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ABSTRACT
Protein–protein interactions are closely relevant to protein function anddrug discovery.
Hence, accurately identifying protein–protein interactions will help us to understand
the underlying molecular mechanisms and significantly facilitate the drug discovery.
However, the majority of existing computational methods for protein–protein inter-
actions prediction are focused on the feature extraction and combination of features
and there have been limited gains from the state-of-the-art models. In this work, a
new residue representation method named Res2vec is designed for protein sequence
representation. Residue representations obtained by Res2vec describe more precisely
residue-residue interactions from raw sequence and supply more effective inputs for
the downstream deep learning model. Combining effective feature embedding with
powerful deep learning techniques, our method provides a general computational
pipeline to infer protein–protein interactions, even when protein structure knowledge
is entirely unknown. The proposed method DeepFE-PPI is evaluated on the S. Cere-
visiae and human datasets. The experimental results show that DeepFE-PPI achieves
94.78% (accuracy), 92.99% (recall), 96.45% (precision), 89.62% (Matthew’s correlation
coefficient, MCC) and 98.71% (accuracy), 98.54% (recall), 98.77% (precision), 97.43%
(MCC), respectively. In addition, we also evaluate the performance of DeepFE-PPI on
five independent species datasets and all the results are superior to the existingmethods.
The comparisons show that DeepFE-PPI is capable of predicting protein–protein
interactions by a novel residue representationmethod and a deep learning classification
framework in an acceptable level of accuracy. The codes along with instructions to
reproduce this work are available from https://github.com/xal2019/DeepFE-PPI.

Subjects Bioinformatics, Computational Biology, Data Mining and Machine Learning
Keywords Deep learning, protein–protein interaction, Feature embedding, Machine learning

INTRODUCTION
Most biological processes within a cell are induced by a variety of interactions among
the proteins and protein–protein interactions can form the basis for understanding
protein functions, communications and regulations. Due to their importance in the cell,
many experiential and computational methods have been developed to identify various
interactions and determine the aftermath of the interactions (Browne et al., 2010).

High-throughput techniques, such as yeast-2-hybrid (Y2H) assay,
Co-Immunoprecipitation (co-IP), mass spectrometric (MS) protein complex
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identification, affinity purification (AP) etc., are first utilized to judge protein–protein
interactions. Unfortunately, experimental approaches hold many inherent disadvantages
and constraints. One of the limitations is the lack of coverage and quality of the global
protein–protein interaction networks (Schoenrock et al., 2014). In addition, each method
is inherently subject to different type of noise and they are mostly slow, time-consuming,
and expensive. The existing shortcomings promote the emergence of a number of efficient
computational methods to infer most potential protein interactions. One of the most
prominent computational methods utilizes protein’s structural information. The idea
behind the structure-based methods is that two proteins will interact if they have a
similar structure. Lu, Lu & Skolnick (2002) rethreaded on partners for those proteins
whose template structures were part of a known complex and 1,138 interactions among
2,865 protein–protein interactions in yeast had been confirmed in the Database of
Interacting Proteins (DIP) (Xenarios et al., 2002).Hue et al. (2010) used statistical structure
information and built a hypothesis using Support Vector Machines (SVM) to decide
whether a pair of proteins interact or not. Recently, Hosur et al. (2012) introduced a
structure-based algorithm by computing a single confidence score to infer thousands of
binary protein interactions. A method combined three-dimensional structural information
with other functional clues called PrePPI was proposed by Zhang et al. (2012) to detect
protein–protein interactions and it holds a superior accuracy and coverage. PrePPI is one
of the typical methods based on template structure. There also exists template free-based
protein–protein interaction prediction methods. Wass et al. (2011) designed a docking
algorithm to predict protein–protein interactions and presented a standard docking
program to distinguish true interactions from a background of 922 non-redundant
potential interactions. MEGADOCK proposed by Ohue et al. (2014) is also a template
free-based method. It was capable of exhaustive protein–protein interaction screening
in less calculation time and an acceptable level of accuracy and obtained an F-measure
value of 0.231 when it was applied to predict 120 relevant interacting pairs from 14,400
combinations of proteins. It could also be used to search and analyze protein–protein
interactions when taking into account three-dimensional.

Kundrotas et al. (2012) claimed that docking templates can be found for complexes to
represent almost all the known protein–protein interactions. However, it is undeniable that
the number of protein sequences is much larger than the limited number of structures. The
importance of prediction based on sequence information does not change. Thanks to the
rapid growth of protein sequence data, a number of machine learning methods solely on
the basis of primary amino acid sequence have also been proposed to infer the interactions
between proteins (Rhodes et al., 2005; Shen et al., 2007; Burger & Van Nimwegen, 2008; Xia,
Han & Huang, 2010; Hosur et al., 2011; You et al., 2013; Valente et al., 2013; Martin, Roe &
Faulon, 2005). For sequence-based methods, the first challenge is to find a suitable way to
represent a protein sequence. The existing methods typically extract numerical features
based on hydrophobicity, normalized Van der Waals volume, polarity, polarizability,
charge, surface tension and solvent accessibility and so on Asgari & Mofrad (2015). For
example, Shen et al. (2007) developed a conjoint triad feature extraction method and the
SVM classifier reached a higher prediction 83.5% accuracy on 400 test protein pairs when
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trained on 32,486 human protein pairs. Xia, Han & Huang (2010) combined rotation
forest and autocorrelation descriptor for protein–protein interactions prediction. When
tested on S.cerevisiae datasets and H.pylori (2,916 protein pairs including 1,458 interacting
pair and 1,458 non-interacting pairs), the model obtained 93.50% accuracy, 96.30%
precision, 90.50% sensitivity and 88.36% accuracy, 89.19% precision, 88.20% sensitivity,
respectively. You et al. (2013) used hierarchical principal component analysis-ensemble
extreme learning machine to predict protein–protein interactions only using the protein
sequences information. The proposed model achieved 87.00% accuracy with 86.15%
sensitivity at the precision of 87.59% on a high-confidence S.cerevisiae protein–protein
interaction dataset, which has 5,594 positive protein pairs and 5,594 negative protein pairs.

