. The outputs of this
conversion were validated using the Online Sample Size Estimator (2018). This equation
returns statistical power based on a case/control number and the NCP as calculated
above. To find the number of cases needed for 80% GWAS discovery power, having the
(β1 - β2), a rapid convergence R routine was used to iterate the values of N until the value
of StatPower matched 0.8 (80%) with an accuracy better than ±0.01% for each age and
allele distribution of interest.

LOD incidence functional approximation
Chapter S3 in Article S1 describes the functional approximations of the yearly incidence
of AD, T2D, CAD, and cerebral stroke, and four late-onset cancers: breast, prostate,
colorectal, and lung cancer. As a short summary, for all of the above LODs, the incidence
rate curves can be approximated during the initial disease onset periods with an annual
incidence growth that is close to exponential. This exponential growth continues for
decades; see Table 3 and Chapter S3 in Article S1.

Later, the growth may flatten in old age, as is the case with T2D, slow down, as is the
case with cerebral stroke and CAD, or continue exponentially to a very advanced age, as is
the case with AD. An R script automates the determination of the best fit for logistic
and exponential approximation from the clinical incidence data.

Oliynyk (2019), PeerJ, DOI 10.7717/peerj.7168 8/27

http://dx.doi.org/10.7717/peerj.7168/supp-2
http://dx.doi.org/10.7717/peerj.7168/supp-2
http://dx.doi.org/10.7717/peerj.7168/supp-2
http://dx.doi.org/10.7717/peerj.7168/supp-2
http://dx.doi.org/10.7717/peerj.7168
https://peerj.com/


Sampling based on the LOD incidence rate and individual PRS
The incidence rate functional approximations for the analyzed LODs are used to find the
average number of diagnosed individuals Nd for each year of age t as a function of the
incidence rate I(t) and the remaining population unaffected by the LOD Nu(t) in question:

NdðtÞ ¼ IðtÞ � NuðtÞ; (9)

In the next year of age, the unaffected population will have been reduced by the number
of individuals diagnosed in the previous year Nd(t):

Nuðt þ 1Þ ¼ NuðtÞ � NdðtÞ ¼ NuðtÞð1� IðtÞÞ: (10)

The number of individuals projected to become ill per year, as well as the remaining
unaffected population, is applied in Algorithm 1.

For the PRS of the simulated population based on ORs built using the Pawitan, Seng &
Magnusson (2009)model, if an LOD is characterized by low incidence within an age interval,
and the OR is close to 1, OR values are practically identical to HR or relative risk (RR).
For example, Song et al. (2014) treat OR and RR as equivalent in the case of breast cancer in
their simulation study. For higher values, an OR usually significantly exceeds the RR. An
adjustment formula by Zhang & Kai (1998) can provide OR to HR approximation.

Individual values analysis and cohort simulation
It can be expected that, for an LOD with higher incidence and heritability, the fraction of
the highest-PRS individuals will diminish more rapidly with age. For such LODs, the
relatively-lower-PRS individuals will represent the bulk of the LOD cases at an earlier age
compared to LODs with lower incidence and heritability. The LODs are characterized
by a wide range of heritability and progression patterns of incidence rate with age.
For example, T2D and breast cancer begin their incidence rise relatively early but reach
quite different levels at older age, while colon cancer and AD start later and also reach quite
different maximum incidence and cumulative incidence levels; see Fig. S1 in Article S1.
In the absence of mortality, both due to general frailty and other LODs, the incidence
progression makes it appear as though, sooner or later, depending on the incidence
magnitude, the majority of the population would be diagnosed with every LOD. In reality,
this does not happen because of ongoing mortality from all causes.

Two main LOD simulation types are described next:

(1) The individual values analysis of PRSs and risk allele frequency for individuals
diagnosed with a disease at each specific age and the remaining population at this
age. The abbreviation “IVA” is used interchangeably with “individual values analysis”
in this publication.

Table 3 Age to which LOD incidence rate rises exponentially.

