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ABSTRACT 17 

Selection from phage display libraries empowers isolation of high-affinity ligands for various 18 

targets. However, this method also identifies propagation-related target-unrelated peptides 19 

(PrTUPs). These false positive hits appear because of their amplification advantages. In this 20 

report, we present PhD7Faster 2.0 for predicting fast-propagating clones from the Ph.D.-7 21 

phage display library, which was developed based on support vector machine (SVM). Feature 22 

selection was performed against PseAAC and tripeptide composition using the incremental 23 

feature selection method. Ten-fold cross-validation results show that PhD7Faster 2.0 succeeds 24 

a decent performance with the accuracy of 81.84%, the Matthews correlation coefficient 25 

(MCC) of 0.64 and the area under the ROC curve (AUC) of 0.90. The permutation test with 26 

1000 shuffles resulted in p <0.001. We implemented PhD7Faster 2.0 into a publicly accessible 27 

web tool (http://i.uestc.edu.cn/sarotup3/cgi-bin/PhD7Faster.pl) and constructed standalone 28 

graphical user interface (GUI) and command-line versions for different systems. The 29 

standalone PhD7Faster 2.0 is able to detect PrTUPs within small datasets as well as large-30 

scale datasets. This makes PhD7Faster 2.0 an enhanced and powerful tool for scanning and 31 

reporting faster-growing clones from the Ph.D.-7 phage display library.  32 

http://i.uestc.edu.cn/sarotup3/cgi-bin/PhD7Faster.pl


INTRODUCTION 33 

Phage display is a high throughput and powerful screening methodology for identifying 34 

ligands for myriad target types, ranging from molecules (microRNA, protein, polysaccharide) 35 

(He et al., 2013; Zhang et al., 2017) to inorganic (gold) (Causa et al., 2013), organic (epoxy) 36 

(Swaminathan et al., 2013) and biological (tissue, organ) materials (Hung et al., 2018). Large 37 

libraries of phage-displayed peptides or proteins consist of millions to billions of variant 38 

members, which can be iteratively selected and amplified in a process referred to as 39 

biopanning (Pande et al., 2010). Recently, next generation sequencing technologies have been 40 

coupled with phage display, which have substantially contributed to the analysis of output 41 

from combinatorial libraries and allowed for even faster and more robust discovery of novel 42 

ligands (Christiansen et al., 2015; Matochko et al., 2014; Ngubane et al., 2013; Rentero 43 

Rebollo et al., 2014; t Hoen et al., 2012). The ever-increasing utility and versatility makes 44 

phage display a powerful tool in multiple research areas, such as materials science, 45 

biotechnology, pharmacology, cell biology and diagnostics (Martins et al., 2016). 46 

However, the phage display methodology is notorious for the enrichment of target-47 

unrelated peptides (TUPs) (Menendez et al., 2005). Therefore, biopanning results are a 48 

mixture of true target binders and TUPs (Vodnik et al., 2011). These false positive TUPs have 49 

no actual affinity towards the target of interest and can fall into two categories: selection- and 50 

propagation-related TUPs (SrTUPs and PrTUPs) (Thomas et al., 2010). The SrTUPs can bind 51 

to other components (plates, beads) of the screening system other than the desired target and 52 

thus creep into the output of phage display. The PrTUPs sneak into the biopanning results due 53 

to their propagation advantages, which allow them to outcompete clones with lower growth 54 



rates (Brammer et al., 2008; Matochko et al., 2014; Nguyen et al., 2014; Thomas et al., 2010; 55 

Zade et al., 2017; Zygiel et al., 2017). Apparently, these TUPs may misdirect ligand discovery 56 

through biopanning and should be distinguished from actual target-binding peptides 57 

(Bakhshinejad et al., 2016). Therefore, the diagnosis of TUPs is as crucial as the identification 58 

of target binders. 59 

 Although several experimental strategies have been proposed to decrease TUP 60 

isolation during biopanning and differentiate between TUPs and true binders post-biopanning 61 

(Nguyen et al., 2014; Thomas et al., 2010; Vodnik et al., 2011), TUP analysis has benefitted 62 

considerably from computational approaches. Databases (BDB (He et al., 2016a; He et al., 63 