Although machine learning methods can use training data to build models and make
predictions based on the best fit model, there still have some inherent drawbacks in raw data
processing.One is that themajority of computationalmethods is highly dependent onhand-
designed features. Another limitation is that these carefully chosen features are derived
primarily from single attribute (e.g., protein structure information, protein domains,
or gene neighborhoods information), rather than directly from raw data. Considering
the huge amount of validated protein–protein interaction sequences produced by high-
throughput technique and urgent needs to change from hand-designed to data-driven
features, representation learning which can discover effective feature, underlying patterns
and inherent mappings is adopted for data representation and deep learning is used to
accomplish the prediction task.

In the machine learning community, representation learning and deep learning are now
two popular techniques for feature generation, noise elimination and accurate prediction.
Representation learning aims to automatically learn data representations from raw data,
these representations can be exploited by downstreammachine learningmodels to improve
the task performance (Bengio, Courville & Vincent, 2012). Given a set of neurons and inner
special connectivity patterns, deep learning can learn the features of inputs and has become
one of the trendiest methods in computational biology.

Word2vec is a successful word embedding technique in natural language
processing (Mikolov et al., 2013a; Mikolov et al., 2013b). The tool can discover semantic
relations between words in the document. In this work, a residue representation method,
named Res2vec, is reported for protein feature generation. Res2vec can embed a residue
into a low-dimensional vector. Given a protein–protein pair, each sequence is expressed
by Res2vec and then the represented proteins are sent into the successive machine learning
framework to compute their interaction probability. We have tested our method on
several benchmark datasets. The comparisons with several methods have demonstrated the
superior performance of our approach for predicting new protein–protein interactions,
especially when the structure knowledge of proteins is unknown.

There are three main reasons why the integration of residue representation into a deep
neural network (DNN) is suitable for protein–protein interaction prediction. First, the
principle of Word2vec technique considers the effect of a single word on surrounding
words, which is consistent with the influence of a residue in the protein sequence on the
surrounding residues. Previous studies have concluded that interaction residues exhibit
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aggregation to some extent (Ofran & Rost, 2003). It means that the probability for being
an interacting residue will be high if it is close to an interaction residue. Therefore,
Res2vec method can be used as an effective biological sequence representation tool.
Second, representation learning can discover data-driven and abstractive features from
raw data. It eliminates the noise of manual intervention. The represented vector can reflect
comprehensive information in a protein sequence. Third, the arrangement of residues has
an important effect on protein interaction prediction, it just so happen that DNN can learn
the distribution of training data. In other words, DNN is able to capture high-level residue
distribution features from the inputs. Above all, it is feasible to combine representation
learning with deep learning to predict protein interactions.

MATERIALS AND METHODS
Dataset
S.cerevisiae, Human and five species-specific protein–protein interaction datasets, which
are collected from publicly available interacting protein databases (DIP) are used for
performance evaluation. The S.cerevisiae core dataset (Guo et al., 2008) is chosen to
confirm the parameters of the proposed model. The whole S.cerevisiae core dataset is made
up of 11,188 protein pairs, including 5,594 positive protein pairs and 5,594 negative protein
pairs. The human dataset (Huang et al., 2015) is also adopted to evaluate the effectiveness of
the proposedmethod. It is collected from theHuman Protein References Database (HPRD)
and consists of 3,899 positive protein pairs and 4,262 negative protein pairs. To show the
generality of model, five species-specific protein interaction datasets (C. elegans, E. coli,
H. sapiens, M. musculus, and H. pylori) (Zhou, Gao & Zheng, 2011) are considered. These
species-specific protein interaction datasets just contain positive samples. The positive
interactions of each dataset are 4,013, 6,954, 1,412, 313 and 1,420.

The framework of DeepFE-PPI method
Representation learning can discover informative representations in a self-taught manner.
Deep learning architecture can utilize multiple hierarchical layers to extract effective
features. Leveraging the advantages of representation learning and deep learning, we
proposed DeepFE-PPI framework, which consists of two main steps (Fig. 1): (1) residue
representation learning; and (2) protein–protein interaction classification by deep learning.

Residue representation learning
Word2vec has been a very successful technique for representation learning in an
unsupervised way. Word representations can reflect itemmeaning using the co-occurrence
information of words in a corpus. The fixed dimensionality representations generated by
Word2vec have been shown to be very useful for various NLP task. Except for processing
words in text processing field, Word2vec can map other information units (for example,
phrase, sentences or documents) to a low-dimensional implicit space. In this implicit
space, the representation of each information element is a dense eigenvector. Supplemental
Information (Section: Continuous Skip-gram Model) gives the details of Word2vec.

