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ABSTRACT
Background. Compared to chemical control, the use of naturally occurring biological
agents to control invasive pests is less threatening to the environment andhumanhealth.
Objectives. Here, we assessed the ability of immature stages of the lacewing Cer-
aeochrysa caligata (Neuroptera: Chrysopidae) to prey upon different developmental
stages of the red palm mite Raoiella indica (Acari: Tenuipalpidae), one of the most
destructive invasive pests of palm trees in Neotropical regions.
Methods. Increasing densities of three stages of R. indica (eggs, immature stages, and
adult females) were offered to C. caligata in coconut leaf arenas. The immature stages
of C. caligata were less than 24 h old and were starved before being transferring to the
arenas. The amount of prey consumed was recorded 6 h after releasing the C. caligata.
Results. Our results indicated that the ability of C. caligata to feed upon R. indica
increased with the larval development of the predator. Higher feeding levels and shorter
handling times were recorded for the first and second instars ofC. caligatawhen preying
upon the eggs and immature stages of R. indica. Furthermore, C. caligata individuals
of different stages exhibited differential functional responses according to prey type
(i.e., eggs, immatures, or adult females of R. indica).Ceraeochrysa caligata second instar
individuals exhibited a sigmoid increase in consumption rate with increasing prey
availability (i.e., a type III functional response) when preying upon immature stages of
R. indica. However, when preying uponR. indica adult females,C. caligata second instar
individuals exhibited a type II functional response (i.e., an increase in consumption rate
with increasing prey availability, before reaching a plateau). Predator individuals of the
first and third instar stages exhibited a type II functional response for all prey types.
Conclusions. Collectively, our findings demonstrate that C. caligata, especially at the
second instar stage, has potential as a tool for ecological management of the red palm
mite.
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INTRODUCTION
The red palmmite, Raoiella indicaHirst (Acari: Tenuipalpidae), is a severe pest of a myriad
of ecologically and agriculturally important crops (Carrillo et al., 2012a), especially palm
trees (De Assis, De Morais & Gondim, 2013). For instance, these mites have been recorded
on 118 plant species that belong to plant families such as Arecaceae, Heliconiaceae,
Musaceae, Strelitziaceae, Zingiberaceae, and Pandanaceae (Carrillo et al., 2012a). Native to
the Old World, the red palm mite has invaded tropical regions of the New World and is
currently distributed in North America (Roda et al., 2012), the Caribbean (Kane & Ochoa,
2006), and South America (Kane et al., 2012; Melo et al., 2018; Navia et al., 2011); there
exists a clear and positive correlation between the mite occurrence and the temperature
and precipitation levels (Flores-Galano et al., 2017).

Raoiella indica Hirst is a multivoltine arthropod species with gregarious behavior,
living in colonies of 20–300 individuals that feed on the abaxial leaf surface (Peña et al.,
2006). Red palm mite attacks can lead to significant yield reductions in Brazil—the third
largest global producer of coconut, Cocos nucifera (L.), producing over 6 million tons
every year (FAO, 2017) (Peña, Bruin & Sabelis, 2012). The use of synthetic compounds
remains the most prevalent strategy to control R. indica in coconut plantations (Jayaraj,
Natarajan & Ramasubramanian, 1991; Rodrigues & Peña, 2012), despite the need for
frequent applications and the risks associated with these control tools (e.g., threats to
human health, contamination of the environment, and selection of resistant individuals).
However, this control strategy does not show high efficacy against R. indica owing to
its location on the host plants, which typically limits its exposure to applied acaricides.
Furthermore, coconut palm trees may reach over 10 m high, which makes it particularly
challenging to control R. indica on these hosts through pesticide sprays (Domingos et al.,
2013).

The use of naturally occurring biological control agents represents a plausible
alternative strategy for controlling R. indica. Some studies have shown the potential
of several mites and insects capable of preying on R. indica (Carrillo et al., 2012b; Hoy,
2012; Peña et al., 2009). Among predatory mites, species of the genus Amblyseius (Acari:
Phytoseiidae) have attracted attention owing to their abundance throughout the year
and ability to feed upon all developmental stages of the red palm mite (Carrillo et al.,
2012b; Vásquez & De Moraes, 2013). Among predatory insects, twelve species from five
families have been reported preying on R. indica, including Oligota sp. (Coleoptera:
Staphylinidae) (Somchoudhury & Sarkar, 1987),Aleurodothrips fasciapennis (Thysanoptera:
Phlaeothripidae), and Ceraeochrysa sp. (Neuroptera: Chrysopidae) (Peña et al., 2009).

