Soil respiration and its Q₁₀ response to various grazing systems of a typical steppe in Inner Mongolia, China

5

1

7

15 16

- 6 Cheng Nie¹, Yue Li¹, Lei Niu¹, Yinghui Liu¹, Rui Shao², Xia Xu¹, Yuqiang Tian¹
- 8 State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of
- 9 Geographical Science, Beijing Normal University, Beijing, China
- 10 ²Department of Geography, Ghent University, Ghent, Belgium
- 11 Corresponding Author:
- 12 Yinghui Liu¹
- No. 19, XinJieKouWai St., Beijing, 100875, China
- 14 Email address: lyh@bnu.edu.cn

Abstract

- 17 **Background:** As one of the important management practices of grassland ecosystems, grazing
- has fundamental effects on soil properties, vegetation and soil microbes. Grazing can thus alter
- soil respiration and the soil carbon cycle, yet its impacts and mechanisms remain unclear.
- 20 **Methods:** To explore the response of soil carbon flux and temperature sensitivity to different
- 21 grazing systems, soil respiration (Rs), soil temperature (ST) and soil moisture (SM) were
- 22 observed from December 2014 to September 2015 in a typical steppe of Inner Mongolia under
- 23 three grazing systems: yearlong grazing, rest-rotation grazing and grazing exclusion. In addition,
- 24 plant aboveground and root biomass, soil microbial biomass and community composition, and
- soil nutrients were measured during the pilot period.
- 26 **Results:** Rs was significantly different among the three grazing systems. The average Rs was
- 27 highest under rest-rotation grazing (1.26 μ mol·m⁻²·s⁻¹), followed by grazing exclusion (0.98
- 28 μmol·m⁻²·s⁻¹) and year-long grazing (0.94 μmol·m⁻²·s⁻¹). Rs was closely associated with ST, SM,
- 29 potential substrate and root and soil microbe activity. The effects of grazing among two grazing
- 30 systems had generality, but were different due to grazing intensity. The root biomass was
- 31 stimulated by grazing, and the rest-rotation grazing system resulted in the highest Rs. Grazing led
- 32 to decreases in aboveground and microbial biomass as well as the loss of soil total nitrogen and
- total phosphorus from the steppe ecosystem, which explained the negative effect of grazing on Rs
- in the yearlong grazing system than incompared to the grazing exclusion system. The temperature sensitivity of Rs (Q_{10}) was higher in the rest-rotation and year-long grazing systems, likely due to
- 36 the higher temperature sensitivity of rhizosphere respiration and higher 'rhizosphere priming
- 37 effect' in the promoted root biomass. The structural equation model analysis showed that while

grazing inhibited Rs by reducing soil aeration porosity, ground biomass and soil moisture, it increased Q_{10} but had a lower effect than other factors. A better understanding of the effects of grazing on soil respiration has important practical implications.

Keywords

38

39

40

41 42

43

44 45

46

47

48 49

50

51

52

53

54

55

56

57

58 59

60

61

62

63 64

65

66 67

68 69

70

71

72

73

74 75

76

soil respiration; temperature sensitivity; grazing; soil microbial community

Introduction

The carbon stored in soil and vegetation plays an important role in the carbon pool of a terrestrial ecosystem. The terrestrial ecosystem carbon cycle includes carbon sources and sinks in the air, plants, and soil communities (Piao et al., 2009). Carbon is accumulated by plant photosynthesis and released by soil respiration (Rs). Rs is fundamental to the global carbon cycle because even small variations in soil respiration can influence the atmospheric CO₂ concentration and soil organic carbon (SOC) storage (Zhang et al., 2015b). Studying Rs and its temperature sensitivity can contribute to the understanding of how the terrestrial C cycle will respond to rising temperatures under global climate change.

Temperate grassland ecosystems make up 32% of the earth's terrestrial ecosystems (Adams et al.,

Temperate grassland ecosystems make up 32% of the earth's terrestrial ecosystems (Adams et al., 1990). Grassland soil CO₂ emissions into the atmosphere contributes substantially to the global carbon cycle (Craine and Wedin, 2002). Soil respiration reflects the metabolic activities of roots and soil microbes. It has been acknowledged that soil respiration can be affected by soil temperature, soil moisture (Raich and Schlesinger, 1992) and soil element content (Shi et al., 2015). As one of the important management practices in grassland ecosystems, grazing is suggested to affect the quantity of carbon released from the soil (Kioko et al., 2012; Jiao et al., 2012), despite current evidence suggesting no clear relationship between grazing and the carbon budget in grassland ecosystems (Liu et al., 2016; Wang et al., 2002). It is suggested that grazing may decrease soil CO₂ flux during the growing season by reducing canopy photosynthesis and carbon translocation to the rhizosphere (Bremer et al., 1998). In addition, grazing can also decrease Rs by destroying the soil microenvironment and inhibiting microbial growth (Zhao et al., 2017). In addition, grazing may promote nutrient cycling and thus provide more respiratory substrates for microbes (Stark et al., 2002; Allard et al., 2007). Grazing exclusion, one of the most common grazing systems for grassland restoration in Inner Mongolia that is usually achieved by fencing, has been found to promote Rs due to its positive effect of increasing root biomass and SOC (He et al., 2008). However, Chen et al. (2016) reported that Rs was decreased under grazing exclusion due to reduced soil temperature and increased soil moisture. Restrotation grazing is indicated to be a good system for balance between economic development through animal husbandry and the protection of grassland ecosystems. This system involves a period of rest, or short-term grazing exclusion, during the growing season. Previous studies have shown that rest-rotation grazing could increase SOC, belowground biomass and soil water storage (Zhang et al. 2015a). A meta-analysis of the responses of the soil microbial community size and Rs to grazing showed that only heavy grazing intensity significantly reduced Rs by

inhibiting soil microbes (Zhao et al., 2017). Therefore, the impact of rest-rotation grazing on Rs may be different from grazing exclusion or yearlong grazing.

In East Asia, most grassland ecosystems are subjected to varying degrees of grazing pressure and climate warming. The temperature sensitivity of Rs (Q₁₀, the increase in the CO₂ release for every 10 °C increase in temperature) could predict the response of Rs to climate change. Q₁₀ can be affected by a variety of factors, including soil temperature and moisture, root activity, quality and quantity of substrate, and microbial community size (Yuste et al., 2004; Zhang et al., 2015b). The influence of grazing on Q₁₀ is still controversial (Paz-Ferreiro et al., 2012; Chen et al., 2016). Grazing can debase the Q₁₀ of autotrophic respiration by reducing aboveground and root biomass of vegetation (Xu and Qi, 2001). This decrease in aboveground biomass and litter input to soil will then reduce respiratory substrates and consequently decrease the Q₁₀ of heterotrophic respiration under grazing systems (Cao et al., 2004). However, previous studies also suggest that livestock may stimulate root exudation and litter decomposition, which can increase the quality of SOM and thus promote the Q₁₀ of heterotrophic respiration (Zhao et al., 2016). Furthermore, the Q₁₀ of fine root respiration is higher than that of microbes (Boone, et al., 1998). Therefore, grazing may alter the Q₁₀ of Rs by changing the composition of Rs.

Grazing and enclosure are the representative land management modes of the typical steppe, but the effects of different management methods on the carbon cycle in grassland ecosystems were have not been not clear-vet. We designed and implemented an experimental study to improve the understanding of the impact of different grazing systems on carbon cycling and the soil carbon budget of grasslands in the Inner Mongolian plateau. This study focuses on the effects of grazing on typical steppe, those which effects may vary with grazing patterns simultaneously. Combined with soil, vegetation or microbial indicators, the purpose of this study is to further explore how grazing affects Rs and its Q10. The results contribute will help to assess the ecological effects and climate responses of typical steppe under different grazing systems. The objectives of the study were to (1) reveal the annual dynamics of Rs and its relationship to environmental variables (i.e., soil temperature and soil moisture) and (2) explain the effects of different grazing systems on soil respiration and determine the Q₁₀ values of Rs in different grazing systems. Our hypotheses were as follows: (1) Grazing reduces Rs by inhibiting the growth and activity of the plant and soil microbial community; (2) The effect of grazing on Rs may be different between rest-rotation grazing and year-long grazing systems; and (3) Grazing alters Q₁₀ by changing the proportion of root respiration in Rs.