This motivates us to transform each residue into a fixed dimensionality eigenvector
representation. In previous work, many common word definition and splitting
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Figure 1 The general framework of DeepFE-PPI. In the represetation part, each type residue is repre-
sented by fixed-length vectors and proteins are uniformed to the same length. In the classification part,
DNN is utilized to accomplish the classification task.

Full-size DOI: 10.7717/peerj.7126/fig-1

approaches in bioinformatics are proposed (Dong, Wang & Lin, 2005; Tsubaki, Shimbo
& Matsumoto, 2017). Tsubaki, Shimbo & Matsumoto (2017) adopted Word2vec to learn
feature representations from a large protein database to address protein fold recognition
problem. However, previous work all define a word as an n-gram item, and they all split
the sequences into overlapping of the n-gram residues. 20 types of amino acids make up
a protein sequence, the total number of possible n-grams is 20n. The larger n, the larger
vocabulary size in the corpus. More vocabularies require more run time and memory
consumption when training the Word2vec model. So, we set n as 1, which means that a
residue is treated as a word and a protein sequence is treated a sentence. Compared to other
protein representation methods, (1) this method can obtain different residue interactions
from the original protein corpus. (2) the cost of run time and memory consumption is
acceptable.

In the training process of word representation, a large corpus of sentences should
be fed into the model to ensure sufficient contexts are observed. In order to derive the
representation of different biophysical and biochemical properties that hidden in protein
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Figure 2 Residue representation learning. (A) The raw input data: each sample is a protein sequence.
(B) Data transformation: each protein in the sample is represented as a concatenation of all residue vec-
tors.

Full-size DOI: 10.7717/peerj.7126/fig-2

sequences, 558,590 protein sequences from Swiss-Prot database are adopted as the input
of the Word2vec model. The protein sequences were downloaded in Nov. 2018. There are
two available models in Word2vec: the continuous bag of word (CBOW) model and the
Skip-gram (SG) model. According to previous studies (Smaili, Gao & Hoehndorf, 2018), it
is found that the SG model has advantage on creating better quality vector representations.
Therefore, this paper uses the Skip-gram model to derive residue vectors.

In this paper, Word2vec has been implemented using Gensim library. Hyper-parameters
should be decided in the training stage. Hyper-parameters selection is a task dependent
on choice and can vary from task to task. In the Skip-gram model, the target words are
the words in the context, size denotes residue dimension, window denotes the maximum
distance between the current and predicted word, min-count means the number of the
ignored words with total frequency lower than a fixed value. Since the Swiss-Prot database
just contains 25 different type residues, so the value of min-count in our experiment is
set as 0. Parameters size and window are considered as the decisive parameters in the
training of the Skip-gram model. After comparison of different parameter combinations,
the value of size is set to be 20 and window is set as 4. The specific Word2vec parameters
selection process is shown in Section Parameter selection of Results. Figure 2 shows the
general process of residue representation. Protein sequences from Swiss-Prot database are
adopted to train the Word2vec model. The output of the Word2vec model are residue
eigenvectors. Each protein sequence can be represented as a concatenation eigenvector of
residue vectors.
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Deep learning
Deep learning supports highly flexible architectures, such as DBNs (Deep Belief Networks),
CNNs (Convolutional Neural Networks), RNNs (Recurrent Neural Networks) and so on.
Different deep learning architectures are suitable for different specific applications. For
example, DBNs are good at analyzing internal correlations in high-dimensional data,
CNNs are capable of capturing complex features, and RNNs are suitable for the analysis
of sequential information (Goodfellow, Bengio & Courville, 2016). Considering residues’
interactive impacts on each other and the possible high dimension of a protein sequence,
we select DNN as the most appropriate or ‘best fit’ deep learning architecture to predict
protein–protein interactions. Supplemental Information (Section: Deep neural network)
gives the details of DNN.

DNN is a very successful machine learning technique for classification in biology, but
its input should be vectors with fixed dimension. This is a dreadful limitation because
proteins are intrinsically expressed as sequences of arbitrary length. A simple measure is to
uniform the length to a fixed size m. As a result, every protein sequence is represented as a
vector of size D∗m (D is residue dimension and m is the fixed number of residues). If the
length of a protein sequence is shorter thanm, zero is appended to the short eigenvector to
ensure every protein sequence has the same shape. These two embedding vectors are taken
as input data of deep learning model. Our deep learning framework is composed of two
separate DNN modules to extract high-level features that hidden in original embedding
vectors and a joint module to integrate both DNN modules outputs to classify the input
protein pair as interaction or non-interaction. The deep learning flowchart is shown in
Fig. 3. For both DNN modules, we configure the same number of layers and hidden units.
The number of fully connected layers is set as 4 and the corresponding units in each layer
is 2,048, 2,014, 512 and 128, respectively. The main role of DNN module is to extract
high-level feature, eliminate noise and reduce data dimension. The joint module takes
the concatenated last hidden vectors of the both DNN modules as input via two fully
connected hidden layers. The output layer utilizes a softmax function to predict interaction
probability. In DeepFE-PPI, a batch-normalization layer and a dropout layer are added to
each fully connected layer except the output layer. Rectified Linear Unit (ReLU) function
is chosen for all layers except the final layer. During training, the models are optimized
using Stochastic Gradient Descent (SGD) algorithm. L2-regularization term is added to
the loss function as well, by adding the sum of the squares of all weights in the network.

Generally speaking, we first use unsupervised representation learning method Res2vec
to generate residue representations. Then each protein sequence is uniformed into a vector
representation with the same length. After that, separate DNN is established for feature
extracting, the merged layer is for feature integration and the last layer is for classification.