2018; Huang et al., 2012; Ru et al., 2010), PepBank (Shtatland et al., 2007)) and 64 

bioinformatics tools (He et al., 2016b; Huang et al., 2010; Li et al., 2017; Mandava et al., 65 

2004; Ru et al., 2014) have been widely employed to report both SrTUPs and PrTUPs. 66 

Searching against databases for biopanning data can uncover whether query peptides have 67 

been isolated by many different targets. If so, query sequences are potential SrTUPs and 68 

PrTUPs due to lack of target specificity. For example, the peptide HAIYPRH (a typical 69 

PrTUP) has been identified by 23 completely different targets according to results of 70 

searching the BDB database. The phage displayed the peptide was later verified to have a 71 

propagation advantage owing to mutations in the regulatory region of the phage genome 72 

(Brammer et al., 2008). HWGMWSY (a SrTUP) has been isolated by 10 completely different 73 

targets according to records in the BDB database. The peptide was proved to be a plastic 74 

binder (Vodnik et al., 2012), which resulted in this peptide repeatedly appearing in multiple 75 

reported screening experiments. SABinder (He et al., 2016b) and PSBinder (Li et al., 2017) 76 



have been designed for predicting streptavidin- and polystyrene surface-binding peptides, 77 

respectively, as they are commonly known SrTUPs. The INFO tool in the RELIC suite 78 

enables PrTUPs detection based on information content (Mandava et al., 2004), whereas 79 

PhD7Faster (PhD7Faster 1.0) based on support vector machine (SVM) allows the prediction 80 

of clones with amplification advantages from the popular commercial Ph.D.-7 phage display 81 

library (Ru et al., 2014). However, PhD7Faster 1.0 can be improved in the following three 82 

aspects. Firstly, the positive training dataset of PhD7Faster 1.0 was selected based on the copy 83 

number of a peptide (15 or higher) after one round of amplification without consideration of 84 

the corresponding copy number in the naïve Ph.D.-7 library. Secondly, only dipeptide 85 

composition was employed to develop the classifier. Currently many reports have 86 

demonstrated that predictors developed by combining pseudo amino acid composition 87 

(PseAAC) (Chou, 2001; Chou, 2005) and tripeptide composition can achieve decent 88 

predictive performances (Liao et al., 2011; Zhu et al., 2015). Thirdly, PhD7Faster 1.0 is 89 

unable to process large datasets (e. g., next-generation sequencing data). 90 

In this study, we develop a new predictor for identifying clones propagating faster from 91 

the Ph.D.-7 phage display library. The SVM algorithm was employed to model the predictor 92 

with the optimal feature subset after feature selection. The constructed SVM-based classifier 93 

obtained an accuracy of 81.84% in the ten-fold cross-validation. The predictor was further 94 

implemented into a web tool, called PhD7Faster 2.0, which is freely available at 95 

http://i.uestc.edu.cn/sarotup3/cgi-bin/PhD7Faster.pl. We also developed the standalone 96 

version of PhD7Faster 2.0 that enables the analysis of PrTUPs within large-scale datasets. 97 

DATA & METHODS 98 

http://i.uestc.edu.cn/sarotup3/cgi-bin/PhD7Faster.pl


Benchmark Datasets 99 

The dataset used to develop the predictor was acquired from (Matochko et al., 2014). Derda 100 

and coworkers employed high-throughput sequencing technology to characterize both the 101 

naïve Ph.D.-7 phage display library and the same library after one round of amplification. By 102 

comparing the abundance of each peptide before and after amplification using Bioconductor 103 

package edgeR, 770 unique peptides were identified with significantly higher growth rate 104 

(parasitic sequences) (Matochko et al., 2014), which were collected into the positive training 105 

dataset. The negative dataset was composed of those peptides with the copy number of one in 106 

the amplified Ph.D.-7 phage display library. The datasets were then processed as follows: (i) 107 

peptide sequences containing ambiguous residues (such as “X”, “B” and “Z”) were excluded; 108 