Highly prevalent LODs Cancers

AD T2D CAD Stroke Prostate Colorectal Breast Lung

Age (years) 103 55 81 79 48 62 72 70
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The IVA uses 1-year age slices and is performed as follows. Initially, the mean and
variance of the PRS for the whole population are calculated. Next, based on the required
incidence value for each year, individuals are picked from the unaffected population by
randomly sampling the population with a probability proportionate to the individual’s
PRS, as summarized in Algorithm 1. These individuals become the cases for the relevant
year’s IVA, and the mean and variance of their PRSs are also calculated and recorded.
Mortality does not need to be applied to the IVA scenario because it affects the future cases
and controls in equal numbers, and accounting for mortality would only result in a smaller
population being available for analysis. To track the GWAS statistical discovery power,
the same nine representative variants (configurable) are tracked for all LODs simulated. The
process continues in this way until the maximum desired simulation age is reached.

(2) A simulated cohort study for each of these diseases. For the sake of brevity, the word
“cohort” is also used throughout this publication.

The clinical study cohort simulation performs an analysis identical to that described
above. The difference is that, here, the simulated GWAS clinical studies are performed
with a patient age span of 10 years, which is a typical cohort age span, although any age
span can be chosen as a simulation parameter. The simulation statistics are collected
using the mid-cohort age, which is the arithmetic half-age of the cohort age span. In the
first simulation year, a population equal to one-tenth of the complete population goes
through the steps described for IVA. Each year, an additional one-tenth starts at age 0,
while the previously added individuals age by 1 year. This continues until all 10 ages are
represented. This combined cohort proceeds to age and is subject to the disease incidence
rate and mortality according to each individual’s age.

Mortality is applied, with a probability appropriate to each year of age, to both
accumulated cases and controls. As the population ages, both the case and control pool
numbers diminish. Take, for example, a cohort study that includes a 10-year span, say,
between 50 and 59 years of age. The cases for the cohort are composed of individuals who
were diagnosed with an LOD at any age either younger than or including their current age,
producing a cumulative disease incidence over all preceding years of age. For example,
some of the individuals that are cases now, at age 59, may have been healthy at age 58.
Some of the controls in our cohort at the age of 51 may or may not be diagnosed at an older
age, which would qualify them as cases for this cohort, but they are currently younger
and healthy. Therefore, it can not be known with certainty the extent to which younger
controls differ from cases, except for the fact that they are not currently diagnosed—not
unlike a real statistical study cohort. As a result, the corresponding GWAS discovery power
can be expected not to change as dramatically as it does for the IVA.

The following additional mortality scenarios were also simulated: (a) double mortality
for cases compared with the unaffected population, (b) no mortality for either cases or
controls, and (c) a 1-year age span cohort with no mortality for either cases or controls.

The youngest age cohort for each LOD is defined as the mid-cohort age at which the
cumulative incidence for a cohort first reaches 0.25% of the population. For consistency,
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this threshold was considered in this study as the minimum cumulative incidence age,
allowing for the formation of well-powered cohort studies for all analyzed LODs.

The simulation design summary
Preliminary data collection and analysis steps are shared by all simulation runs and
include: (a) preparing the genetic architecture files and calculating the number of
variants needed, based on each modeled LOD heritability, as described in the Section
“Allele Distribution Models” above, and (b) determining the parameters of functional
approximation for LOD incidence from published statistics, as described in Chapter S3
in Article S1.

A simulation run for a single LOD can be logically divided into the following four steps:

(1) Build the gene variants pool as outlined in the Section “Allele DistributionModels” and
load the incidence rate functional approximation parameters.

(2) Allocate population objects and assign individual PRSs. Allocate all other simulation
objects and arrays that will be used by the simulation.

(3) Run the simulation’s Algorithm 1 from age 0 to 100 for either the IVA or the cohort
study scenario, described in the Section “Individual Values Analysis and Cohort
Simulation.” Calculate and record the simulation data in comma separated value files.

(4) Determine statistical power for cases and controls for each cohort based on the Section
“Evaluating GWAS Statistical Power.”

The above steps were completely reinitialized and performed for each LOD analysis.
The complete simulation iterated through all eight LOD analyses in two scenarios:
a per-year-of-age population IVA and a simulated GWAS cohort study.

Validation simulations
Based on the model described above, it can be expected that the allele distribution in a
population of the same age with a given initial genetic architecture will depend solely on
cumulative incidence, which represents the fraction of the population that succumbs
to a disease. The purpose of validation simulation runs performed with (a) constant,
(b) linear, and (c) exponential incidence rates was to validate whether or to what extent this
expectation is correct and whether the outcomes would differ between various genetic
architectures. The validation simulations confirmed that PRSs for the population controls
and cases, viewed in the IVA at every age, depend on the cumulative incidence and the
LOD heritability, and are independent from the incidence progression shape within
each genetic architecture. The procedures used in the validation simulations are described
in Chapter S2 in Article S1.