RESULTS
In our study, all experiments are evaluated by cross validation and different metrics.
For their introduction, please refer to the section (Cross validation and Performance
evaluation) in the Supplemental Information.
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Figure 3 The framework of deep learning.
Full-size DOI: 10.7717/peerj.7126/fig-3

Table 1 Parameters used for determining the parameters of DeepFE-PPI and the final recommended settings.

Parameters Definition Range Optimized

Sizes Residue dimension [4, 8, 12, 16, 20] 20
Windows Maximum distance between the current and predicted word [4, 8, 16, 32] 4
Min_count Words with frequency lower than this value will be ignored 0 0
Maxlens The length of proteins that feed to deep learning model [550, 650, 750, 850] 850
Network depth The hidden depth in the separate DNN model [2, 3, 4, 5] 4

Parameter selection
We perform the protein–protein interaction prediction by the derived Res2vec model for
residue vectors generation and deep learning technology for classification, therefore, there
have two parameter sets needed to be confirmed. Previous literature (Li et al., 2018) has
shown that training corpus size, residue vector dimension, and the algorithm adopted in
Word2vec are the main factors that affect the quality of residue representations and the
deep learning classification results. In addition, the hyperparameters of the deep learning
model also determine prediction results. In order to get the optimal residue eigenvectors
and deep learning configurations, we train the Skip-gram model on Swiss-Prot database
which includes 558,590 proteins sequences and explore the effect on protein–protein
interaction prediction over different parameter combinations on the S. Cerevisiae Core
dataset. As the combinations of parameters increase exponentially and trying all of them
is impossible in practice, we choose the most important hyper-parameters such as residue
dimension, window size, network depth and protein length. Table 1 summarizes the most
important hyper-parameters and their value intervals.
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Table 2 Prediction performance of DeepFE-PPI on the S. Cerevisiae Core dataset with different combination of residue dimension and window
size.

Dimension-size Accuracy Precision Recall Specificity MCC F1 ROC-AUC ROC-PR

4–4 92.98% 97.45% 88.29% 97.68% 86.37% 92.63% 97.70% 98.21%
4–8 92.98% 97.27% 88.45% 97.52% 86.34% 92.64% 97.69% 98.21%
4–16 93.11% 97.26% 88.72% 97.50% 86.56% 92.79% 97.45% 98.06%
4–32 92.23% 96.74% 87.43% 97.03% 84.89% 91.82% 97.00% 97.71%
8–4 93.81% 95.89% 91.56% 96.05% 87.73% 93.66% 98.28% 98.58%
8–8 94.08% 96.23% 91.78% 96.39% 88.27% 93.94% 98.14% 98.52%
8–16 94.16% 96.58% 91.58% 96.75% 88.45% 94.01% 98.17% 98.54%
8–32 94.31% 95.25% 93.28% 95.33% 88.64% 94.25% 98.34% 98.67%
12–4 94.23% 95.21% 93.15% 95.30% 88.49% 94.16% 98.25% 98.59%
12–8 94.43% 96.76% 91.96% 96.91% 88.99% 94.29% 98.35% 98.66%
12–16 94.32% 96.27% 92.22% 96.42% 88.73% 94.20% 98.19% 98.53%
12–32 94.45% 96.89% 91.87% 97.03% 89.03% 94.30% 98.27% 98.62%
16–4 93.99% 95.41% 92.46% 95.53% 88.04% 93.90% 98.24% 98.56%
16–8 94.21% 95.37% 92.94% 95.48% 88.45% 94.14% 98.30% 98.64%
16–16 94.23% 95.98% 92.37% 96.10% 88.56% 94.13% 98.34% 98.63%
16–32 94.29% 95.70% 92.78% 95.80% 88.65% 94.20% 98.25% 98.59%
20–4 94.61% 95.80% 93.33% 95.89% 89.27% 94.54% 98.37% 98.68%
20–8 94.15% 94.94% 93.31% 94.99% 88.35% 94.10% 98.34% 98.64%
20–16 94.21% 95.40% 92.92% 95.50% 88.47% 94.13% 98.27% 98.57%
20–32 94.40% 96.52% 92.12% 96.67% 88.89% 94.26% 98.21% 98.54%

In the Skip-gram model, the two parameters of window size and residue dimension
are most important. As the propensity for protein interactions is not a local property of
single amino acid positions, it is expected that using the characteristics and patterns of
neighboring residues could be helpful in the prediction of protein interactions. Previous
studies (Murakami & Mizuguchi, 2010; Dhole et al., 2014) analyzed the entropy differences
for various window lengths and finally emphasized that a nine-residue window size would
be optimal for protein–protein interaction prediction problems, the initial length of the
Skip-gram windows is taken as 4. Considering the run time and memory consumption,
we train the residue vectors in case of window size [4, 8, 16, 32]. Residue dimension has
a high impact on the classification, too. Because of our machine’s memory (16G) and
residue dimension determines the size of a protein vector, residue dimensions are set
as [4, 8, 12, 16, 20]. Other hyper parameters are set to default values in the toolkits of
Word2vec. Table 2 shows the predictive performance of DeepFE-PPI on the S. Cerevisiae
Core dataset with different combinations of residue dimension and window size. The
experiment results show that when residue dimension is set as 20 and window size equals
to 4, the model achieves the best performance with mean Accuracy 0.9461, mean Precision
0.9580, mean Recall 0.9333 and meanMCC 0.8927. The other measurements of Specificity,
F1, AUC-ROC and AUC-PR are 0.9589, 0.9454, 0.9837 and 0.9868, respectively.