Materials & Methods

Study area

79

80

81

82

83

84

85

86 87

88

89

90 91

92 93

94

95 96

97

98

99 100

101

102

103

104

105

106

107

108

109

110111

- The study area is located in Duolun County (41°46′-42°39′N, 115°50′-116°55′E), Inner Mongolia Autonomous Region, China. The annual mean air temperature is 3.3 °C, with a maximum mean temperature of 19.9 °C in July and a minimum mean temperature of -15.9 °C in January. The mean annual precipitation is 399 mm, and 88% of the precipitation occurs during the growing
- season extending for approximately 150 days from May to September (Miao et al., 2009). The

- vegetation in the study area is classified as typical steppe and dominated by *Stipa krylovii*
- 118 Roshev., *Leymus chinensis* (Trin.) Tzvelev., *Artemisia frigida* Willd., *Agropyron cristatum* (L.)
- 119 Gaertn., Allium bidentatum Fisch., and Cleistogenes squarrosa (L.) Keng. (Li et al., 2013). SOC
- ranged from 1% to 3%, and soil total nitrogen (TN) ranged from 0.1% to 0.3% in this study.
- We selected three established grazing systems at Duolun Restoration Ecology Station (42°02′ N,
- 122 116°17′ E), which is managed by the Institute of Botany, Chinese Academy of Sciences. The
- "year-long grazing system" had been grazed by 4.75 sheep ha⁻¹ yr⁻¹ since 2002. The "rest-rotation"
- grazing system" had been grazed by 2~4.5 sheep ha⁻¹ yr⁻¹ since 2004, with an annual rest period
- from 10 March to 10 June. In the "grazing exclusion system", livestock had been completely
- excluded since 2002. We randomly located three experimental plots, each 10 m×5 m, within the
- area of each grazing system.

151

Soil respiration, temperature and moisture

- Rs was measured on each plot in late December 2014 and during the 2015 growing season in late
- March, May, July, August and September. To measure Rs, one PVC collar (20 cm in diameter
- and 7 cm in height) was set up at a random location within each plot. The collars were inserted
- into the soil where aboveground biomass had been removed at least 24 h before the Rs
- measurement was to be taken in order to exclude CO₂ released by aboveground vegetation. The
- 134 collars were maintained in the plots for the six measurements to minimize the effect of soil
- heterogeneity. The daily dynamics of Rs were captured by hourly measurement for 24 h. Each
- measurement lasted 3 min, including 120 s of observation in which the first 30 s was excluded
- due to the change in air pressure, and 30 s of pre- and post-purge time. Respiration rates were
- measured using a LI-COR 8150 automatic soil CO₂ efflux measurement system with a portable
- chamber (LI-COR Inc., Lincoln, NE, USA). The soil temperature and moisture content at a depth
- of 5 cm adjacent to the collar were simultaneously measured using a LI-COR 8150-203
- thermocouple probe and a LI-COR 8150-204 ECH₂O Model EC-5 soil volumetric moisture
- 142 content probe, respectively (Decagon Device, Inc., Pullman, WA, USA).

143 Plant aboveground and root biomass

- Aboveground biomass was measured at the end of December 2014 and during May, July, and
- September 2015; root biomass was measured during May, July and September 2015.
- Aboveground biomass was removed from a randomly located 0.5 m×0.5 m quadrant in each plot
- and oven-dried together with litter at 65 °C to a constant weight. Root biomass was collected
- using an 8 cm diameter soil drill sampler, and three cores were collected at 0–20 cm deep from
- random locations in each plot to be mixed as one composite sample. The roots were washed and
- oven-dried at 65 °C to a constant weight.

Soil microbial biomass and soil nutrients

- 152 The collected soil samples were separated from the root biomass. Part of each sample was passed
- through a 2-mm sieve to analyze soil microbial biomass carbon (MBC), dissolved organic carbon
- 154 (DOC) and phospholipid fatty acids (PLFAs). The composition of the microbial community
- composition of in each fraction was assessed using PLFA analysis following the method of
- Bossio and Scow (1998). MBC was estimated using the chloroform fumigation-extraction
- method and calculated as the difference in extracted organic carbon between the fumigated and

- 158 control parts divided of the soil sample divided by a conversion factor of 0.45 (Vance et al.,
- 159 1987). DOC was determined as the extracted organic carbon in the control soil (Vance et al.,
- 160 1987). PLFAs (including i14:0, 15:0, i15:0, a15:0, 16:0, 10me16:0, i16:0, 16:1w5c, 16:1w7c,
- 161 10me17:0, a17:0, i17:0, cy17:0, 17:1w8c, 18:0, 10me18:0, 18:1w5c, 18:1w7, 18:1w9c, 18:2w6c
- 162 cy19:0, 20:1w9c and 20:4w6c) were identified by bacterial biomarkers, while fungal PLFAs,
- actinobacterial PLFAs and protozoal PLFAs were assessed following the method of Huang et al.
- 164 (2014).
- The balance of each soil sample was passed through a 0.25-mm sieve for analysis of soil total
- nitrogen (TN) and total phosphorus (TP). TN and TP were measured by the semi-micro-Kjeldahl
- method (Bremner 1960) with a PerkinElmer 2400 series II CHNS/O analyzer (PerkinElmer, Inc.,
- Norwalk CA, USA) and a SPECTRO ARCOS EOP analyzer (Spectro, Inc., GER), respectively.
- 169 Data analysis
- Q_{10} is defined as the rate of increase in soil respiration as a consequence of increasing the
- temperature by 10 °C and is derived from the following relationships:

$$172 Rs = a \cdot e^{bT} (1)$$

173
$$Q_{10} = e^{10b}$$
 (2)

- where Rs (μ mol·m⁻²·s⁻¹) is soil respiration, T (°C) is the soil temperature at a depth of 5 cm, and a
- and *b* are fitted parameters.
- 176 The response of Rs to soil moisture was modeled using a quadratic polynomial function of the
- 177 following form:

$$178 Rs = ex^2 + fx + g (3)$$

- where Rs (μ mol·m⁻²·s⁻¹) is soil respiration; x (%) is the soil moisture content at a depth of 5 cm;
- and e, f and g are fitted parameters.
- All statistical analyses were performed using SPSS 12.0 (SPSS for Windows, Chicago, USA),
- and the SEM analyses were conducted using SPSS AMOS 24.0.0 (SPSS Inc, Chicago, USA).