Data sources, programming, and equipment
The population mortality statistics from the US Social Security Actuarial Life Table (2014)
provided yearly death probability and survivor numbers up to 119 years of age for both
men and women.
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Disease incidence data from the following sources were extensively used for analysis,
using the materials referenced in Chapter S1 in Article S1 for corroboration: AD:
(Brookmeyer, Gray & Kawas, 1998; Edland et al., 2002; Kokmen, Chandra & Schoenberg,
1988; Hebert et al., 1995); T2D: (Boehme et al., 2015); CAD and cerebral stroke: (Rothwell
et al., 2005); and cancers: (Cancer Statistics for the UK, 2018; Kuchenbaecker et al., 2017).

The simulations were performed on an Intel i9-7900X CPU-based 10-core computer
system with 64GB of RAM and an Intel Xeon Gold 6154 CPU-based 36-core computer
system with 288GB of RAM. The simulation is written in C++ and can be found in File S1.
The simulations used population pools of two billion individuals for the LOD simulations
and 300 million for validation simulations, resulting in minimal variability in the
results between runs.

The cohort simulations were built sampling at least five million cases and five million
controls from the surviving portion of the initial two billion simulated individuals, which is
equivalent to 0.25% of the initial population. This means that the cohort study would
begin its analysis only when this cumulative incidence was reached. Conversely, the
analysis would cease when, due to mortality, the number of available cases or controls
declined below this threshold. For all LODs, this maximum mid-cohort age was at least
100 years and, depending on LOD, up to a few years higher. This confirms that, as
described later in the Section “Discussion,” in cohorts composed of younger cases and
older controls it is feasible to form control cohorts up to 100 years of age.

The simulation runs for either all validation scenarios or for a single scenario for
all eight LODs took between 12 and 24 h to complete. The final simulation data,
additional plots and elucidation, source code, and the Windows executable are available in
Supporting Information. Intel Parallel Studio XE was used for multi-threading support and
Boost C++ library for faster statistical functions; the executable may be built and can
function without these two libraries, with a corresponding slowdown in execution.
The ongoing simulation results were saved in comma separated files and further processed
with R scripts during subsequent analysis, also available in File S1.

Statistical analysis
Large variations between simulation runs complicate the analysis of population and
genome models. This issue was addressed in this study by using a large test population,
resulting in negligible variability between runs. The statistical power estimates deviated
less than 1% in a two-sigma (95%) confidence interval, except for the early AD
cohort, which commenced at 1.5% and fell below the 1% threshold within 4 years
(see �TwoSDFraction.csv files in File S1). In addition to ensuring that the simulations
operated with reliable data, this eliminated the need for the confidence intervals in
the graphical display.

RESULTS
Validation simulations for all genetic architectures
The validation simulations for all scenarios described in Methods Table 1 were performed
not as models of specific diseases but to determine the behavior of all allele scenarios and
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the resulting allele frequency changes under simple controlled and comparable-to-each-
other incidence scenarios. It was important to characterize all genetic architectures and to
identify the differences and similarities in behavior between them.

These simulations confirmed that a change in the population’s mean PRS and a change
in the cases’ mean PRS, viewed as instantaneous values for each age, are dependent on
the cumulative incidence and the magnitude of the initial genetic model heritability.
If mortality is excluded, they are not dependent on the shape of incidence progression with
age (see Fig. S2 in Article S1) and are qualitatively similar between the genetic architectures
(see Fig. S3 in Article S1). This means that, when the same level of cumulative
incidence is reached with any incidence pattern, the allele distribution for the diagnosed
cases and the remaining unaffected population is identical.

Analysis of common, low-effect-size genetic architecture scenario
The simulation results for the eight analyzed LODs are presented next.

The IVA and cohort simulations were performed for all genetic architecture scenarios,
from low to high effect sizes, and common to low allele frequencies, and the results
were found to be qualitatively consistent between all these scenarios. As a consequence,
this report primarily focuses on the common low-effect-size genetic architecture scenario
A, which the latest scientific consensus considers to be the genetic architecture behind
the majority of polygenic LODs; the results are virtually identical for scenarios B and C, as
validated in Fig. S3 in Article S1, making it unnecessary to present separate figures for these
two scenarios.