For deep learning, prediction results are determined by input data andmodel complexity.
The deeper the DNN network is, the more abstract the features learned and the more
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Table 3 protein–protein interaction classification results under different depths with protein length
550.

Depth Accuracy Precision Recall MCC Specificity F1 AUC-
ROC

AUC-
PR

2 93.92 96.39 91.28 87.99 96.57 93.75 98.16 98.47
3 94.09 96.67 91.33 88.32 96.85 93.92 98.25 98.53
4 94.36 95.80 92.80 88.77 95.92 94.27 98.34 98.65
5 94.04 94.45 93.58 88.09 94.49 94.01 98.30 98.58

Table 4 protein–protein interaction classification results under different depths with protein length
650.

Depth Accuracy Precision Recall MCC Specificity F1 AUC-
ROC

AUC-
PR

2 93.92 95.96 91.71 87.93 96.14 93.78 98.05 98.36
3 94.40 96.76 91.88 88.93 96.93 94.26 98.23 98.53
4 94.34 95.06 93.56 88.71 95.12 94.30 98.33 98.65
5 94.02 94.64 93.33 88.05 94.71 93.98 98.26 98.60

Table 5 protein–protein interaction classification results under different depths with protein length
750.

Depth Accuracy Precision Recall MCC Specificity F1 AUC-
ROC

AUC-
PR

2 94.13 96.41 91.67 88.37 96.59 93.98 98.13 98.47
3 94.14 95.77 92.37 88.34 95.91 94.03 98.25 98.57
4 94.43 96.25 92.47 88.94 96.39 94.32 98.28 98.61
5 93.91 95.50 92.21 87.92 95.62 93.80 98.30 98.60

accurate the model achieves. The selection of the network depth is related to the specific
application and experimental data, so the appropriate network depth should be determined
by experimental verification.

In the experiment, protein length is also an important factor that could influence the
final result. We have experimented four different values of protein length starting from
the average length with n step size as 100. The range of protein length is [n, n + 100, n +
200, n + 300]. So we discuss four different network structure depths in combination with
different network inputs. The networks are incremented by one layer of fully connected
layers. Tables 3, 4, 5 and 6 show that model performance increases first and then decreases
when network depth increases from 2 to 5 with the condition that the protein length is
set as 550, 650, 750 and 850. If network depth is not enough, the model is under-fitting
and cannot capture deep features. While a network that is too deep will increase model
complexity and training time. Due to protein length and the limitations of an experimental
platform, DeepFE-PPI achieves the best performance when protein length is set as 850 and
the number of layers in the network is 4.

Hyper parameters are often selected in a statistically rigorous way via validation or cross-
validation examples that are held out from training. We used five-fold cross-validation
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Table 6 protein–protein interaction classification results under different depths with protein length
850.

Depth Accuracy Precision Recall MCC Specificity F1 AUC-
ROC

AUC-
PR

2 93.88 95.97 91.62% 87.86 96.14 93.73 98.12 98.44
3 94.22 96.43 91.85 88.54 96.59 94.08 98.20 98.53
4 94.51 96.39 92.15 88.82 96.55 94.22 98.29 98.63
5 94.14 95.98 92.15 88.36 96.12 94.02 98.19 98.59

Table 7 Different architecture with different types of parameters.

Algorithm Parameter Range Optimized Accuracy

KNN n_neighbors [2, 6, 10, 12, 16] 10 0.8336
DT Criterion [‘gini’,‘entropy’] Gini 0.8218
LR Penalty [‘l1’,‘l2’] L2 0.9261
RF Estimators [50, 150, 250, 350, 450, 550, 650, 750, 850, 950] 250 0.9293

(training dataset proportion: 72%, validation proportion: 8%, testing proportion: 20%)
and trained a neural network with four hidden layers on the S. Cerevisiae Core dataset.
Usually, the training set is used to train models with different hyper-parameters, which
are then assessed on the validation set. The best model configuration is then assessed by
comparing the often used statistical measures, such as accuracy, recall, specificity, precision
and MCC, on the test set.

Performance comparisons with state-of-the-art algorithms
In order to evaluate the prediction performance of DeepFE-PPI, we compared the results
of the proposed method with six state-of-the-art algorithms (Support Vector Machine
(SVM), Random Forest (RF), Decision Trees (DT), Native Bayesian (NB), (K-Nearest
Neighbor, KNN) and Logistic Regression (LR)). The experiments are carried on the S.
Cerevisiae Core dataset using five-fold cross validation procedure. From methods in
Li, Zhang & Liu (2017) and Maeda (2018), different machine learning models have very
different algorithmic principles and parameters, only when comparing the algorithms with
the most optimized parameters would make sense. Furthermore, training accuracy as well
as training time should be compared as the evaluation criteria. For each algorithm, we
fine-tune the model parameters by using grid-search to obtain the optimal parameters.
Note, Naive Bayes algorithm model parameters via ‘partial-fit’ method and the sole
parameter ‘priors’ uses default value that denotes the prior probabilities of the classes, so
we have no training parameters for setting. Due to the fact that SVM performs slower than
the other five algorithms, it takes about 20 h once time based on the configuration of our
computer (a PC with an Intel Core i5-7400 processor and a 16Gmemory running windows
10), so the parameters are set to default values.The specific parameter details and the final
recommended settings of each algorithm are described in Table 7.