Results

183 184

185

Soil temperature and moisture

- Soil temperature and soil moisture varied significantly among the three grazing systems in the
- same month during the period of observation (P<0.05, Fig. 1a and b). Soil temperatures exhibited
- 188 consistent seasonal dynamics across all grazing systems, with the maximum soil temperature
- occurring in July 2015 and the minimum occurring in December 2014 (Fig. 1a). The low-
- vegetation cover plots (year-long grazing and rest-rotation grazing systems) had higher soil
- temperatures than the high-vegetation cover plots (grazing exclusion system) due to the absence
- 192 of canopy shading.
- 193 The soil moisture content fluctuated substantially in response to irregular rainfall, peaking in
- 194 September 2015 (Fig. 1b). The average soil moisture content during observation was 7.89%,
- 195 9.87%, and 10.89% for the yearlong grazing, rest-rotation grazing and grazing exclusion plots,
- 196 respectively.
- 197 Soil respiration and Q_{10}

- 198 Rs showed significant variation among the grazing systems in all months (P<0.05). The Rs
- ranges were 0.07-1.89, 0.06-2.57 and 0.03-3.47 μ mol·m⁻²·s⁻¹ for the year-long grazing, rest-
- 200 rotation grazing and grazing exclusion systems, respectively (Fig. 1c). Rs was lowest in
- 201 December 2014 for all three grazing systems. It peaked in July for the grazing exclusion and rest-
- 202 rotation grazing plots and in August for the yearlong grazing plots (Fig. 1c). Averaged across the
- period of observation, Rs was highest in the rest-rotation plots (1.26 μmol·m⁻²·s⁻¹), followed by
- 204 the grazing exclusion (0.98 μmol·m⁻²·s⁻¹) and yearlong grazing (0.94 μmol·m⁻²·s⁻¹) plots. During
- 205 the 2015 growing season (from May to September), the average Rs values were 1.32, 1.81 and
- 206 1.42 μmol·m⁻²·s⁻¹ for the yearlong grazing, rest-rotation grazing and grazing exclusion systems,
- 207 respectively.

- 208 Significant exponential relationships were found between Rs and soil temperature for all grazing
- systems and sample times, with R^2 values ranging from 0.506 to 0.920 (Table 1). The Q_{10} values
- 210 for the grazing exclusion plots were lower than those for the yearlong grazing plots, except in
- July and September 2015, and were lower for the rest-rotation plots than for the yearlong grazing
- 212 plots, except in December 2014, July 2015 and September 2015 (Table 1). Very high Q₁₀ values
- 213 were recorded for all grazing systems in December 2014, and a relatively high value was
- 214 recorded for the grazing exclusion system in September 2015, indicating the heightened
- sensitivity of Rs to temperature at these times (Table 1).
- 216 A quadratic relationship between Rs and soil moisture was derived from the monthly soil
- 217 moisture measurements in each grazing system (Fig. 2). All relationships were significant
- 218 (P<0.001), with R² values ranging from 0.69 to 0.77. The effect of increasing soil moisture on Rs
- 219 was nonlinear at this study site.

Plant and soil properties

- 221 Aboveground biomass under the three grazing system increased over time within a growing
- season, and it was higher in the grazing exclusion system than in the other two systems for the
- same month (Fig. 3a). Root biomass showed remarkable variation between months, with the
- maximum biomass occurring in July 2015 (Fig. 3b). Root biomass was significantly higher in the
- rest-rotation grazing system than in the year-long grazing system in July and September and
- higher than in the grazing exclusion system in May, July and September (P<0.05). Rs increased
- 227 linearly with root biomass in all grazing systems as the growing season progressed (Fig. 4).
- TP and TN remained steady during the experiment in all grazing systems (Fig. 3c, d). The
- average TP content was 0.37, 0.32 and 0.42 g kg⁻¹, while the average TN content was 1.57, 1.63
- and 2.36 kg⁻¹ for the yearlong grazing, rest-rotation grazing and grazing exclusion systems,
- 231 respectively. Both the TN and TP contents of the grazing exclusion system were significantly
- 232 higher than the other two systems (P<0.05, Fig. 3c, d). MBC increased during the 2015 growing
- season in all systems (Fig. 3e). MBC of the grazing exclusion system was 49% higher than that
- of the yearlong grazing system in July and 42% higher in September. DOC decreased as the
- growing season progressed and was higher in the yearlong grazing system than in the other two
- 236 systems (Fig. 3f).

237

Phospholipid fatty acids

238 The total PLFAs declined at first and then increased from December 2014 to September 2015, and each kind of PLFA increased during the course of the growing season (Fig. 5a-e). The mean 239 240 total PLFA values for the yearlong grazing, rest-rotation grazing, and grazing exclusion systems in the growing season were 29.77, 31.9, 35.88 nmol g⁻¹, respectively. The highest levels for all 241 types of PLFAs were observed in the grazing exclusion system during September (Fig. 5a-e). The 242 243 average ratios of fungi to bacteria during the growing season were 0.17, 0.17 and 0.14 in the 244 yearlong grazing, rest-rotation grazing, and grazing exclusion systems, respectively. 245 Relationships among Q₁₀, Rs and other factors under different grazing systems Rs and Q₁₀ were affected by grazing, climate, DOC, plant and soil microbes; these factors were 246 247 related to each other. Therefore, the structural equation model (SEM) was used to explore the 248 influence mechanism of Rs and Q₁₀. The SEM explained 70% and 63% of the variance of Rs and Q₁₀, respectively, under different grazing systems (Fig. 6). Among the variables influencing Rs 249 250 and Q₁₀, the increase in PLFAs and soil temperature resulted in a highly significant enhancement 251 of Rs (P<0.001). The standardized total effect coefficients of PLFAs and soil temperature on Rs 252 were 0.634 and 0.621, respectively. The increase in the soil temperature by seasonal variation 253 resulted in a highly significant decrease in Q₁₀ (P<0.001), and the standardized total effect 254 coefficient was -0.775. Grazing had an insignificant negative direct effect (-0.051) on Rs, and an 255 indirect negative effect (-0.078) by decreasing aboveground biomass, PLFAs and soil moisture. Grazing had a small indirect positive effect (0.026) by decreasing the aboveground biomass and 256 257 increasing soil moisture on Q₁₀. The result of the SEM indicated that increased grazing inhibited 258 Rs and enhanced Q₁₀. When the standardized total effects were compared (Table 2), the effect of grazing on Rs and Q₁₀ was lower than the effects of soil temperature or moisture. 259

Discussion

260

261262

263

264

265

266267

268

269

270

271

272

273

274

275

276

277

Response of plant biomass, soil properties and microbial community to grazing

Grazing is well-acknowledged to have impacts on the growth of vegetation (Porensky et al., 2016), basic soil properties and soil microbial biomass (Raich and Nadelhoffer, 1989) in grassland ecosystems. In the present study, we found that root biomass in yearlong grazing and rest-rotation grazing systems were higher than that in grazing exclusion systems (Fig. 3). These results can be explained by the grazing optimization hypothesis proposed by McNaughton (1979), which suggested that moderate grazing stimulates vegetation regeneration. Moreover, plants would supply more nutrients to roots instead of shoots as a change in growth strategy due to grazing (Bai et al., 2015; Frank et al., 2002). But the root biomass increased significantly only in rest-rotation grazing systems, it indicated indicating that rest-rotation grazing could take into accountresult in economic benefits and grassland restoration.

We found that soil total carbon and total phosphorus were more abundant in the grazing exclusion system than in the yearlong grazing and rest-rotation grazing systems (Fig. 3). Similarly, previous studies also found that grazing had a negative effect on the storage of soil nutrients (Han et al., 2008), whereas fencing improved the physical and chemical properties of soil (Dormaar et al., 1989). Loss of soil nutrient elements may limit the growth of vegetation and

278 the soil microbial community, and it also could be an important reference index for the 279 establishment of grassland management mode. In contrast to inorganic elements, DOC increased 280 with intensified grazing during the growing season, except in July of 2015 when the rest-rotation grazing system was being implemented (Fig. 3f). DOC has been recognized to play an important 281 282 role in regulating soil carbon mineralization and soil respiration in grassland ecosystems (Zhou et 283 al., 2016). The increase in DOC caused by grazing provided more respiration substrates, which 284 may consequently enhance Rs. 285 Soil microbes are crucial in regulating Rs by transforming soil carbon into CO₂ flux during 286 decomposition (Chapin et al., 2011). We found that grazing generally suppressed the MBC in the 287 2015 growing season (Fig. 3e), which is consistent with results from Bardgett and Leemans 288 (1995). The result of the PLFA assays also showed that grazing significantly decreased the total 289 PLFAs, bacterial PLFAs and actinomycelial PLFAs in the middle and late growing season (Fig. 290 5). The decrease in microbial biomass is likely attributed to livestock trampling disturbing the 291 soil microenvironment and thus inhibiting soil microbe reproduction, although the increase in the 292 root biomass caused by grazing may provide more exudates, promoting microbial growth. We 293 also found that the F:B ratio in yearlong grazing and rest-rotation grazing systems was higher 294 than that in grazing exclusion systems. This increased F:B ratio by grazing might be attributed to 295 the grazing-induced increase in soil C:N ratio by increasing SOC and decreasing TN since 296 substrates with high C:N ratios are conducive to fungal growth. Fungi play an important role in a 297 large number of soil ecosystem processes, particularly in nutrient cycling and maintaining soil 298 structure (Wal et al., 2006). As a higher F:B ratio in soil could reflect a more stable ecosystem 299 status (Vries et al., 2006), moderate grazing might to some extent improve the stability of 300 grassland ecosystems.