(ii) sequences within 2 Hamming distance (h=2, the Hamming distance between two strings 109 

of equal length is the minimum number of substitutions required to change one string into the 110 

other.) were removed. Finally, 749 peptides were retained in the positive dataset. To match the 111 

size of the positive dataset, we randomly selected 749 peptides from the negative dataset. No 112 

overlapping was found between the negative and positive datasets. Finally, the benchmark 113 

dataset was composed of 749 fast-growing peptides and 749 regular-growing peptides (See 114 

positive.fasta and negative.fasta in Supplementary Data).  115 

PseAAC and tripeptide composition 116 

Extracting a set of informative features is a standard and important procedure for developing 117 

predictors. Chou initially formulated the PseAAC (Chou, 2001; Chou, 2005), which consists 118 

of more than 20 discrete numbers, where the top 20 represent the classical amino acid 119 

composition (AAC) of a protein sequence whereas the additional parameters incorporate 120 



some sequence-order information. PseAAC and tripeptide composition have been widely used 121 

in protein prediction related research (Chou, 2011; Lin et al., 2013). Here, they were 122 

employed to encode each peptide in the benchmark dataset. 123 

Given a peptide P with L amino acid residues: 124 

                                             P = [𝑅1𝑅2𝑅3𝑅4𝑅5𝑅6𝑅7…𝑅𝐿]                      (1) 125 

where Ri (i = 1, 2, 3 . . . L) is the residue at the i-th sequence position. Accordingly, any 126 

sequence like the peptide P of Equation (1) can be presented using a set of feature vectors 127 

with 8000 + nλ dimensions. 128 

                                   P = [𝑃1, 𝑃2, … , 𝑃8000, 𝑃8000+1, … , 𝑃8000+𝑛𝜆]                                      (2) 129 

where the first 8000 numbers P1, P2, . . . , P8000 reflect the effect of the conventional tripeptide 130 

composition; the remaining nλ elements P8000+1, P8000+2, . . . , P8000+nλ reflect the amphipathic 131 

sequence-order pattern. These features are calculated through the following equations: 132 

                     𝑃𝑢 =

{
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where fi (i = 1, 2, 3, . . . , 8000) are the normalized occurrence frequencies of the 8000 134 

tripeptides in peptide P; w is the weight factor for the sequence-order effect; 𝜏j (j = 1, 2, . . . , 135 

nλ) is the j-tier sequence-correlated factor as formulated by: 136 

 137 
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where 𝐻𝑖,𝑗
𝑛  is the physicochemical property correlation function and can be computed 139 

according to the following equation: 140 

                                                            𝐻𝑖,𝑗
𝑛 = ℎ𝑛(R𝑖). ℎ

𝑛(R𝑗)                                                 (5) 141 

where ℎ𝑛(R𝑖) and ℎ𝑛(R𝑗) are the values of the n-th type of physicochemical property of Ri 142 

and Rj in Equation (1), respectively. It is noteworthy that before substituting the values of all 143 

physicochemical properties into Equation (5), they were undergone a standard conversion as 144 

described below:  145 

                                ℎ𝑘(R𝑖) =
ℎ0
𝑘(R𝑖) − ∑ ℎ0

𝑘(R𝛼)/20
20
𝛼=1

√∑ [ℎ0
𝑘(R𝑖) − ∑ ℎ0

𝑘20
𝛼=1 (R𝛼)/20]2

20
𝑢=1

                              (6) 146 

where Ri (i = 1, 2, . . . , 20) denotes the 20-standard amino acid in the alphabetical order of 147 

their single-letter codes. ℎ0
𝑘(R𝑖) is the initial value of the k-th type of physicochemical 148 



property for amino acid residue Ri. Nine kinds of physicochemical properties, namely 149 

hydrophobicity, hydrophilicity, mass, pK1, pK2, pI, rigidity, flexibility and irreplaceability, 150 

were considered in this report. 151 

Feature Selection 152 

Generally, not all features make an equal contribution to the prediction system. A part of 153 

features make significant contributions, while some others make less important contributions 154 

(Zhao et al., 2016). Feature selection, thus, is a critical step to reduce feature dimensionality 155 

and build a highly effective prediction model (Su et al., 2018; Tang et al., 2016). In this work, 156 

the fselect.py program in the LIBSVM 3.23 package was applied to evaluate each feature’s 157 

significance to the classification system (Chang et al., 2011). As a consequence, each feature 158 

corresponds to an F-score. The greater F-score implies the larger importance of the 159 

corresponding feature to the prediction model. We rearranged all features by F-scores in 160 

descending order. The incremental feature selection (IFS) strategy was then utilized to 161 

determine the optimal feature subset (He et al., 2016b; Li et al., 2017), which can produce the 162 