The proposed deep learning method and the other six different classification results are
listed in Fig. 4. Among six state-of-the-art methods, Random Forest (RF) achieves 93.96%
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accuracy, 96.96% precision, 90.76% recall, 97.16% specificity, 88.10% MCC, 93.76% F1,
96.93% AUC-ROC and 97.69% AUC-PR. The classification results of DeepFE-PPI are
0.82% accuracy, −0.51% precision, 2.23% recall, −0.59% specificity, 1.52% MCC, 0.93%
F1, 1.61% AUC-ROC and 1.14% AUC-PR higher than RF. Experimental results show
that DeepFE-PPI performs better in detecting protein–protein interactions in terms of
accuracy, recall, MCC, F1, AUC-ROC and AUC-PR.

From Fig. 4, we can see that the result of RF is also excellent. However, this method
requires manual selection of features. Firstly, it takes a lot of time to find suitable features.
If the features are not found properly, the results will be affected. Second, feature selection
and data training are a process of separation and cannot assist each other. The main
advantage of the deep learning is the automation of feature selection. It can automatically
process the features that can express the essence of things according to the follow-up
training process, so as to realize the automation process without manual intervention.
Furthermore, RF is sensitive to the noise in the original input, frequent noise brought by
features construction from the low-level data may make the subsequent classifier to learn
wrong knowledge. While a deep learning framework consists of neural networks stacked
together (Hinton & Salakhutdinov, 2006), the stacked layers help to reduce the noise effects
in the original input. Due to limitations in our computer hardware configuration, the deep
learning model we constructed is not strong enough, we believe that deep learning model
can perform better than RF in all indexes if the hardware configuration is better.

Table 8 shows training time with the most optimized parameters between different
algorithms. As seen from Table 8, the time of DeepFe-PPI ranks fourth in all seven
methods. Naive Bayes training time is the shortest, but its results are the worst.

Performance comparisons with existing methods on the S. Cerevisiae
Core Subset
Our analysis first proceeds on the S. CerevisiaeCore dataset. The results of differentmethods
with five-fold cross validation on the S. Cerevisiae Core dataset are shown in Table 9. From
Table 9, we can see that DeepFE-PPI achieves good prediction performance with a 94.78%
average accuracy, 92.99% average recall, 96.45% average precision and 89.62% average
MCC. Compared with our previous proposed deep learning-based algorithm DeepPPI,
DeepFE-PPI boosts about 0.35% accuracy, 0.93% recall, −0.20% precision and 0.65%
MCC. However, DeepPPI used five different category features to represent a sequence
of a protein. The feature extraction process is more complicated than Res2vec, which
directly represent a residue. Both on classification results and protein representation step,
DeepFE-PPI performs better than Deep-PPI. From the overall perspective, DeepFE-PPI
outperforms better than most other approaches (10 of the 13 methods with the whole
measure metrics). But it seems that (Wang et al., 2017b) obtained the highest performance
according to each evaluation metric and the following one is RFEC (Song et al., 2018).
Note that, the Legendre moments (LMs) (Wang et al., 2017b), Zernike moments (ZM)
descriptor (Wang et al., 2017a) and the evolutionary information (Song et al., 2018) all
extracted discriminatory information embedded in the position-specific scoring matrix
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Figure 4 The classification results comparisons of DeepFE-PPI with state-of-the-art algorithms. (A)
Accuracy on seven methods; (B) precision on seven methods; (C) recall on seven methods; (D) specificity
on seven methods; (E) MCC on seven methods; (F) F1_score on seven methods; (G) AUC-PR on seven
methods; (H) AUC-ROC on seven methods.

Full-size DOI: 10.7717/peerj.7126/fig-4

Yao et al. (2019), PeerJ, DOI 10.7717/peerj.7126 13/23

https://peerj.com
https://doi.org/10.7717/peerj.7126/fig-4
http://dx.doi.org/10.7717/peerj.7126


Table 8 The time with the most optimized parameters between different algorithms.

Classifier SVM DT RF NB LR KNN DeepFE-PPI

Time (second) >92365.99 890.72 696.06 48.52 2292.30 6593.53 1008.16

Table 9 Performance comparisons of 14 methods on the S. Cerevisiae Core dataset.

Method Feature Classifier Accuracy Recall Precision MCC

DeepFE-PPI Res2vec DL 94.78± 0.61 92.99± 0.66 96.45± 0.87 89.62± 1.23
Huang et al. (2015) DTC+SMR WSRC 96.28± 0.52 92.64± 1.00 99.92± 0.18 92.82± 0.97
Wang et al. (2017b) PSSM PCVM 96.37± 0.20 96.60± 0.60 96.15± 0.50 93.00± 0.40
Wang et al. (2017a) PSSM PCVM 94.48± 1.20 95.13± 2.00 93.92± 2.40 89.58± 2.20
Song et al. (2018) PSSM RFEC 95.64± 0.52 94.47± 0.47 96.75± 0.45 91.30± 1.03
You, Chan & Hu (2015) MLD RF 94.72± 0.43 94.34± 0.49 98.91± 0.33 85.99± 0.89
Du et al. (2017) Mutiple DL 94.43± 0.30 92.06± 0.36 96.65± 0.59 88.97± 0.62
You et al., 2013) Mutiple PCA-EELM 87.00± 0.29 86.15± 0.43 87.59± 0.32 77.36± 0.44
You et al. (2014) MCD SVM 91.36± 0.36 90.67± 0.69 91.94± 0.62 84.21± 0.59
Wong et al. (2015) PR-LPQ RoF 93.92± 0.36 91.10± 0.31 96.45± 0.45 88.56± 0.63
Guo et al. (2008) ACC SVM 89.33± 2.67 89.93± 3.68 88.87± 6.16 N/A
Guo et al. (2008) AC SVM 87.36± 1.38 87.30± 4.68 87.82± 4.33 N/A
Zhou, Gao & Zheng (2011) LD SVM 88.56± 0.33 87.37± 0.22 89.50± 0.60 77.15± 0.68
Yang, Xia & Gui (2010) LD KNN 86.15± 1.17 81.03± 1.74 90.24± 1.34 N/A