Lacewings (Neuroptera: Chrysopidae) of the genus Ceraeochrysa have particular
potential as biological control agents of R. indica because they have been shown to actively
prey upon these mites on coconut plants (Carrillo et al., 2012b). All immature stages of the
Chrysopidae species feed on small arthropods. The adults show high reproductive capacity
(Carvalho & Souza, 2000), high ecological plasticity (Khuhro et al., 2014), and relative
tolerance to pesticides (Ono et al., 2017; Pimentel Farias et al., 2018; Rugno, Zanardi &
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Yamamoto, 2015) and can be readily mass-reared under controlled conditions (López-
Arroyo, Tauber & Tauber, 1999). The duration of the developmental period of C. caligata
immature instars is dependent on temperature and food type, ranging 4–9, 8–9, and 5–16
days for the first, second, and third instars, respectively (Castro et al., 2009; Nogueira et al.,
2007; Souza et al., 2014).

The potential of natural enemies as biological control is commonly measured by means
of functional response studies. Functional responses evaluate the feeding behavior of
predators, which can be influenced by factors such as environmental conditions and the
diverse bioecological interactions (e.g., size, behavior, and density) between predators
and prey (Aljetlawi, Sparrevik & Leonardsson, 2004; Laws, 2017; Luff, 1983; Solomon, 1949).
Three types of functional responses in relation to prey density have been described,
including a linear increase (type I), an increase decelerating to a plateau (type II), and a
sigmoid increase (type III) (Holling, 1959; Holling, 1966). Predators that exhibit type III
functional response show positive density-dependence and are usually regarded as efficient
biological control agents (Fernández-arhex & Corley, 2003; Pervez, 2005). However, insects
predators frequently exhibit a type II response limited only by the handling time (time
required to subdue, consume, and digest the prey) and can be efficient regulators at low
prey densities (Munyaneza & Obrycki, 1997; Santos, 1975).

The present study assessed the potential of C. caligata (Banks, 1946) as a biological
control agent of R. indica by conducting functional response bioassays, in which we used
predator individuals of all three larval instars preying upon eggs, immatures, and adult
females of the red palm mite.

MATERIAL AND METHODS
Rearing of predators and collection of red palm mites
Eggs of the lacewing C. caligata were collected from abaxial surfaces of coconut leaves
infested with the red palm mite R. indica at experimental fields of the Embrapa Tabuleiros
Costeiros in Aracaju (10◦56′46′′37◦03′12′′W), Sergipe State, Brazil. These coconut plants
were located in pesticide-free coconut plantations. The eggs weremaintained in Petri dishes,
and the emerged larvae were kept individually separated during development (i.e., each
larva was placed in a separate Petri dish) and fed ad libitumwith eggs of Anagasta kuehniella
(Zeller) (Lepidoptera: Pyralidae). Adults were maintained in plastic containers (20 cm in
diameter and 30 cm in height) with open tops covered with fine tissue (i.e., organza)
for ventilation. Adults were fed ad libitum with an artificial diet consisting of a mixture
of bee honey and brewer’s yeast (1:1) and provided with cotton wool soaked in distilled
water, which was replaced every 2 days (Freitas, 2001). The rearing units were maintained
under controlled conditions of temperature (27 ± 2 ◦C), relative humidity (65 ± 5%),
and photoperiod (12:12 L:D). In order to avoid potential field-driven differences among
individuals, we used only larvae that came from individuals that remained under the
laboratory conditions for at least one generation.