Relationships between soil respiration and other factors under grazing

301

302

303

304 305

306

307

308

309

310

In accordance with the results of previous studies (Bao et al., 2016; Li and Sun, 2011), tight linkages among Rs and plant and soil properties were found in this study (Fig. 6). Compared to other factors, soil temperature had a significantly direct effect on Rs (R²=, p=) in the constructed SEM. Rs in all grazing systems increased exponentially with rising soil temperature, which is consistent with other findings (Yuste et al., 2004; Zhang et al., 2015b). Nonetheless, we also found that in August 2015, Rs decreased by 71.8% compared to that in July in the grazing exclusion system, while soil temperature was similar between these two months. This result indicates that in addition to soil temperature, other factors, e.g., soil moisture, might also contribute to monthly variation in Rs.

- 311 Soil moisture is one of the factors limiting ecological recovery in semiarid regions (Zhang et al.,
- 312 2015b). Soil moisture was considered a dominant driver of Rs when temperature was above 20
- 313 °C in a semiarid steppe ecosystem in Spain (Rey et al., 2011). According to the results of the
- 314 SEM, soil moisture directly inhibited Rs (Fig. 6). It is suggested that high soil moisture may
- reduce Rs because the water in the soil interstices affects gaseous diffusion (Liu et al., 2014).
- However, high soil moisture can also enhance the transport of organic matter among soil and
- 317 metabolic activity of soil microbes (Michalzik et al., 2003). The positive and negative effects of
- 318 moisture on Rs exist simultaneously, and their relationship fit the quadratic function well,

```
echoing the findings of Suseela et al., (2012). It may also explain why the Rs of the three grazing
319
320
       systems peaked in different months. In July and August, higher soil temperature caused moisture
321
       to become a major limiting factor of Rs; therefore, the difference in Rs between yearlong grazing
322
       and grazing exclusion aligned with changes in soil moisture. This resulted in the Rs of grazing
323
       exclusion systems peaking in July, while the Rs of yearlong grazing systems peaked in August.
324
       In the rest-rotation grazing system, Rs peaked in July but did not show a significant difference
325
       (P<0.05) between July and August. This finding was probably due to root biomass being the
326
       highest in rest-rotation grazing systems (Fig. 3), so rhizosphere respiration became the main
       component of Rs, and it was thus less sensitive to surface soil moisture. Due to the nonlinear
327
328
       effect of soil moisture on Rs, identifying the nonlinearities and thresholds could reduce some
329
       uncertainties associated with climate change decision-making.
330
       In the present study, the average Rs from May to September was highest in the rest-rotation
       grazing system (1.81 µmol·m<sup>-2</sup>·s<sup>-1</sup>), followed by the grazing exclusion system (1.41 µmol·m<sup>-2</sup>·s<sup>-1</sup>)
331
       and the yearlong grazing system (1.32 µmol·m<sup>-2</sup>·s<sup>-1</sup>). This result indicated that grazing had a
332
333
       significant impact on Rs in a temperate typical steppe that was not only inhibitory, thus
334
       contradicting our first hypothesis that grazing inhibited Rs. Similarly, a study conducted under
335
       different land uses in Inner Mongolia reported that the average Rs during the growing season was
       1.43±0.04 µmol·m<sup>-2</sup>·s<sup>-1</sup> for free grazing (only during the growing season with 9 sheep ha<sup>-1</sup>) and
336
        1.37±0.03 µmol·m<sup>-2</sup>·s<sup>-1</sup> for enclosed grassland grazing (Xue and Tang, 2018). In contrast to the
337
338
       findings of the study, the higher Rs observed under rest-rotation grazing system in our study was
339
       likely due to the lower grazing intensity (2~4.5 vs 9 sheep ha<sup>-1</sup>). Rest-rotation grazing accelerated
340
       the soil carbon mineralization rate, and also reduced soil carbon stocks and increased the
341
       greenhouse effect.
342
       In the SEM, grazing showed a minor negative direct effect on Rs, which could be explained as an
343
       increase in soil bulk density and compactness by grazing that might block gas exchange. The
       indirect effects of grazing on Rs were mainly mediated by plant and microbial factors. Our study
344
345
       found that the mean Rs and root biomass were highest under rest-rotation grazing, probably
       because grazing accelerated the nutrient cycle (Allard et al., 2007) and increased the transfer of
346
347
       plant biomass to roots (Milchunas and Lauenroth, 1993). Previous research (Tu et al., 2013; Sun
348
       et al., 2013) has shown that environmental factors affect root respiration through changes in root
349
       biomass. The root biomass was higher in grazing systems, and Rs increased linearly with root
350
       biomass in all grazing systems (Fig. 4). This finding suggests that grazing enhanced soil
351
       respiration by increasing root biomass.
352
       Soil microbial respiration was one of the main contributors to Rs. A previous study showed that
353
       the response of Rs to grazing was positively correlated with soil microbial biomass under
354
       moderate and heavy grazing intensities (Zhao et al., 2017). In addition, the substrate supply from
355
       photosynthesis is a main factor affecting Rs, and the aboveground biomass is proportional to Rs
356
       (Kuzyakov and Gavrichkova, 2010). In this study, Rs was positively correlated positively to
357
       aboveground biomass and microbial biomass (Fig. 6). Previous studies have shown that DOC
358
       was the substrate of soil microbial respiration, and its content and degree of decomposition
359
       positively correlated with Rs (Moinet et al., 2016). However, DOC had a negative effect on Rs in
```