(PSSM) which is generated by Position-Specific Iterated Basic Local Alignment Search
Tool (PSI-BLAST) (Altschul et al., 1997). Above three methods run much slower because
it is required to run BLAST against a huge protein NR database to generate a PSSM matrix
as its feature. For Huang et al. (2015), the performance on the S. Cerevisiae Core dataset is
really better than DeepFE-PPI while the performance on the human and five independent
datasets are worse than DeepFE-PPI. Especially that using the S. Cerevisiae Core dataset as
training set and five independent across species datasets as test sets, the accuracies of the
approach Huang et al. (2015) proposed are 33.92% (E.coli), 18.81% (C. elegans), 17.78%
(H. sapiens), 17.82% (H. pylori), and 20.13% (M.musculus) lower thanDeepFE-PPI, which
indicates that the generalizability of Huang’smodel (Huang et al., 2015) is quite weak.More
details of independent datasets are shown in Table 9. Considering computational time,
feature extraction process and model generalizability, DeepFE-PPI is more appropriate for
protein–protein interaction prediction.

Performance comparisons with existing methods on the human
dataset
Consequently, human dataset is employed as a test dataset. The average prediction results
with five-fold cross-validation over twelve different approaches are given in Table 10.
Table 10 clearly shows that DeepFE-PPI achieves the highest performance in terms of
accuracy (98.71%), recall (98.54%) and MCC (97.43%). Compared to our previous work
(Du et al., 2017), the value of accuracy, recall and MCC has improved 0.57%, 1.59% and
1.14%, respectively. The second-best value (98.77%) of precision is just slightly lower
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Table 10 Performance comparisons of 12 methods on the human dataset.

Methods Feature Classifier Accuracy Recall Precision MCC

DeepFE-PPI Res2vec DL 98.71± 0.30 98.54± 0.55 98.77± 0.53 97.43± 0.61
Ding, Tang & Guo (2016) MMI+NMBAC RF 97.56 96.57 98.30 95.13
Ding, Tang & Guo (2016) MM1 RF 96.08 95.05 96.97 92.17
Ding, Tang & Guo (2016) NMBAC RF 95.59 94.06 96.94 91.21
Du et al. (2017) Mutiple DL 98.14 96.95 99.13 96.29
Huang et al. (2015) DTC+ SMR WSRC 96.30 92.63 99.59 92.82
Liu et al. (2015) LDA RF 96.4 94.2 N/A 92.8
Liu et al. (2015) LDA RoF 95.7 97.6 N/A 91.8
Liu et al. (2015) LDA SVM 90.7 89.7 N/A 81.3
Liu et al. (2015) AC RF 95.5 94.0 N/A 91.4
Liu et al. (2015) AC RoF 95.1 93.3 N/A 91.0
Liu et al. (2015) AC SVM 89.3 94.0 N/A 79.2

(−0.36%) than our previous work (99.13%). Since our previous work has achieved
best in predicting protein–protein interactions, so taken together, this comparative
analysis demonstrates that residue representations detected by Res2vec achieve comparable
classification performance, in contrast to sophisticated feature extraction step.

Performance comparisons on independent datasets
To further validate the performance of our proposed method, we also compare the
predictive performance of our method on five other independent species datasets. In
this experiment, the selected 11,188 samples of S. cerevisiae core subset are used as
training data, five other species datasets (E. coli, C. elegans, H. sapiens,H. pylori and
M.musculus) are used to assess the performance of DeepFE-PPI. Table 10 gives the detailed
performance comparisons among different methods. The value of accuracies are 100.00%
(E. coli), 100.00% (C. elegans), 100.00% (H. sapiens), 100.00% (H. pylori), and 100.00%
(M.musculus) by DeepFE-PPI, respectively. From Table 11, we can see that DeepFE-PPI
is superior to DeepPPI on all five across species independent datasets. Compared with
the other methods, our method obtains the highest accuracy on five independent species
datasets. The promising results demonstrate that the proposed method has higher accuracy
and better generalizability.

Park and Marcotte’s evaluation scheme
Typical cross-validation for pair-input methods divide available data into a training set
and a test set, ignoring that the way of test datasets constructed can significantly impact the
performance of the pair-input predicting programs (Park & Marcotte, 2012). Based on the
component-level overlap of test datasets, test dataset can be partitioned into three distinct
classes: C1, test pairs sharing both proteins with the training set; C2, test pairs sharing only
one protein with the training set; C3, test pairs sharing neither protein with the training
set. We design similar testing datasets according to Park and Marcotte’s procedure (Park
& Marcotte, 2012). S. Cerevisiae Core dataset has 2,530 different protein sequences. We
randomly split the whole protein sequences into two parts: part A has protein sequences
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Table 11 Performance comparisons (Accuracy) on five independent datasets.