maximal accuracy. Feature selection was conducted as follows: (i) investigating the accuracy 163 

of the first feature subset which included the feature with the largest F-score; (ii) examining 164 

the accuracy of the second feature subset that was generated by appending the feature with the 165 

second largest F-score; (iii) iterating the second step from the larger F-score to the smaller F 166 

score until all candidate features were added. The best feature subset with the highest 167 

accuracy can be finally obtained. 168 

Support Vector Machine 169 

The SVM is a powerful supervised learning method, which has been widely applied in 170 



classification (He et al., 2016b; Kang et al., 2018; Li et al., 2017; Ru et al., 2014) and 171 

regression analysis. In this study, we utilized the LIBSVM 3.23 program (Chang & Lin, 2011) 172 

that could be freely available for download from http://www.csie.ntu.edu.tw/~cjlin/libsvm/. 173 

We chose the radial basis function (RBF) kernel as the kernel function. The optimal kernel 174 

width parameter γ and penalty constant C were selected by using the parameter selection tool 175 

in the LIBSVM 3.23 (Chang & Lin, 2011). 176 

Performance Evaluation 177 

The ten-fold cross-validation was adopted to evaluate the predictive model in this study. Four 178 

commonly-used parameters, including sensitivity (Sn), specificity (Sp), accuracy (Acc) and 179 

Matthews correlation coefficient (MCC), were employed to investigate the performance of the 180 

constructed model. These measures were expressed as follows: 181 

                                                              Sn =
𝑇𝑃

𝑇𝑃 + 𝐹𝑁 
                                                          (7) 182 

                                                            Sp =
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
                                                           (8) 183 

                                                 Acc =  
𝑇𝑃 + 𝑇𝑁

𝑇𝑃 + 𝐹𝑁 + 𝐹𝑃 + 𝑇𝑁
                                            (9) 184 

                  MCC =  
𝑇𝑃 × 𝑇𝑁 − 𝐹𝑃 × 𝐹𝑁

√(𝑇𝑃 + 𝐹𝑃)(𝑇𝑃 + 𝐹𝑁)(𝑇𝑁 + 𝐹𝑃)(𝑇𝑁 + 𝐹𝑁)
                          (10) 185 

where TP and TN denote the number of true positives and negatives, respectively. FP and FN 186 

are the number of false positives and negatives, respectively. The area under the ROC curve 187 

(AUC) was also calculated as a performance measure. The AUC ranges from zero to one. The 188 

AUC of one represents a perfect prediction, 0.5 a random guess. 189 

To estimate the statistical significance of the predictive accuracy, a permutation test with 190 

1,000 shuffles was performed by exchanging the labels of the benchmark dataset. The ten-fold 191 

cross-validation was then conducted against the label-rearranged dataset. Thus, each 192 

http://www.csie.ntu.edu.tw/~cjlin/libsvm/


permutation trial corresponds to an accuracy value. The 𝑝 value was calculated by the number 193 

of permutations that the Acc produced by the permuted dataset was higher than Acc based on 194 

the un-permuted dataset divided by the overall shuffle times. P values of <0.05 were referred 195 

to as statistically significant. 196 

Standalone Version Implementation 197 

The standalone version of PhD7Faster 2.0 was developed with open source Qt 5.7 under the 198 

GPL & LGPLv3 licenses, which uses standard C++ for developing multiple-platform 199 

applications. Both graphical user interface (GUI) and command-line versions of PhD7Faster 200 

2.0 were implemented. We provided different versions for Windows and Linux systems with 201 

little or no modification. All versions and source code are freely available at 202 

http://i.uestc.edu.cn/sarotup3/download.html. 203 

RESULTS 204 

Parameter Optimization 205 

Two important parameters: λ and w in Equation (3) were necessary to be optimized before 206 

building the model. To obtain the best parameters, multiple experiments were performed 207 

according to the following standard:  208 

                                                  {
1 ≤ 𝜆 ≤ 6 with step ∆ = 1
0.05 ≤ 𝑤 ≤ 0.70 with step ∆ = 0.05 

                                   (1) 209 

Thus, a total of 6 × 14 = 84 individual combinations were obtained. Then, we used the ten-210 

fold cross-validation to investigate the accuracy of the model, which was built with SVM and 211 

the feature set without feature selection. λ=3 and w=0.15 produced the highest accuracy, 212 

which was considered as the best parameter combination. 213 

Performance of PhD7Faster 2.0 214 

Commented [TT1]: This should also be a part of materials 

and methods 

http://i.uestc.edu.cn/sarotup3/download.html


The optimal feature subset with 644 features was determined through feature selection against 215 