360 this study mainly because the decrease in soil microbes by grazing weakened the restrictive effect 361 of DOC on Rs. In conclusion, grazing inhibited respiration by suppressing aboveground biomass, 362 soil moisture and soil microbial biomass. These results were consistent with the second 363 hypothesis that grazing enhanced rhizosphere respiration but inhibited microbial respiration. 364 The relationships between the temperature sensitivity of soil respiration and other factors 365 under grazing 366 Previous studies have reported that the O₁₀ of Rs is negatively correlated with soil temperature in 367 northern temperate grasslands (Flanagan and Johnson, 2005). The higher values of Q₁₀ in 368 December of 2014 and March of 2015 in our study was were consistent with that result, 369 indicating that Rs could be extremely sensitive to temperature changes at very low soil 370 temperatures. The decrease in the Q_{10} with increasing temperature could be related to a decline in 371 Q₁₀ of microbial respiration, which contributed a great proportion to Rs. A previous study 372 conducted in forest soils found that the Q₁₀ of SOM decomposition rates decreases with the 373 increase of soil temperature and moisture (Schindlbacher et al., 2010), which was similar to the 374 Q₁₀ of Rs in our study (Fig. 6). This finding can be explained by the differential response of 375 enzyme activity and substrate affinity to increased temperature. Enzyme activity was inhibited at 376 low temperatures and could be enhanced by soil temperature, but the decline in enzyme substrate 377 affinity with increased temperature could offset the promotion of soil enzyme activity (Li et al., 378 2017), resulting in higher O₁₀ and decomposition potential of SOM at low temperatures. Rs 379 increased rapidly after removing the temperature limit; the limiting effect of temperature and the 380 rate of increase in Rs decreased gradually in this process, meaning that Q₁₀ decreased with 381 increasing soil temperature. Q₁₀ decreased more slowly as limitations were removed. 382 The main components of Rs are autotrophic respiration (rhizosphere respiration) and 383 heterotrophic respiration (microbial respiration). Sensitivity of different components to 384 temperature determine the total O_{10} of Rs. Evidence regarding the response of O_{10} to grazing has 385 been inconsistent. Q₁₀ increased under grazing exclusion in a meadow grassland (Chen et al., 386 2016) but was stimulated by grazing in another temperate grassland (Paz-Ferreiro et al., 2012). In 387 this study, the temperature sensitivity of Rs in the two grazing systems was higher than that in the 388 grazing exclusion system. Consistent with the third hypothesis, the increased Q₁₀ from grazing in 389 this study could be explained by the higher fine root biomass in grazing systems and higher Q_{10} 390 value for rhizosphere respiration (Rr) (Boone, et al., 1998). In addition, the 'rhizosphere priming 391 effect' increased the availability of labile carbon by root exudation or fresh litter, which enhanced 392 the Q₁₀ of heterotrophic respiration (Hopkins et al., 2013; Zhu and Cheng, 2011). These results 393 indicate that Rs in the grassland is more susceptible to rising temperature under grazing. 394 Compared with yearlong grazing, rest-rotation grazing could be a reasonable way of avenue to 395 grassland sustainable development, but the increased of soil CO₂ emissions and loss of soil 396 nutrient elements caused by rest-rotation grazing are inescapable. Given Grassland grassland 397 degradation caused by long-term grazing in typical steppe, grazing exclusion could be an 398 effective way to promote grassland restoration. Due to lack of long-term observational data and 399 multiple replicates in each plot, and because respiration of different components cannot be 400 characterized accurately by microbial biomass and root biomass, this the results of this study had

have some limitations. Future studies can set multiple gradients of grazing time or intensity to explore the varying effects of grazing, and focus on changes of different components of Rs under grazing by more effective means., and longLong-term measurements of Rs and soil organic matter should be performed.

Conclusions

 In this study, the mean Rs varied significantly among different grazing systems. Diverse effects of grazing management on soil CO₂ flux occurred in this temperate grassland, as the mean Rs was lowest in the year-long grazing system but highest in the rest-rotation grazing system. The difference in Rs among the grazing systems was closely associated with changes in soil temperature, soil moisture, potential substrate availability and soil microbial activity. Since rhizospheric respiration increased with increasing root biomass stimulated by grazing and was more sensitive to increased temperature, the temperature sensitivity (Q₁₀) of Rs was enhanced in grazing systems. Therefore, grazing has the potential to make Rs more susceptible to global warming. In addition, the occurrence of the highest contents of TN, TP and MBC in the grazing exclusion system demonstrated the value of grazing exclusion for conserving soil nutrients and microbial biomass. Higher F:B ratios in the grazing systems were likely due to more suitable soil management. By altering plant roots and their control over the soil microbial community, grazing profoundly influences soil decomposition and thus can regulate the carbon budget in grassland ecosystems. A better understanding of the effects of grazing on Rs has practical implications for ecological restoration in a typical steppe.

Acknowledgements

This work was funded by National Natural Science Foundation of China (31770519) and the National Key R&D Program of China (2017YFC0503805). We thank the Duolun Restoration Ecology Research Station (part of the Institute of Botany, Chinese Academy of Sciences) for providing access to the study site.

References

- 431 Adams JM, Woodward FI. 1990. Increases in terrestrial carbon storage from the Last Glacial
- 432 Maximum to the present. *Nature* **348**: 711-714 DOI: 10.1038/348711a0.
- 433 Allard V, Soussana J-F, Falcimagne R, Berbigier P, Bonnefond JM, Ceschia E, D'hour P,
- 434 Hénault C, Laville P, Martin C, Pinarès-Patino C. 2007. The role of grazing management for
- 435 the net biome productivity and greenhouse gas budget (CO₂, N₂O and CH₄) of semi-natural
- 436 grassland. Agriculture, Ecosystems & Environment 121: 47-58 DOI: 10.1016/j.agee.2006.12.004.
- 437 Bai WM, Fang Y, Zhou M, Xie T, Li LH, Zhang WH. 2015. Heavily intensified grazing
- 438 reduces root production in an Inner Mongolia temperate steppe. Agriculture, Ecosystems &
- 439 Environment 200: 143-150 DOI: 10.1016/j.agee.2014.11.015.

- 440 Bao XY, Zhu XX, Chang XF, Wang SP, Xu BRBY, Luo CY, Zhang ZH, Wang Q, Rui YC,
- 441 Cui XY. 2016. Effects of soil temperature and moisture on soil respiration on the tibetan plateau.
- 442 *PLoS One* 11: e0165212 DOI: 10.1371/journal.pone.0165212.
- Bardgett RD, Leemans DK. 1995. The short-term effects of cessation of fertiliser applications,
- liming, and grazing on microbial biomass and activity in a reseeded upland grassland soil.
- 445 *Biology and Fertility of Soils* **19**: 148-154 DOI: 10.1007/BF00336151.
- Boone RD, Nadelhoffer KJ, Canary JD, Kaye JP. 1998. Roots exert a strong influence on the
- temperature sensitivity of soil respiration. *Nature* **396**: 570-572 DOI: 10.1038/25119.
- 448 Bossio DA, Fleck JA, Scow KM, Fujii R. 2006. Alteration of soil microbial communities and
- water quality in restored wetlands. *Soil Biology and Biochemistry* **38**: 1223-1233 DOI:
- 450 10.1016/j.soilbio.2005.09.027.
- 451 **Bossio DA, Scow KM. 1998.** Impacts of Carbon and Flooding on Soil Microbial Communities:
- 452 Phospholipid Fatty Acid Profiles and Substrate Utilization Patterns. *Microbial Ecology* **35**; 265-
- 453 278 DOI: 10.1007/s002489900082.
- 454 Bremer DJ, Ham JM, Owensby CE, Knapp AK. 1998. Responses of soil respiration to
- 455 clipping and grazing in a tallgrass prairie. *Journal of Environmental Quality* 27: 1539-1548 DOI:
- 456 10.2134/jeq1998.00472425002700060034x.
- 457 **Bremner JM. 1960.** Determination of nitrogen in soil by the Kjeldahl method. *Journal of*
- 458 *Agricultural Science* **55**: 11-33 DOI:10.1017/S0021859600021572.
- 459 Cao GM, Tang YH, Mo WH, Wang YA, Li YN, Zhao XQ. 2004. Grazing intensity alters soil
- respiration in an alpine meadow on the Tibetan plateau. Soil Biology and Biochemistry 36: 237-
- 461 243 DOI: 10.1016/j.soilbio.2003.09.010.
- 462 Chapin FS, Matson PA, Vitousek PM. 2011. Principles of Terrestrial Ecosystem Ecology,
- second ed. Springer.
- Chen J, Zhou XH, Wang JF, Hruska T, Shi WY, Cao JJ, Zhang BC, Xu GX, Chen YZ, Luo
- 465 YQ. 2016. Grazing exclusion reduced soil respiration but increased its temperature sensitivity in
- a Meadow Grassland on the Tibetan Plateau. *Ecology and Evolution* **6**: 675-687 DOI:
- 467 10.1002/ece3.1867.
- 468 Craine JM, Wedin DA. 2002. Determinants of growing season soil CO₂ flux in a Minnesota
- 469 grassland. *Biogeochemistry* **59**: 303-313 DOI: 10.1023/A:1016019728665.
- 470 **Dormaar JF, Smoliak S, Willms WD. 1989.** Vegetation and soil responses to short-duration
- 471 grazing on fescue grasslands. *Journal of Range Management* 42: 252-256 DOI:
- **472** 10.2307/3899484.
- 473 Frank DA, Kuns MM, Guido DR. 2002. Consumer control of grassland plant production.
- 474 *Ecology* **83**: 602-606 DOI: 10.1890/0012-9658(2002)083[0602:CCOGPP]2.0.CO;2.
- 475 Flanagan LB, Johnson BG. 2005. Interacting effects of temperature, soil moisture and plant
- 476 biomass production on ecosystem respiration in a northern temperate grassland. Agricultural and
- 477 Forest Meteorology 130: 237-253 DOI: 10.1016/j.agrformet.2005.04.002.
- 478 Han GD, Hao XY, Zhao ML, Wang MJ, Ben HE, Walter W, Wang MJ. 2008. Effect of
- grazing intensity on carbon and nitrogen in soil and vegetation in a meadow steppe in Inner
- 480 Mongolia. *Agriculture, Ecosystems & Environment* **125**: 21-32 DOI: 10.1016/j.agee.2007.11.009.