Method E.coli C. elegans H. sapiens H. pylori M.musculus

DeepFE-PPI 100 100 100 100 100
Du et al. (2017) 92.19 94.84 93.77 93.66 91.37
Huang et al. (2015) 66.08 81.19 82.22 82.18 79.87
Zhou, Gao & Zheng (2011) 71.24 75.73 76.27 N/A 76.68
Wang et al. (2017b) 92.80 92.60 80.10 N/A 89.14
Ding, Tang & Guo (2016) 92.80 92.16 94.33 91.13 95.85
Ding, Tang & Guo (2016) 89.01 88.54 91.31 90.28 92.01
Ding, Tang & Guo (2016) 90.13 86.72 90.23 90.34 91.37
You, Chan & Hu (2015) 89.30 87.71 94.19 90.99 91.96

Table 12 The experiment results on C1, C2 and C3 type.

Partition Accuracy Precision Recall Specificity MCC F1 AUC-
ROC

AUC-
PR

C1 94.48 96.95 91.69 97.19 89.07 94.24 98.24 98.59
C2 78.50 78.01 84.92 70.62 56.39 81.32 88.03 90.13
C3 72.73 77.55 86.36 40.00 29.29 81.72 71.28 85.50

(numbers) while the rest serve as part B. Thenwe pick out two interacting protein sequences
sharing both proteins in the 2,230 protein sequence as training and C1 type datasets (4/5 as
training dataset and 1/5 as C1 type dataset). Protein pairs that one protein sequence in part
A and the interacting protein sequence in part B is considered as C2 type dataset. Protein
pairs that both from part B constitute C3 type dataset. The performance on each dataset is
showed as follows (Table 12):

Visualization of residue representations
Due to the input sequence representation determines the regulatory properties of each
protein. Hence, it is critical to determine the optimal dimension of each residue for
protein–protein interaction prediction. Maintaining a consistent data split ratio with
five-fold cross validation, 72% of the dataset is split as a training set, 8% of the dataset is
split as a validation set and 20% for model testing. We use DeepFE-PPI model to predict
interactions on the S. Cerevisiae Core dataset and obtain 6 performance results under 6
residue eigenvector sets. Each result corresponds to a special residue dimension (from 4
to 24 with 4 steps). The performance with different residue dimensions is shown in Fig. 5.
From Fig. 5, we can see that when the residue’s dimension increases from 4 to 20, the whole
performance measure metrics (accuracy, recall, precision and MCC) is gradually rising.
The classification results decrease when the residue dimension continues to increase four
steps starting from 20. DeepFE-PPI achieves superior performance with the dimension of
residue equals to 20. Considering run time andmemory size, the optimal residue dimension
in this article is selected as 20.

To visualize the effect of residue dimension for residue quality, we applied principal
component analysis on the optimal dimension residues. The top five ratios of the variance
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Figure 5 The results corresponding to residue with dimension 4, 8, 12, 16, 20, 24.
Full-size DOI: 10.7717/peerj.7126/fig-5

of each PCs are 0.6421, 0.1412, 0.0649, 0.0347, 0.0279. The first two principal components
are adopted to cluster 25 residues. As can be seen from Fig. 6, the common 20 residues
are clustered together while the other five uncommon residues are far apart, which also
explains the rationality of Res2vec.In addition, we also show the memory and run time
(please see Supplemental Information: Memory and Time).

DISCUSSION
Protein–protein interaction prediction has been studied for many years. The main
techniques used in this study is Res2vec for feature representation and deep learning
for classification. The prediction results on different datasets indicate that Res2vec does
as well or better than other complex feature extraction approaches and DeepFE-PPI has a
certain help in protein–protein interaction prediction problem.

The key toDeepFE-PPI framework is the use ofWord2vec, which is capable of generating
continuously sequence representation. Different residue representations generated by
Res2vec might induce the following deep learning network to produce particularly poor or
good results. Choosing an appropriate residue dimension is the key but we have not found
an effective chosen method yet. In the parameter analysis section, we try to use principal
component analysis to find the relationships between residues. Unfortunately, we only
find that the common 20 residues cluster together while the other five uncommon residues
are far away. From this phenomenon, we then choose the optimal residue dimension by
evaluating the performance of the classifier as a criterion, not from the feature generator
Word2vec. Based on this, there is a lot of work that can be done about how to choose
the optimal residue dimension and why the selected dimension can induce the best
classification for protein interaction prediction problem.
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Figure 6 Residue PCA.
Full-size DOI: 10.7717/peerj.7126/fig-6

CONCLUSIONS
Protein–protein interaction prediction is important for understanding the activity of
complex cells from a molecular point of view. In this work, we propose a new protein
sequence representation method combined with an effective deep learning framework to
predict protein–protein interactions. Inspired by word embedding in natural language
processing and leveraging large scale positive protein data, the proposed residue
representation method Res2vec captures a diverse range of meaningful properties and
represent each type residue as a low-dimensional expressive vector from raw data solely
on protein sequence information. Then two individual DBN modules are used to extract
high-level feature from each protein and a joint module to identify whether two proteins
interact with each other or not. The results show that the combination of effective residue
representation strategy and powerful deep learning technique is particularly useful for
protein–protein interaction prediction. Comparisons with other published classifiers show
that DeepFE-PPI is capable of predicting protein–protein interactions by a novel residue
representation method and an effective deep learning framework in an acceptable level of
accuracy.
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