The scatter plots in Fig. 1 show the distributions of PRS for cases diagnosed as age
progresses for the common, low-effect-size genetic architecture scenario A. The PRSs of
individuals diagnosed with an LOD and the age-related change of the average LOD PRS
of the unaffected population are demonstrated in Fig. 2. The color bands show a one
standard deviation spread for cases and controls, which, in the case of newly diagnosed
cases, represents approximately two-thirds of the diagnoses at each age. This figure
demonstrates how the initially high average polygenic risk of newly diagnosed cases
declines as the most predisposed individuals are diagnosed with each passing year of age.
The average PRS of the unaffected population decreases much more slowly.

At advanced old age, the average polygenic risk of the newly diagnosed is lower than the
risk for an average individual in the population at a young age; this is true for all four
highly prevalent LODs: AD, T2D, CAD, and stroke.

This phenomenon is a consequence of the EAF change, in which the highest-effect
alleles show the greatest difference between the diagnosed and the remaining unaffected
population as well as the fastest change in frequency difference with age. Statistically,
individuals possessing the higher-risk alleles are more likely to succumb and to be
diagnosed earlier, thus removing the allele-representative individuals from the
unaffected population pool; see Fig. 3. These plots show the most dramatic change
for AD and T2D—the LODs with the highest cumulative incidence and heritability.
The smallest change corresponds to the LOD with the lowest incidence and heritability:
lung cancer.
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It is important to note that the absolute MAF values for cases diagnosed at a particular
age and controls do not change much with age progression for all LODs. For example,
for T2D, the allele frequency for the allele with an OR of 1.15 and an initial population
MAF of 0.2860 is 0.2860 for controls and 0.3088 for cases at the age of 25. This changes
to 0.2789 for controls and 0.2871 for cases at the age of 80 in the IVA case—a change
of only a few percentage points. At the same time, the relative differences change
correspondingly from 0.0228 to 0.0081, a 2.7 time change, which is very significant for
GWAS discovery power, as can be seen in Eq. (6). The absolute MAF change is even less
prominent in the cohort scenario, as can be seen in Fig. S15 in Article S1, which shows
the same allele. The small change in the absolute value for older age groups makes it
difficult to analyze this effect using, for example, GWAS SNP database statistics for
different age groups. The effect would be hidden behind interpersonal and populational
genetic variability in hundreds and thousands of SNPs, changing their balance slightly
with age in the case of the common, low-effect-size genetic scenario. This effect is long
established for highly detrimental variants such as the BRCA1/2 gene mutations in the case
of breast cancer (Kuchenbaecker et al., 2017) and the APOE e4 allele in the case of AD
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Figure 1 Polygenic risk scores of individuals diagnosed with an LOD as a function of age. (A) Alzheimer’s disease, (B) type 2 diabetes,
(C) cerebral stroke, (D) coronary artery disease, (E) breast cancer, (F) prostate cancer, (G) colorectal cancer, (H) lung cancer. Scatter plots show
the distributions of PRS for cases diagnosed as age progresses, with ongoing mortality. Beta = log(OddsRatio) visually implies the underlying
heritability and incidence magnitudes. If the regression line can be easily drawn, dropping diagonally as age progresses, there is a combination of
high heritability and increasing cumulative incidence. Otherwise, a plot appears as a relatively symmetrical blob.

Full-size DOI: 10.7717/peerj.7168/fig-1
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(Farrer et al., 1997), where these gene variant carriers are known to be present in lower
numbers among older undiagnosed individuals.

The cohort simulation shows a much more averaged change for these same scenarios
because cohorts represent accumulative disease diagnoses from earlier ages, while
mortality removes older individuals; see Fig. S5 in Article S1. While the MAF difference
between cases and controls shown in the above figures is illustrative by itself, it is most
important for determining the GWAS statistical discovery power using Eqs. (6) and (8)
and from there the number of cases necessary to achieve 0.8 (80%) statistical power.
From these equations, it is apparent that GWAS statistical discovery power diminishes as a
complex function of a square of case/control allele frequency difference. The age-related
change in the number of cases needed to achieve 80% GWAS discovery power for an
age-matched case/control cohort study is presented in Fig. 4.