On the day of the experiments, eggs, immature-stage individuals (larvae, protonymphs,
and deutonymphs), and adult females of R. indica were collected from pesticide-free leaves
of coconut plants at experimental fields of the Embrapa Tabuleiros Costeiros.
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Functional response bioassays
The functional responses of the C. caligata individuals of three larval instars to R. indica
eggs, immatures, and adult females were assessed under laboratory conditions, using
experimental procedures described by Hassanpour et al. (2009) and Hassanpour et al.
(2011). The assay arena consisted of Petri dishes (5 cm in diameter) containing a clean
coconut leaflet piece (15 cm2) placed upside down on a layer of solidified agar (7 cm2 of
free area). Immatures stages and adult females of R. indica were gently transferred to the
coconut leaflet piece using a fine brush, while pieces of leaflets containing eggs were cut
and placed in the arena. Surplus eggs were removed to adjust the prey density. The prey
densities were 20, 30, 40, 70, 100, and 150 individuals for the first instar of C. caligata and
100, 150, 250, 350, 450, and 600 individuals for the second and third instars. The maximum
and minimum prey densities for each C. caligata instar were determined in preliminary
tests. Ceraeochrysa caligata larvae (<12 h old) were starved for 12 h before the bioassays.
Then, using a brush, C. caligata larvae were transferred individually to the experimental
arenas with various prey densities. The Petri dishes were covered with perforated Parafilm
to prevent the predators from escaping. Predator larvae that did not feed in the first 5 min
were excluded from the experiment. The number of prey consumed was recorded 6 h after
predator release, and prey were not replaced. Each prey density was replicated 10 times for
each C. caligata larval instar. The Petri dishes with prey and predators were maintained at
27 ± 2 ◦C and 65 ± 5% relative humidity with a 12 h scotophase.

Statistical analyses
The functional responses were estimated by determining the general shape of each
functional response curve based on logistic regression of number of prey consumed
as a function of mite stage and density using the CATMOD procedure of SAS statistical
software (SAS, 2008). The cubic model was initially tested owing to its ability to detect
the most possible functional response graph variations (Juliano, 2001), and a polynomial
function was fit:

Ne

N0
=

exp(P0+P1N0+P2N2
0+P3N

3
0)

1+exp(P0+P1N0+P2N2
0+P3N

3
0)
, (1)

where (Ne) is the number of mites attacked; (N0) is the initial prey density; and P0, P1, P2,
and P3 are the intercept, linear, quadratic, and cubic coefficients, respectively, associated
with the slope of the curve. The signs of P1 and P2 are used to determine the type of
functional response. A significantly negative (P1 < 0) linear coefficient indicates that the
predator displays a type II functional response, indicating that the proportion of prey
consumed declines monotonically with the initial prey density. A significantly positive
(P1 > 0) linear coefficient indicates that the predator presents a type III functional response
(Juliano, 2001).

As our experiments were conducted with prey depletion, we used the random predator
equation (Juliano, 2001; Rogers, 1972) to describe the type II and type III functional
responses:

Ne=N0{1−exp[α(ThNe−T)]}, (2)
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Ne=N0{1−exp[(d+bN0)(ThNe−T)/(1+cN0)]}, (3)

where Ne is the number of prey attacked; T is the exposure time (6 h); N0 is the initial prey
density; α is the attack rate, a constant rate of successful search; and Th is the handling time.
The coefficients α, b, c, and d are constants associated with the attack rate. Subsequently,
the functional response parameters Th (handling time) and α (attack rate) were estimated
with nonlinear least square regression using the PROCNLIN procedure of SAS (SAS, 2008)
as described elsewhere (Juliano, 2001). Differences in prey consumption among predator
larval stages were determined by nonparametric Kruskal–Wallis test (P < 0.05).

RESULTS
The functional response curves for the C. caligata individuals of three larval instars
indicated that the number of R. indica eggs, immatures, or adult females consumed by
C. caligata rapidly increased with increasing prey density (Fig. 1). Furthermore, whereas
logistic regression yielded a significant (P < 0.001) negative linear coefficient (i.e., type
II functional response) for the first and third instars of C. caligata feeding upon all prey
stages (Table 1), the second instar individuals of C. caligata exhibited a type III functional
response (i.e., a positive and statistically significant linear coefficient) when feeding upon
eggs and immatures of R. indica but a type II functional response when preying upon
adult females of R. indica (Table 1). A type II functional response was also evident in the
proportion of prey consumed (Ne/No) by first, second, and third instar individuals of the
predator (Figs. 2A–2C).