- 481 He NP, Yu Q, Wu L, Wang YS, Han XG. 2008. Carbon and nitrogen store and storage
- potential as affected by land-use in a *Leymus chinensis* grassland of northern China. *Soil Biology*
- 483 & Biochemistry 40: 2952-2959 DOI: 10.1016/j.soilbio.2008.08.018.
- 484 Hopkins F, Gonzalez-Meler MA, Flower CE, Lynch DJ, Czimczik C, Tang JW, Subke JA.
- 485 **2013.** Ecosystem-level controls on root-rhizosphere respiration. *New Phytologist* **199**: 339-351
- 486 DOI: 10.1111/nph.12271.
- 487 Huang XM, Liu SR, Wang H, Hu ZD, Li ZG, You YM. 2014. Changes of soil microbial
- 488 biomass carbon and community composition through mixing nitrogen-fixing species with
- 489 Eucalyptus urophylla in subtropical China. Soil Biology & Biochemistry 73: 42-48 DOI:
- 490 10.1016/j.soilbio.2014.01.021.
- 491 Jiao Y, Xu Z, Zhao JH, Yang WZ. 2012. Changes in soil carbon stocks and related soil
- 492 properties along a 50-year grassland-to-cropland conversion chronosequence in an agro-pastoral
- 493 ecotone of Inner Mongolia, China. *Journal of Arid Land* 4: 420-430 DOI:
- 494 10.3724/SP.J.1227.2012.00420.
- 495 Kioko J, Kiringe JW, Seno SO. 2012. Impacts of livestock grazing on a savanna grassland in
- 496 Kenya. *Journal of Arid Land* 4: 29-35 DOI: 10.3724/SP.J.1227.2012.00029.
- 497 Kuzyakov Y, Gavrichkova. 2010. REVIEW: Time lag between photosynthesis and carbon
- 498 dioxide efflux from soil: a review of mechanisms and controls. Global Change Biology 16: 3386-
- 499 3406 DOI: 10.1111/j.1365-2486.2010.02179.x.
- 500 Li DD, Fan JJ, Zhang XY, Xu XL, He NP, Wen XF, Sun XM, Blagodatskaya E, Kuzyakov
- 501 Y. 2017. Hydrolase kinetics to detect temperature-related changes in the rates of soil organic
- matter decomposition. European Journal of Soil Biology 81: 108-115 DOI:
- 503 10.1016/j.ejsobi.2016.10.004.
- Li GY, Sun SC. 2011. Plant clipping may cause overestimation of soil respiration in a Tibetan
- alpine meadow, southwest china. Ecological Research 26: 497-504 DOI: 10.1007/s11284-011-
- 506 0806-7.
- 507 Li Q, Bai HH, Liang WJ, Xia JY, Wan SQ, Van der Putten WH. 2013. Nitrogen addition and
- warming independently influence the belowground micro-food web in a temperate steppe. *PLoS*
- 509 One 8: e60441 DOI: 10.1371/journal.pone.0060441.
- 510 Liu HC, Zang RG, Chen HY. 2016. Effects of grazing on photosynthetic features and soil
- respiration of rangelands in the Tianshan Mountains of Northwest China. *Scientific Reports* 6:
- 512 30087 DOI: 10.1038/srep30087.
- 513 Liu YC, Liu SR, Wang JX, Zhu XL, Zhang YD, Liu XJ. 2014. Variation in soil respiration
- under the tree canopy in a temperate mixed forest, central China, under different soil water
- 515 conditions. *Ecological Research* **29**: 133-142 DOI: 10.1007/s11284-013-1110-5.
- McNaughton SJ. 1979. Grazing as an optimization process: grass-ungulate relationships in the
- 517 Serengeti. *American Naturalist* **113**: 691-703 DOI: 10.1086/283426.
- 518 Miao HX, Chen SP, Chen JQ, Zhang WL, Zhang P, Wei L, Han XG, Lin GH. 2009.
- 519 Cultivation and grazing altered evapotranspiration and dynamics in Inner Mongolia steppes.
- 520 Agricultural and Forest Meteorology **149**, 1810-1819 DOI: 10.1016/j.agrformet.2009.06.011.

- 521 Michalzik B, Tipping E, Mulder J, Lancho JFG, Matzner E, Bryant CL, Clarke N, Lofts S,
- 522 Esteban MAV. 2003. Modelling the production and transport of dissolved organic carbon in
- 523 forest soils. *Biogeochemistry* **66**: 241-264 DOI: 10.1023/B:BIOG.0000005329.68861.27.
- 524 Moinet GYK, Cieraad E, Hunt JE, Fraser A, Turnbull MH, Whitehead D. 2016. Soil
- 525 heterotrophic respiration is insensitive to changes in soil water content but related to microbial
- 526 access to organic matter. *Geoderma* 274: 68-78 DOI: 10.1016/j.geoderma.2016.03.027.
- 527 Paz-Ferreiro J, Medina-Roldan E, Ostle NJ, McNamara NP, Bardgett RD. 2012. Grazing
- 528 increases the temperature sensitivity of soil organic matter decomposition in a temperate
- 529 grassland. *Environmental Research Letters* 7: 2039-2049 DOI: 10.1088/1748-9326/7/1/014027.
- Piao SL, Fang JY, Ciais P, Peylin P, Huang Y, Sitch S, Wang T. 2009. The carbon balance of
- terrestrial ecosystems in China. *Nature* **458**: 1009-1013 DOI: 10.1038/nature07944.
- Porensky LM, Mueller KE, Augustine DJ, Derner JD. 2016. Thresholds and gradients in a
- 533 semi-arid grassland: long-term grazing treatments induce slow, continuous and reversible
- vegetation change. *Journal of Applied Ecology* **53**: 1013-1022 DOI: 10.1111/1365-2664.12630.
- Raich JW, Nadelhoffer KJ. 1989. Belowground carbon allocation in forest ecosystems: global
- 536 trends. *Ecology* **70**: 1346-1354 DOI: 10.2307/1938194.
- 537 Raich JW, Schlesinger WH. 1992. The global carbon dioxide flux in soil respiration and its
- relationship to vegetation and climate. Tellus B: Chemical and Physical Meteorology 44:81-99
- 539 DOI: 10.1034/j.1600-0889.1992.t01-1-00001.x.
- Rey A, Pegoraro E, Oyonarte C, Were A, Escribano P, Raimundo J. 2011. Impact of land
- degradation on soil respiration in a steppe (StiPa tenacissima L.) semi-arid ecosystem in the SE
- 542 of Spain. Soil Biology & Biochemistry 43: 393-403 DOI: 10.1016/j.soilbio.2010.11.007.
- 543 Schindlbacher A, de Gonzalo C, Diaz-Pines E, Gorria P, Matthews B, Inclan R,
- **Zechmeister-Boltenstern S, Rubio A, Jandl R. 2010.** Temperature sensitivity of forest soil
- organic matter decomposition along two elevation gradients. Journal of Geophysical Research
- 546 **115**: G03018 DOI: 10.1029/2009JG001191.
- 547 Shi BK, Gao WF, Jin GZ. 2015. Effects on rhizospheric and heterotrophic respiration of
- 548 conversion from primary forest to secondary forest and plantations in northeast China. European
- *Journal of Soil Biology* **66**: 11-18 DOI: 10.1016/j.ejsobi.2014.11.003.
- 550 Stark S, Strommer R, Tuomi J. 2002. Reindeer grazing and soil microbial processes in two
- suboceanic and two subcontinental tundra heaths. Oikos 97: 69-78 DOI: 10.1034/j.1600-
- 552 0706.2002.970107.x.
- 553 Sun HF, Zhu JG, Xie ZB, Liu G, Tang HY. 2013. Effect of Atmospheric CO₂ Enrichment on
- Soil Respiration in Winter Wheat Growing Seasons of a Rice-Wheat Rotation System.
- 555 *Pedosphere* **23**: 752-766 DOI: 10.1016/S1002-0160(13)60067-3.
- Suseela V, Conant RT, Wallenstein MD, Dukes J. 2012. Effects of soil moisture on the
- temperature sensitivity of heterotrophic respiration vary seasonally in an old-field climate change
- 558 experiment. Global Change Biology 18: 336-348 DOI: 10.1111/j.1365-2486.2011.02516.x.
- Tu LH, Hu TX, Zhang J, Li XW, Hu HL, Liu L, Xiao YL. 2013. Nitrogen addition stimulates
- different components of soil respiration in a subtropical bamboo ecosystem. Soil Biology and
- 561 *Biochemistry* **58**: 255-264 DOI: 10.1016/j.soilbio.2012.12.005.