In the hypothetical IVA case, the number of individuals required to achieve the
desired GWAS discovery power increases rapidly; see Fig. S6 in Article S1. This is a quite
informative instantaneous value of statistical power; however, neither GWASs nor clinical
studies ever consist of individuals of the same age, due to the need to have a large
number of individuals to maximize this same statistical power. The cohort scenario is
correspondingly less extreme, as seen in Fig. 4. These plots show an increase in the number
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of participants needed to achieve adequate GWAS statistical power between the lowest
effect and frequency and the highest effect and frequency alleles; this number exhibits a
greater-than-hundredfold variation between alleles within the genetic architecture.

The required number of cohort participants is quite similar for the same effect alleles
among all eight LODs; for example, the highest-effect allele for each LOD requires
5 � 104 - 1.4 � 105 cases for 80% GWAS discovery power at younger ages. The change
in allele frequency with age between cases and controls shows substantial variation among
LODs, with the greatest change occurring in AD and the least significant in lung cancer;
see Fig. 3. Figure 5 summarizes the multiplier—the required increase in the number of
participants as the cohort is aging—compared to the youngest possible cohort age for the
eight analyzed LODs. These cohort results are simulated with identical mortality for cases
and controls. Mortality has an impact on the cohort allele distribution.

Table 4 combines the heritability and incidence of the LODs with the summarized
simulation results from the cohort simulation, also seen in Fig. 4 and Fig. S4 in Article S1.

Validating more extreme mortality scenarios
More extreme mortality scenarios—both lower and higher—than one could expect in a
real cohort study were validated in this set of simulations. The results were relatively close
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to those presented for equal case/control mortality. The extreme cases of (a) no mortality
for either cases or controls and (b) double the mortality of cases compared to controls
produce very similar allele distributions before the age of 85, while diverging somewhat at
older ages. The scenario in which the mortality of cases is double that of controls is higher
than the clinically known mortality for the analyzed LODs. While this may have been
a realistic scenario a century ago, before modern healthcare, it is certain that patient
mortality is lower these days. In addition, a 1-year cohort without mortality was used as the
most extreme validation case. This scenario can also be considered an individual
cumulative case, which counts everyone who became ill by a specified age as cases and
everyone healthy at that age as controls. These validation cohort scenarios are summarized
in Fig. S7 in Article S1.

The mortality analysis was applied to one LOD at a time. This research did not attempt
to estimate increased mortality for multiple disease diagnoses. Collerton et al. (2009)
followed a cohort of individuals over the age of 85 in Newcastle, England, and found that,
out of the 18 common old-age diseases they tracked, a man was on average diagnosed with
four and a woman with five, not to mention a plethora of other less common diseases
and their causal share in individual mortality.
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Evaluating rare, medium-effect-size genetic architecture scenario
Other genetic architecture scenarios produce qualitatively similar patterns, specifically
differing in the number of cases needed to achieve 80% statistical power for medium- and
large-effect genetic architecture scenarios. The rare, medium-effect-size allele (scenario D)
results are presented in Figs. S8–S11 in Article S1. There, at younger ages, the MAF
difference between cases and controls is larger for rare, medium-effect-size alleles.
The number of cases and controls needed to achieve 80% GWAS statistical power for all
eight LODs is approximately five times lower, a direct consequence of these variants’ larger
effect sizes. This result perhaps excludes the scenario of rare, medium-effect-size alleles
being causally associated with the LODs reviewed here, because GWAS studies would
be more readily able to discover a large number of causal SNPs. From a qualitative
perspective, all reviewed genetic architecture scenarios provide similar patterns of
increasing numbers of cohort study cases needed to maintain the same discovery power
with age progression.

DISCUSSION
Performing a comprehensive set of validation simulations enabled the determination and
generalization of the change in allele distribution with an increase in cumulative incidence
for all genetic architectures described in the Methods section. The simulation results
show that, for all genetic architectures, the change in the PRS depends on the cumulative
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incidence and the magnitude of heritability. When the same level of cumulative incidence
is reached, the difference in allele distribution between diagnosed cases and the remaining
unaffected population is identical. It therefore depends on the value of the cumulative
incidence, and not on the incidence pattern that led to the achievement of a particular
cumulative incidence value in the validation scenarios.

Next, the simulations were performed using the incidence rate patterns and model
genetic architectures of each analyzed LOD, determining changes in the allele distribution
with age and the resulting impact on GWAS discovery power. These results compared
well with the findings from clinical, GWAS, and familial heritability studies, which are
summarized below.