The attack rate (α) of the C. caligata larval instars did not vary by prey type (Table 2).
However, the prey handling time in the predator individuals differed significantly
with prey type (Table 2). Ceraeochrysa caligata individuals of the first and second
larval instars exhibited longer handling times with R. indica adult females (First instar :
Th= 0.146±0.0050, Second instar : Th= 0.018±0.0004) than with the other prey types.
In contrast, C. caligata individuals of the third larval instar exhibited the shortest handling
time with adult females (Th= 0.010±0.0021) (Table 2). As shown in Fig. 3, the average
number of prey consumed (independent of prey type) increased significantly with the
developmental stage of the predator. Furthermore, predator individuals of the first (Fig. 3A;
H = 22.2, df = 2, P < 0.001) and second (Fig. 3B; H = 9.9, df = 2, P = 0.007) instars
consumed significantly fewer adult females than eggs or immatures of R. indica. However,
no significant differences among prey types were observed in the average number of prey
consumed by C. caligata individuals of the third larval instar (Fig. 3C; H = 3.4, df = 2,
P = 0.188).

DISCUSSION
Functional responses are well-established parameters used to estimate the potential use
of natural enemies as biological agents for controlling arthropod pests (Cuthbert et al.,
2018; Ebrahimifar, Jamshidnia & Allahyari, 2017; Milonas, Kontodimas & Martinou, 2011;
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Figure 1 Mean numbers (±SD) of eggs, immatures and females of R. indica consumed by first (A), sec-
ond (B) and third (C) larval instars of the lacewing Ceraeochrysa caligata in relation to prey density
over a period of 24 h.

Full-size DOI: 10.7717/peerj.7123/fig-1
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Solomon, 1949). Here, we demonstrated that all larval instars of the lacewing C. caligata
are capable of preying upon all developmental stages (i.e., eggs, immatures, and adults) of
the red palm mite R. indica. Our findings revealed that although immature individuals of
C. caligata chiefly exhibited type II functional responses (which are highly relevant when
prey densities are low), second instar individuals of the predator might be more capable
of suppressing R. indica populations, because they exhibited a type III functional response
when preying upon eggs and immature individuals of R. indica.
Although three types of functional responses may be exhibited by predators (Holling,
1959), type II is the most common in insects (Begon, Harper & Townsend, 1999), including
chrysopids (Montoya-Alvarez et al., 2010; Parajulee et al., 2006; Stewart, Braman & Pendley,
2002). The type II functional response is characterized by an increase in consumption rate
with increasing prey availability until reaching a plateau at which the consumption rate
stabilizes (Holling, 1959), yielding a negative value for the linear parameter (Juliano, 2001).
This kind of functional response is generally limited only by handling time, which allows
the predator to effectively control the prey population when prey density is low (Munyaneza
& Obrycki, 1997; Santos, 1975). However, some mites and insect predators exhibit type III
functional responses; in theory, such predators are more efficient than those with type II
responses in suppressing prey populations in biological control programs (Holling, 1966;
Huffaker, Messenger & DeBach, 1971), because they exhibit positive density-dependent
behaviors (Fernández-arhex & Corley, 2003; Pervez, 2005).

In the present investigation, as previously demonstrated for other lacewing species
(Hassanpour et al., 2011; Hassanpour et al., 2009; Sultan & Khan, 2014), immature-stage
individuals of the lacewing C. caligata chiefly showed type II functional responses. Second
instar C. caligata individuals preying upon eggs and immatures of R. indica showed type III
responses. Variation in functional response type can be partially explained by several factors
including variation in the size and density of both prey and predator (Aljetlawi, Sparrevik
& Leonardsson, 2004; González-Suárez et al., 2011; Hassanpour et al., 2015; Hassanpour et
al., 2011; Hassell, Lawton & Beddington, 1977; Kabissa et al., 1996; Milonas, Kontodimas &
Martinou, 2011; Sultan & Khan, 2014). It is known that body size plays a crucial role in
predator–prey interactions (Aljetlawi, Sparrevik & Leonardsson, 2004; Thorp et al., 2018).
For instance, first instars of insect predators facemore difficulties in preying upon large prey,
andmore developed instars exhibit higher predatory abilities when feeding on smaller prey,
indicating important consequences for the dynamics of prey–predator systems (De Roos,
Persson & McCauley, 2003; Nordlund & Morrison, 1990). Therefore, it is reasonable to
argue that second instar individuals of C. caligata would be more capable of suppressing R.
indica populations than would C. caligata at other stages, owing to their greater ability to
control this mite at the egg and immature stages. However, the potential of the other larval
instars of C. caligata, for which type II functional responses were observed, should not be
dismissed, because first and second instar larvae of C. caligata can efficiently control red
palm mite populations when these invasive pests are at low densities.