- Vance ED, Brookes PC, Jenkinson DS. 1987. An extraction method for measuring soil
- microbial biomass-C. Soil Biology and Biochemistry 19: 703–707 DOI: 10.1016/0038-
- 564 0717(87)90052-6.
- Vries FTD, Hoffland E, Eekeren NV, Brussaard L, Bloem J. 2006. Fungal/bacterial ratios in
- grasslands with contrasting nitrogen management. Soil Biology and Biochemistry 38: 2092-2103
- 567 DOI: 10.1016/j.soilbio.2006.01.008.
- Wang H, Liu HY, Wang TH, Xu W, Liu AR, Ma ZY, Mi ZR, Zhang ZH, Wang SP, He JS.
- 569 2017. Warm- and cold- season grazing affect soil respiration differently in alpine grasslands.
- 570 Agriculture, Ecosystems & Environment 248: 136-143 DOI: 10.1016/j.agee.2017.07.041.
- Wal AVD, Veen JA, Smant W, Boschker HTS, Bloem J, Kardol P, Putten WHVD, Boer
- **WD. 2006.** Fungal biomass development in a chronosequence of land abandonment. *Soil Biology*
- *and Biochemistry* **38**: 51-60 DOI: 10.1016/j.soilbio.2005.04.017.
- 574 Xu M, Qi Y. 2001. Soil-surface CO₂ efflux and its spatial and temporal variations in a young
- ponderosa pine plantation in northern California. *Global Change Biology* **7**:667-677 DOI:
- 576 10.1046/j.1354-1013.2001.00435.x.
- 577 Xue HL, Tang HP. 2018. Responses of soil respiration to soil management changes in an
- agropastoral ecotone in Inner Mongolia, China. *Ecology and Evolution* **8**: 220-230 DOI:
- 579 10.1002/ece3.3659.
- Yuste JC, Janssens IA, Carrara A, Ceulemans R. 2004. Annual Q₁₀ of soil respiration reflects
- plant phenological patterns as well as temperature sensitivity. Global Change Biology 10: 161-
- 582 169 DOI: 10.1111/j.1529-8817.2003.00727.x.
- Zhang YJ, Huang D, Badgery WB, Kemp DR, Chen WQ, Wang XY, Liu N. 2015a. Reduced
- grazing pressure delivers production and environmental benefits for the typical steppe of north
- 585 China. *Scientific Reports* **5**: 16434 DOI: 10.1038/srep16434.
- Zhang YJ, Guo SL, Liu QF, Jiang JS, Wang R, Li NN. 2015b. Responses of soil respiration to
- land use conversions in degraded ecosystem of the semi-arid Loess Plateau. *Ecological*
- 588 Engineering 74: 196-205 DOI: 10.1016/j.ecoleng.2014.10.003.
- Zhao FZ, Ren CJ, Shelton S, Wang ZT, Pang GW, Chen J, Wang J. 2017. Grazing intensity
- 590 influence soil microbial communities and their implications for soil respiration. Agriculture
- 591 Ecosystems & Environment **249**: 50-56 DOI: 10.1016/j.agee.2017.08.007.
- **Zhao JX, Luo TX, Li RC, Li X, Tian LH. 2016.** Grazing effect on growing season ecosystem
- respiration and its temperature sensitivity in alpine grasslands along a large altitudinal gradient
- on the central Tibetan Plateau. *Agricultural and Forest Meteorology* **218**: 114-121 DOI:
- 595 10.1016/j.agrformet.2015.12.005.
- 596 Zhou GY, Zhou XH, He YH, Shao JJ, Hu ZH, Liu RQ, Zhou HM, Hosseinibai S. 2016.
- 597 Grazing intensity significantly affects belowground carbon and nitrogen cycling in grassland
- ecosystems: a meta-analysis. Global Change Biology 23: 1167-1179 DOI: 10.1111/gcb.13431.
- 599 Zhu B, Cheng WX. 2011. Rhizosphere priming effect increases the temperature sensitivity of
- soil organic matter decomposition. Global Change Biology 17: 2172-2183 DOI: 10.1111/j.1365-
- 601 2486.2010.02354.x.

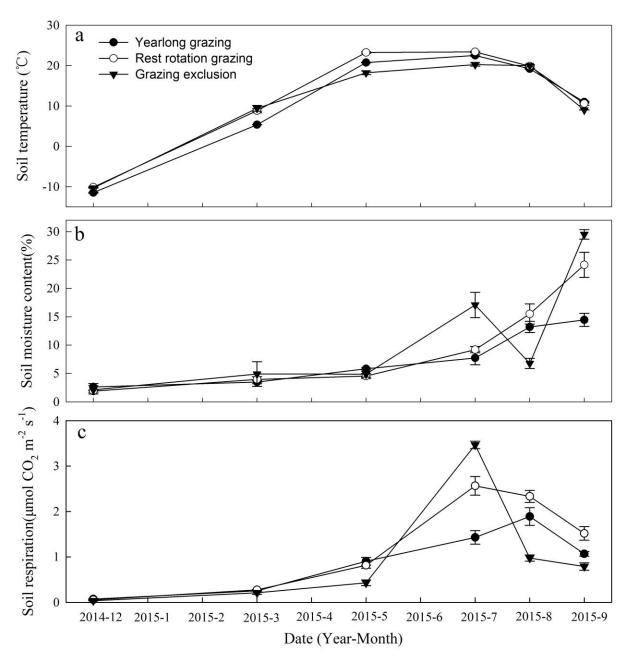


FIG1 Dynamics of (a) soil temperature, (b) soil moisture content and (c) soilrespiration under three different grazing systems from December 2014 to September 2015.