There are numerous reports of heritability, clinical predictive power, and GWAS
discovery power diminishing with age for these LODs. Almgren et al. (2011) observed
T2D heritability equal to 0.69 for the 35–60 year age-of-onset group, and negligible
heritability for older ages. GWASs (De Miguel-Yanes et al., 2011; Mühlenbruch et al.,
2013) segregating T2D risk SNPs by age have found that the risk factor values are higher
for those under the age of 50, compared to the older cohorts. Regarding the variant types
that are most likely associated with T2D, Fuchsberger et al. (2016) found that, with
a high degree of certainty, they were able to attribute T2D liability to common variants
rather than rare, high-effect variants. A cardiovascular disease (myocardial infarction)
study by Nielsen et al. (2013) found the predictive power of parental history to decline
for ages older than 50. Schulz, Flossmann & Rothwell (2004) found familial history to be the
best predictor of ischemic stroke for individuals under the age of 60. A review based on
Framingham’s study (Seshadri et al., 2010) found the parental predictive power of stroke to

Table 4 LOD statistics and age-matched cohort simulation summary.

Disease Highly prevalent LODs Cancers

AD T2D Stroke CAD Breast Prostate Colorectal Lung

Lifetime risk % 10–20 55 25–30 32–49 12 12 <4.5 <6.9

Heritability % 79–80 69 38–44 50–60 31 57(42) 40 8–18

Maximum yearly incidence % >20 2.5 4.4 3.6 <0.5 <0.8 <0.6 <0.6

dMAF between cases and controls

Youngest cohort 0.020 0.026 0.034 0.032 0.034 0.031 0.034 0.035

Age 80 years 0.015 0.018 0.028 0.023 0.032 0.024 0.031 0.035

Age 100 years 0.014 0.019 0.028 0.023 0.032 0.023 0.029 0.036

Cases needed for 80% statistical power

Youngest cohort 1.4 � 105 8.7 � 104 5.3 � 104 6.0 � 104 5.0 � 104 6.1 � 104 4.9 � 104 4.9 � 104

Age 80 years 2.6 � 105 1.8 � 105 7.9 � 104 1.1 � 105 5.8 � 104 1.0 � 105 6.1 � 104 4.7 � 104

Age 100 years 3.0 � 105 1.7 � 105 7.3 � 104 1.1 � 105 5.9 � 104 1.1 � 105 6.9 � 104 4.5 � 104

Multiple cases needed, youngest to 80 years 1.9 2.1 1.5 1.8 1.15 1.6 (1.35) 1.25 1.0

Note:
The MAF values and cases needed for 0.8 (80%) GWAS statistical discovery power are for the common, low-effect-size alleles, scenario A. Cohorts span 10 years. The
results shown are for the allele with a MAF of 0.5 and an OR of 1.15, the largest effect allele, which requires the smallest number of cases/controls. “Maximum incidence
%” is the largest incidence at older age. “Case mult.” is the multiple of the number of cases needed for the 80-year-old cohort to achieve the same statistical power as the
early cohort. Prostate cancer heritability is 57%, according to Hjelmborg et al. (2014). Shown in braces, 42% heritability (Grönberg, 2003), which is more in line with the
other three cancers.
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diminish for those aged over 65. The heritability of AD has been estimated at 80% from twin
studies (Naj, Schellenberg & Alzheimer’s Disease Genetics Consortium (ADGC), 2017;
Gatz et al. (2006) found heritability to be 79% at approximately 65 years of age, diminishing
with increasing age. GWASs (Tan et al., 2013; Shen & Jia, 2016; Naj, Schellenberg &
Alzheimer’s Disease Genetics Consortium (ADGC), 2017) have come to similar conclusions.
In summary, the predictive power of familial history for the above LODs is greatest for
younger ages, specifically <65 years of age for AD, <50 for CAD, <60 for stroke, and <50
for T2D.

For the above LODs, the simulation results show high PRSs for the earliest-diagnosed
cases. The risk allele case/control difference and the PRSs of newly diagnosed cases
decrease rapidly with age progression. At a very old age, the individuals whose genotype
would be considered low risk at an earlier age are the ones diagnosed with the disease;
see Fig. 2. This also reinforces the validity of the clinical observation that the major risk
factor for LODs is age itself.

The four cancers display a noticeably different pattern. The PRSs for the earliest-onset
cases are lower than those for the above LODs, and this risk changes much less with
age than for the above LODs. These results explain the observations of familial heritability
studies: for three out of the four most prevalent cancers, twin studies have shown relatively
constant heritability with age progression (Grönberg, 2003; Möller et al., 2016; Mucci
et al., 2016; Graff et al., 2017). Determining the change in lung cancer heritability with age
has proven somewhat more elusive (Hjelmborg et al., 2016), and no definitive conclusions
have been published, largely due to the generally low documented heritability and
substantial environmental component of this disease.