8027 features including 8000 tripeptide features and 27 PseAAC features. The SVM-based 216 

model was then trained with the optimal feature set. The results from the ten-fold cross-217 

validation showed that the Acc of the predictive model was 81.84 % with MCC of 0.64, Sn of 218 

84.51% and Sp of 79.17% when the threshold to distinguish between predicted positives and 219 

negatives (tp) was set to be 0.5. The ROC curve for model tuning is shown in Fig. 1, where 220 

the AUC is approximately 0.90. The permutation test resulted in a p-value of <0.001. The 221 

above results indicated that PhD7Faster 2.0 achieved a promising performance. 222 

Web and Standalone Versions of PhD7Faster 2.0 223 

For the convenience of users, the SVM-based predictive model was implemented into a user-224 

friendly web server, called PhD7Faster 2.0, which is freely available at 225 

http://i.uestc.edu.cn/sarotup3/cgi-bin/PhD7Faster.pl. The standalone GUI and command-line 226 

versions of PhD7Faster 2.0 for Windows and Linux systems were also provided. The interface 227 

as well as the utilization of the GUI version is remarkably similar to those of the web version 228 

(Fig. 2). A dataset with 20,000 peptides from the Ph.D.-7 phage display library was 229 

constructed (see testdataset.fasta in Supplementary Data). The standalone PhD7Faster 2.0 can 230 

complete analysis of the dataset within 60 seconds on a regular computer with Intel Core i3 231 

Processor and 4GB RAM, which suggests that PhD7Faster 2.0 is highly efficient in 232 

processing massive datasets. PhD7Faster 2.0 was integrated into the SAROTUP 3.0 suite, 233 

which contains a series of computational tools to identify TUPs. 234 

RESULTSDISCUSSION 235 

Performance of PhD7Faster 2.0 236 

http://i.uestc.edu.cn/sarotup3/cgi-bin/PhD7Faster.pl


The optimal feature subset with 644 features was determined through feature selection against 237 

8027 features including 8000 tripeptide features and 27 PseAAC features. The SVM-based 238 

model was then trained with the optimal feature set. The results from the ten-fold cross-239 

validation showed that the Acc of the predictive model was 81.84 % with MCC of 0.64, Sn of 240 

84.51% and Sp of 79.17% when the threshold to distinguish between predicted positives and 241 

negatives (tp) was set to be 0.5. The ROC curve for model tuning is shown in Fig. 1, where 242 

the AUC is approximately 0.90. The permutation test resulted in a p-value of <0.001. The 243 

above results indicated that PhD7Faster 2.0 achieved a promising performance. 244 

Comparison between PhDFaster 2.0 and 1.0 245 

Parasitic sequences were identified significantly enriched in the amplified Ph.D.-7 phage 246 

display library by differential enrichment analysis of naïve and amplified Ph.D.-7 phage 247 

display libraries (Matochko et al., 2014). These parasitic peptides were grouped into the 248 

positive dataset of PhD7Faster 2.0. However, the positive dataset of PhD7Faster 1.0 was 249 

constructed based on threshold in copy numbers after one round of amplification in one 250 

replicate of sequencing data, irrespective of copy numbers in the naïve Ph.D.-7 library. 251 

Peptides with high abundances in both the naïve and amplified Ph.D.-7 libraries may also be 252 

selected as fast-growing sequences. Therefore, the positive training dataset of PhD7Faster 2.0 253 

is more reliable than that of PhD7Faster 1.0.  254 

PhD7Faster 2.0 was developed based on the combination of PseAAC and tripeptide 255 

composition, whereas only dipeptide composition was employed to build PhD7Faster 1.0. We 256 

also tried to use dipeptide composition to encode each peptide in the training dataset of 257 

PhD7Faster 2.0, but only 64% accuracy was obtained in the ten-fold cross-validation after 258 



feature selection. PseAAC coupled with tripeptide composition has been used in multiple 259 

protein prediction fields, such as predicting the subcellular localization of mycobacterial 260 

proteins (Zhu et al., 2015) and predicting apoptosis protein subcellular location (Liao et al., 261 