A valuable indicator of consumption rate and predator efficacy is handling time, which
is defined as the cumulative time invested in capturing, killing, and digesting prey (Veeravel
& Baskaran, 1997). Attack rate is another relevant parameter when considering potential
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Table 1 Estimated parameters of the logistic regression of the proportion of eggs, immatures and females of Raoiella indica consumed by the first, second and third
larval instars of Ceraeochrysa caligata.

Prey stage Parameter Larval instar of Ceraeochrysa caligata

1st 2nd 3rd

Estimate SD x2 p Estimate SD x2 p Estimate SD x2 p

Intercept (P0) 10.883 0.857 161.5 <0.0001 2.328 0.366 40.50 <0.0001 3.351 0.230 211.34 <0.0001

Linear (P1) −0.160 0.015 109.3 <0.0001 0.023 0.002 120.4 <0.0001 −0.015 0.002 34.33 <0.0001

Quadratic (P2) 6×10−4 7×10−5 82.90 <0.0001 −4.0×10−6 2.0×10−7 260.4 <0.0001 4.8×10−5 7.7×10−6 38.99 <0.0001
Egg

Cubic (P3) 6.8×10−6 2.3×10−9 8.70 0.0033 6.0×10−8 2.9×10−8 4.10 0.0418 −4.9×10−8 7.1×10−9 48.3 <0.0001

Intercept (P0) 5.729 0.505 128.68 <0.0001 −3.545 0.859 17.05 <0.0001 4.057 0.213 364.01 <0.0001

Linear (P1) −0.049 0.009 26.11 <0.0001 0.099 0.011 89.46 <0.0001 −0.024 0.002 123.88 <0.0001

Quadratic (P2) 6×10−5 4.3×10−5 1.97 0.1605 −3×10−4 3.2×10−5 90.05 <0.0001 6.3×10−5 6.5×10−6 94.23 <0.0001Immature

Cubic (P3) 4.7×10−6 1.8×10−6 6,60 0.0102 2.3×10−7 2.8×10−8 81.69 <0.0001 −5.6×10−8 5.8×10−9 88.84 <0.0001

Intercept (P0) 8.387 0.774 117,42 <0.0001 4.509 0.167 726.84 <0.0001 1.796 0.148 148.30 <0.0001

Linear (P1) −0.222 0.030 56,78 <0.0001 −0.012 8.1×10−4 216,74 <0.0001 −0.009 0.002 29.85 <0.0001

Quadratic (P2) 0.002 0.001 31,87 <0.0001 7×10−6 9×10−8 70.60 <0.0001 2.7×10−5 5.3×10−6 25.84 <0.0001
Adult
female

Cubic (P3) −5.9×10−6 1.2×10−6 23,84 <0.0001 2.9×10−9 7.9×10−9 14.43 0.0001 −2.2×10−8 4.9×10−9 19.86 <0.0001

Notes.
Negative and positive linear terms (P1) denote type II and III functional responses, respectively.
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Figure 2 Proportions (Ne/No) of eggs, immatures and females of Raoiella indica consumed by first
(A), second (B) and third (C) larval instars of Ceraeochrysa caligata according to prey density.

Full-size DOI: 10.7717/peerj.7123/fig-2
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Table 2 Attack rate (α) and handling time (Th) of the first, second and third larval instars of Ceraeochrysa caligata feeding upon eggs, imma-
tures and adult females of Raoiella indica.

Predator stage Prey stage Parameter

Attack rate (α) Asymptotic 95% CI Handling time (Th) Asymptotic 95% CI R2

Lower Upper Lower Upper

Egg 0.032± 0.0108a 0.0107 0.0539 0.076± 0.0025b 0.071 0.0810 0.98
Immature 0.050± 0.0283a −0.0067 0.1067 0.082± 0.0032b 0.075 0.0879 0.941st

Adult Female 0.021± 0.0023a 0.0158 0.0252 0.146± 0.0050a 0.136 0.1561 0.82
Egg 0.023± 0.0366a −0.0499 0.0965 0.013± 0.0007a 0.011 0.0141 0.99
Immature 0.006± 0.0018a 0.0020 0.0090 0.010± 0.0005a 0.009 0.0120 0.992nd