Prostate cancer is the only cancer that is somewhat controversial. Its heritability is
reported at 57% by Hjelmborg et al. (2014), and prostate cancer reaches the highest
maximum instance rate of the four most prevalent cancers reviewed. Therefore, according
to the above observations and the results of the validation simulations, the relative MAF
between cases and controls is likely to be higher than for other cancers. Nevertheless,
the same article finds that the heritability of prostate cancer remains stable with age. It may
be that this twin study result is somehow biased and that the heritability of prostate
cancer is lower than stated in Hjelmborg et al. (2014), or perhaps this is a phenomenon
specific to the populations or environmental effects of Nordic countries. Perhaps the
earlier familial study (Grönberg, 2003), which estimated heritability at 42%, would be
closer to the UK population incidence data used here. The verification simulation using a
heritability of 42% produced results that matched more closely the patterns exhibited
by the other cancers; see the resulting value shown in parentheses for the case multiple in
Table 4. A more exhaustive literature investigation of the reviewed LODs is presented in
Chapter S1 in Article S1.

Genome-wide association studies’ statistical discovery power is impaired by the change
in individual distribution of the PRS at older ages. A larger number of cases and controls
is needed at older ages to achieve the same statistical discovery power. The first four
LODs, which exhibit higher heritability and cumulative incidence compared to cancers,
require an increased number of participants in case/control studies for older ages.
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The cancers show a small increase in the number of participants required to achieve the
same statistical power.

Individual values analysis, in which the individuals diagnosed each year are compared
to all remaining healthy individuals, shows a rapid increase in the number of cases
hypothetically needed to achieve the same statistical power, but this scenario would be
impractical for a clinical study. The age-matched cohort studies benefit from the fact
that the diagnosed individuals are accumulated from the youngest onset to the age of
becoming a case in the cohort study, as well as being averaged over the cohort age range,
resulting in a more moderate increase in the number of participants required, or a slower
decline in GWAS discovery power for older cohorts. Age-matched cohort studies
would require 1.5–2.1 times more participants at age 80 compared to the youngest possible
age-matched cohorts in the case of stroke, CAD, AD, and T2D.

CONCLUSIONS
This research was conducted with the goal of establishing whether any of the observational
phenomena, including decreasing heritability with age for some notable LODs and
the limited success of LOD GWAS discovery, can be explained by changes in the allele
proportions between cases and controls due to the higher odds of more-susceptible
individuals being diagnosed at an earlier age.

The simulation results reported above show that these phenomena can indeed be
explained and predicted by the heritability of the LODs and their cumulative incidence
progression. By simulating population age progression under the assumption of relative
disease liability remaining proportionate to individual polygenic risk, it was confirmed
that individuals with higher risk scores will become ill and be diagnosed proportionately
earlier, bringing about a change in the distribution of risk alleles between new cases and
the as-yet-unaffected population in every subsequent year of age. With advancing age,
the mean polygenic risk of the aging population declines. The fraction of highest-risk
individuals diminishes even faster.

While the number of most-susceptible individuals and the mean population
susceptibility both decline, the incidence of all LODs initially grows exponentially,
doubling in incidence every 5–8.5 years (see the Methods section) and remains high
at older ages, leading to a high cumulative incidence for some LODs. The increasing
incidence rate in the face of declining polygenic risk for the as-yet-unaffected population
can be explained as a consequence of the aging process, which itself is the major risk
factor for LODs. In old age, people who have low genetic or familial susceptibility are
increasingly becoming ill with an LOD.

Four of the most prevalent LODs—AD, CAD, cerebral stroke, and T2D—exhibit both a
high cumulative incidence at older age and high heritability. These simulation results show
that a GWAS of any polygenic LOD that displays both high cumulative incidence at
older age and high initial familial heritability will be affected by diminishing discovery
power when using progressively older age matched cohorts. LODs with low cumulative
incidence and low familial heritability produce smaller changes in the allele distribution
between affected individuals and the remaining population. As a consequence, the
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most-prevalent cancers are reported to have stable heritability with age, and therefore these
GWASs are less affected by the increasing age of the participant cohorts.
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