2011). They contain more sequence-order information than dipeptide composition and hence 262 

can better reflect the feature of a peptide sequence. Thus, PhD7Faster 2.0 has 5% sensitivity, 263 

2% accuracy and 0.04 MCC higher than PhD7Faster 1.0 (Table 1). 264 

The standalone PhD7Faster 2.0 is empowered to identify PrTUPs within output of 265 

conventional phage display as well as large next-generation sequencing data, whereas 266 

PhD7Faster 1.0 can only work with small-scale data sets (several hundreds of peptides). This 267 

important improvement makes PhD7Faster 2.0 as an enhanced and powerful tool for scanning 268 

and reporting PrTUPs from the Ph.D.-7 phage display library. The emergence of PhD7Faster 269 

2.0 highlights the significance of high throughput sequencing of different types of phage 270 

display libraries and developing bioinformatics tools for identifying PrTUPs from these 271 

libraries. 272 

PhD7Faster 2.0 cannot predict the censorship in the Ph.D. libraries 273 

It is possible that some peptides are likely to be censored from being displayed on the phage 274 

in the first place. The censorship of positively charged amino acids has been reported since 275 

these residues suppress proper insertion of pIII into the inner membrane of Escherichia coli 276 

(E. coli), thus decreasing efficiency of the assembly and extrusion of phage clones (Peters et 277 

al., 1994). Makowski et al. also observed that peptides of α-helix or β-sheet conformations 278 

were censored in Ph.D.-12 and Ph.D.-C7C libraries (Rodi et al., 2002). Plückthun and 279 

coworkers have shown that maturely folded proteins are displayed poorly via the Sec 280 



translocation pathway (Steiner et al., 2006). However, this censorship is a completely 281 

different phenomenon from that of phage growing faster. Therefore, PhD7Faster 2.0 cannot be 282 

able to predict this censorship. 283 

PhD7Faster 2.0 predict PrTUPs in the Ph.D.-7 library 284 

The PrTUPs have significantly higher proliferation rates than normal-growing phage and are 285 

favored during the amplification steps. The proliferation advantage of some PrTUPs have 286 

been verified to be intrinsic to mutations in the 5’-untranslated region (UTR) of gene II in 287 

M13 phage (Brammer et al., 2008; Nguyen et al., 2014; Zygiel et al., 2017). Zygiel et al. have 288 

also described the likelihood that these mutations compensate for the replication defect 289 

afforded by the lacZα insert present in the M13 bacteriophage-based vector upon which the 290 

Ph.D.-7 (and Ph.D.-12) library was based (Zygiel et al., 2017). Thus, the particular peptide 291 

displayed (e.g., HAIYPRH, GKPMPPM, AKIDART) is merely a stowaway on a clone that 292 

propagates fast due to its gene II 5’-UTR mutation(s). In these clones, the peptide itself is 293 

completely arbitrary; it just happens to be the peptide displayed on a clone that picked up a 294 

mutation prior to or during library construction. As these mutations in the phage genome are 295 

unrelated to the displayed peptide, PhD7Faster 2.0 may not be able to predict this type of 296 

PrTUPs in the Ph.D.-7 library. In addition, Smith et al. indicated that the enhanced 297 

propagation rate of some PrTUPs may be due to the displayed peptide (Thomas et al., 2010), 298 

and PhD7Faster 2.0 can be used to predict this type of PrTUPs in the Ph.D.-7 library. 299 

However, no direct evidence supports that displayed peptides allow the phage to propagate 300 

faster, and the biological mechanism remains to be further examined. 301 

CONCLUSION 302 



In this report, we propose an SVM-based tool, PhD7Faster 2.0, for predicting clones growing 303 

faster from the Ph.D.-7 phage display library. Ten-fold cross-validation results show that 304 

PhD7Faster 2.0 achieves an accuracy of 81.84% with 0.64 MCC and 0.90 AUC. The 305 

standalone version of the tool was also developed, which is capable of predictingcan predict 306 

PrTUPs within both traditional biopanning data and next generation phage display data. We 307 

also implemented a web-server for the proposed method, which can be freely accessible from 308 

http://i.uestc.edu.cn/sarotup3/cgi-bin/PhD7Faster.pl. 309 
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