The error bars represent the standard errors.

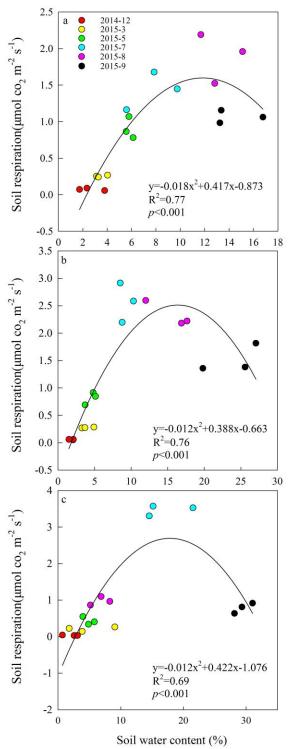



FIG2 Quadratic relationships between soil respiration and soil moisture from December 2014 to September 2015 in (a) yearlong grazing system,(b) rest-rotation grazing system, (c) grazing exclusion system.

R ² is the goodness of fit for the function, and the P value is the significance of the overall function.

Date (Year-Month)

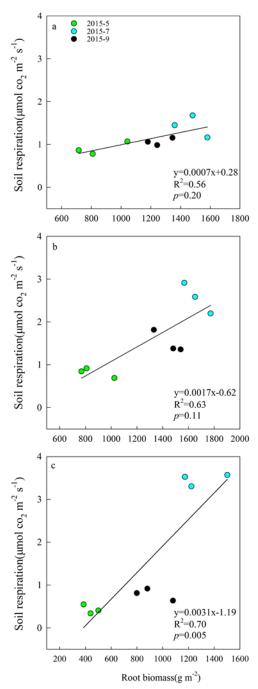


FIG4 Linear relationships between soil respiration and root biomass in May, July and September 2015 under (a) yearlong grazing system,(b)rest-rotation grazing system and (c)grazing exclusion system.

R ² is the goodness of fit for the function, and the P value is the significance of the overall function.

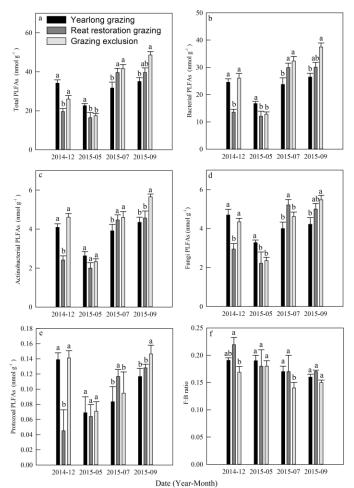


FIG5 Dynamics of phospholipid fatty acids (PLFAs, nmol g-1) under different grazing systems from December 2014 to September 2015 showing(a) total PLFAs, (b) bacterial PLFAs, (c) actinobacterial PLFAs, (d) fungalPLFAs, (e) protozoal PLFAs and (f) the ratio of fungal: bacterial PLFAs (F:B ratio).

The different letters represent significant differences (P < 0.05) among the different grazing

systems in the same month. The error bars represent the standard errors.

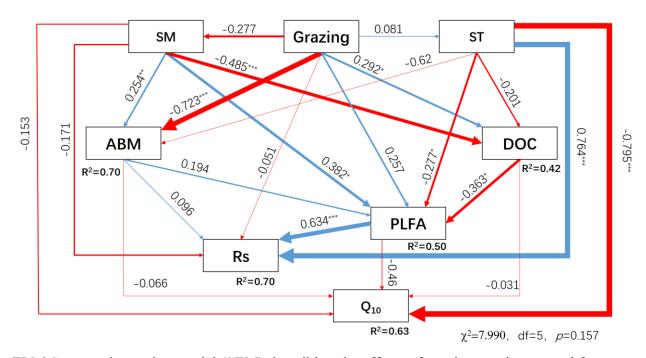


FIG6 Structural equation model (SEM) describing the effects of grazing, environmental factors, and biotic factors on soil respiration and Q_{10} .

The SEM was performed with data from December 2014 and from May, July and September 2015. ST, SM, ABM, DOC, PLFA, Rs and Q_{10} represent the soil temperature, soil moisture, aboveground biomass, dissolved organic carbon, phospholipid fatty acids, soil respiration and temperature sensitivity for Rs, respectively. The blue or red lines, the direction of the arrows and the thickness of the lines indicate positive or negative effects, the direction of the effects and the severity of the effects, respectively. R^2 denotes the proportion of variables explained by these drivers. The numbers close to the lines are the standardized direct influence coefficients. The *, ** and *** at the top right of the numbers indicate that the effects were significant at P<0.05, P<0.01 and P<0.001, respectively. χ^2 , chi-square; df, degrees of freedom; p, probability level.

Table 1 Temporal variation in the soil respiration—temperature relationship (equation 1) and Q $_{10}$ among three grazing systems. The R 2 and P values refer to equation 1.

Date	Grazina avetame	Equation 1	0	\mathbb{R}^2	P	
Year/month	Grazing systems	$R_s = a \cdot e^{bT}$	Q_{10}	K-	Г	
	Yearlong grazing	$2.298e^{0.308T}$	21.76	0.804	< 0.001	
2014-12	Rest rotation grazing	$1.191e^{0.331T}$	27.39	0.740	< 0.001	
	Grazing exclusion	$0.541e^{0.298T}$	19.69	0.644	< 0.001	
	Yearlong grazing	$0.14e^{0.100T}$	2.72	0.506	< 0.001	
2015-03	Rest rotation grazing	$0.113e^{0.092T}$	2.51	0.655	< 0.001	
	Grazing exclusion	$0.111e^{0.06T}$	1.82	0.677	< 0.001	
	Yearlong grazing	$0.171e^{0.067T}$	1.95	0.736	< 0.001	
2015-05	Rest rotation grazing	$0.288e^{0.053T}$	1.70	0.883	< 0.001	
	Grazing exclusion	$0.166e^{0.049T}$	1.63	0.889	< 0.001	

2015-07	Yearlong grazing	$0.810e^{0.024T}$	1.28	0.743	< 0.001
	Rest rotation grazing	$0.975e^{0.041T}$	1.51	0.883	< 0.001
	Grazing exclusion	$1.496e^{0.04T}$	1.49	0.750	< 0.001
2015-08	Yearlong grazing	$0.614e^{0.056T}$	1.75	0.920	< 0.001
	Rest rotation grazing	$0.950e^{0.044T}$	1.55	0.901	< 0.001
	Grazing exclusion	$0.545e^{0.028T}$	1.32	0.789	< 0.001
2015-09	Yearlong grazing	$0.655e^{0.043T}$	1.54	0.746	< 0.001
	Rest rotation grazing	$0.948e^{0.043T}$	1.54	0.915	< 0.001
	Grazing exclusion	$0.125e^{0.193T}$	6.89	0.855	< 0.001

Table 2 Standardized total effects of ST, SM, grazing, ABM, DOC and PLFAs on ABM, DOC,
 Rs and Q 10.

~						
	Grazing	SM	ST	ABM	DOC	PLFA
SM	-0.277					
ST	0.081					
ABM	-0.799	0.254	-0.062			
DOC	0.409	-0.485	-0.201			
PLFA	-0.174	0.607	-0.216	0.194	-0.363	
Q_{10}	0.026	-0.183	-0.775	-0.075	-0.014	-0.046
Rs	-0.129	0.238	0.621	0.219	-0.230	0.634

ST, SM, ABM, DOC, PLFAs, Rs and Q ₁₀ represent soil temperature, soil moisture, aboveground biomass, dissolved organic carbon, phospholipid fatty acids, soil respiration and temperature sensitivity of soil respiration respectively.NE.Bib