Adult Female 0.005± 0.0007a 0.0034 0.0063 0.018± 0.0004a 0.017 0.0189 0.99
Egg 0.003± 0.0009a 0.0011 0.0047 0.011± 0.0011a 0.009 0.0163 0.98
Immature 0.003± 0.0007a 0.0013 0.0041 0.016± 0.0010a 0.013 0.0176 0.973rd

Adult Female 0.001± 0.0003a 0.0006 0.0017 0.008± 0.0016a 0.005 0.0120 0.98

Notes.
Values within columns followed by the same letter are not significantly different as determined by confidence interval (CI±95%).
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Figure 3 Average consumption (±SD) of eggs, immatures and females of R. indica by first (A), second
(B) and third larval instars (C) of Ceraeochrysa caligata. Bars grouped under the same horizontal line do
not differ according to a Kruskal–Wallis test (P < 0.05).

Full-size DOI: 10.7717/peerj.7123/fig-3

biological agents and indicates the capture success of the predator, which is influenced
by prey size as well as by processes such as searching, detecting, and encountering prey
(Ball et al., 2015; Holling, 1959). In the present study, prey type did not affect the attack
rates of C. caligata individuals of each instar. However, the attack rate was higher in the
first instar C. caligata individuals than in individuals of the other instars, which suggests
that if C. caligata initially prefers to feed upon prey of smaller size (i.e., R. indica eggs
and immature-stage individuals), this feeding preference is reversed as the predator
developmentally advances. Prey size has been reported to influence the feeding preferences
of other lacewings (Aqueel et al., 2014;Nordlund & Morrison, 1990). For instance,Nordlund
& Morrison (1990) reported that individuals of the last larval instar of Chrysoperla rufilabris
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preferentially fed on larger prey when they were offered a choice betweenHeliothis virescens
caterpillars and the aphid Aphis gossypii.

The C. caligata second instar larvae exhibited higher consumption of R. indica eggs and
immatures than did the C. caligata first instar larvae, but prey consumption did not differ
between the second and third instar larvae of the predator. Although some studies have
shown no increase in prey consumption rate as the predator developed (Atlıhan, Kaydan
& Özgökçe, 2004; Chen & Liu, 2001; Fonseca, Carvalho & Souza, 2000; Huang & Enkegaard,
2010), our findings are consistent with the results of some other studies (Jose-Pablo et
al., 2017; Sultan & Khan, 2014). The buccal apparatus of C. caligata is equipped with a
sclerotized, elongate, acutely pointed, and serrated jaw (McEwen, New &Whittington,
2007) that can easily penetrate R. indica of all developmental stages. However, eggs and
immatures of R. indica may have been easily preyed upon because such individuals are
immobile (eggs) or exhibit low mobility relative to adult R. indica females. Alternatively,
the higher consumption of R. indica eggs and immatures than of adult R. indica by
C. caligata may be related to the differences in biomass and nutrient content among the
developmental stages of R. indica. Because the eggs and immature-stage individuals of
R. indica have a lower biomass than that of the adults and may have dissimilar nutrient
constitutions, C. caligata individuals of the second larval instar may have had to increase
their consumption of eggs and immatures to overcome these difficulties.

Although not addressed in the present study, the absence of difference between the
feeding capacities of the second and third instar larvae of C. caligata may have resulted
from an absence of significant differences between these stages in predator voracity,
energy storage needs, locomotor ability, or prey-handling efficiency (Atlıhan, Kaydan
& Özgökçe, 2004; Bressendorff & Toft, 2011; Hassanpour et al., 2011; McEwen, New &
Whittington, 2007; Schmidt et al., 2012). Further investigations are also required to test
the prey preference (e.g., eggs, immatures, or adults of R. indica) and the survival rates
of each predator larval instar when they were fed each R. indica developmental phase. In
terms of field application, which was not the main point of the present investigation, it will
be worthwhile to first evaluate not only the best time of introduction and density ranges
for the C. caligata larvae but also the agricultural procedures (e.g., plant fertilization and
pesticide applications) that are compatible with the naturally occurring arthropods (e.g.,
insect predators) that provides ecological services.

CONCLUSIONS
The findings described in the present investigation indicate that C. caligata has potential
as a biological agent to control all stages of the red palm mite. The functional response
results suggest that the second and third instar larvae of C. caligata are more efficient
regulators of high- and low-density red palm mite populations, respectively. The high rates
of consumption of R. indica eggs and immatures by the C. caligata third instars can prevent
the emergence and reproduction of new R. indica individuals.
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