Soil respiration and its Q_{10} response to various grazing systems of a typical steppe in Inner Mongolia, China

Cheng Nie¹, Yue Li¹, Lei Niu¹, Yinghui Liu¹, Rui Shao², Xia Xu¹, Yuqiang Tian¹

¹State Key Laboratory of Earth Surface Processes and Resource Ecology, Faculty of Geographical Science, Beijing Normal University, Beijing, China
²Department of Geography, Ghent University, Ghent, Belgium

Corresponding Author:
Yinghui Liu¹
No. 19, XinJieKouWai St., Beijing, 100875, China
Email address: lyh@bnu.edu.cn

Abstract

Background: As one of the important management practices of grassland ecosystems, grazing has fundamental effects on soil properties, vegetation and soil microbes. Grazing can thus alter soil respiration and the soil carbon cycle, yet its impacts and mechanisms remain unclear.

Methods: To explore the response of soil carbon flux and temperature sensitivity to different grazing systems, soil respiration (R_s), soil temperature (ST) and soil moisture (SM) were observed from December 2014 to September 2015 in a typical steppe of Inner Mongolia under three grazing systems: yearlong grazing, rest-rotation grazing and grazing exclusion. In addition, plant aboveground and root biomass, soil microbial biomass and community composition, and soil nutrients were measured during the pilot period.

Results: R_s was significantly different among the three grazing systems. The average R_s was highest under rest-rotation grazing (1.26 μmol·m$^{-2}$·s$^{-1}$), followed by grazing exclusion (0.98 μmol·m$^{-2}$·s$^{-1}$) and year-long grazing (0.94 μmol·m$^{-2}$·s$^{-1}$). R_s was closely associated with ST, SM, potential substrate and root and soil microbe activity. The effects of grazing among two grazing systems had generality, but were different due to grazing intensity. The root biomass was stimulated by grazing, and the rest-rotation grazing system resulted in the highest R_s. Grazing led to decreases in aboveground and microbial biomass as well as the loss of soil total nitrogen and total phosphorus from the steppe ecosystem, which explained the negative effect of grazing on R_s in the yearlong grazing system than in compared to the grazing exclusion system. The temperature sensitivity of R_s (Q_{10}) was higher in the rest-rotation and year-long grazing systems, likely due to the higher temperature sensitivity of rhizosphere respiration and higher 'rhizosphere priming effect' in the promoted root biomass. The structural equation model analysis showed that while

...
grazing inhibited Rs by reducing soil aeration porosity, ground biomass and soil moisture, it increased Q_{10} but had a lower effect than other factors. A better understanding of the effects of grazing on soil respiration has important practical implications.

Keywords
soil respiration; temperature sensitivity; grazing; soil microbial community

Introduction
The carbon stored in soil and vegetation plays an important role in the carbon pool of a terrestrial ecosystem. The terrestrial ecosystem carbon cycle includes carbon sources and sinks in the air, plants, and soil communities (Piao et al., 2009). Carbon is accumulated by plant photosynthesis and released by soil respiration (Rs). Rs is fundamental to the global carbon cycle because even small variations in soil respiration can influence the atmospheric CO$_2$ concentration and soil organic carbon (SOC) storage (Zhang et al., 2015b). Studying Rs and its temperature sensitivity can contribute to the understanding of how the terrestrial C cycle will respond to rising temperatures under global climate change.

Temperate grassland ecosystems make up 32% of the earth’s terrestrial ecosystems (Adams et al., 1990). Grassland soil CO$_2$ emissions into the atmosphere contributes substantially to the global carbon cycle (Craine and Wedin, 2002). Soil respiration reflects the metabolic activities of roots and soil microbes. It has been acknowledged that soil respiration can be affected by soil temperature, soil moisture (Raich and Schlesinger, 1992) and soil element content (Shi et al., 2015). As one of the important management practices in grassland ecosystems, grazing is suggested to affect the quantity of carbon released from the soil (Kioko et al., 2012; Jiao et al., 2012), despite current evidence suggesting no clear relationship between grazing and the carbon budget in grassland ecosystems (Liu et al., 2016; Wang et al., 2002). It is suggested that grazing may decrease soil CO$_2$ flux during the growing season by reducing canopy photosynthesis and carbon translocation to the rhizosphere (Bremer et al., 1998). In addition, grazing can also decrease Rs by destroying the soil microenvironment and inhibiting microbial growth (Zhao et al., 2017). In addition, grazing may promote nutrient cycling and thus provide more respiratory substrates for microbes (Stark et al., 2002; Allard et al., 2007). Grazing exclusion, one of the most common grazing systems for grassland restoration in Inner Mongolia that is usually achieved by fencing, has been found to promote Rs due to its positive effect of increasing root biomass and SOC (He et al., 2008). However, Chen et al. (2016) reported that Rs was decreased under grazing exclusion due to reduced soil temperature and increased soil moisture. Rest-rotation grazing is indicated to be a good system for balance between economic development through animal husbandry and the protection of grassland ecosystems. This system involves a period of rest, or short-term grazing exclusion, during the growing season. Previous studies have shown that rest-rotation grazing could increase SOC, belowground biomass and soil water storage (Zhang et al. 2015a). A meta-analysis of the responses of the soil microbial community size and Rs to grazing showed that only heavy grazing intensity significantly reduced Rs by
inhibiting soil microbes (Zhao et al., 2017). Therefore, the impact of rest-rotation grazing on Rs may be different from grazing exclusion or yearlong grazing.

In East Asia, most grassland ecosystems are subjected to varying degrees of grazing pressure and climate warming. The temperature sensitivity of Rs (Q10, the increase in the CO2 release for every 10 °C increase in temperature) could predict the response of Rs to climate change. Q10 can be affected by a variety of factors, including soil temperature and moisture, root activity, quality and quantity of substrate, and microbial community size (Yuste et al., 2004; Zhang et al., 2015b). The influence of grazing on Q10 is still controversial (Paz-Ferreiro et al., 2012; Chen et al., 2016).

Grazing can debase the Q10 of autotrophic respiration by reducing aboveground and root biomass of vegetation (Xu and Qi, 2001). This decrease in aboveground biomass and litter input to soil will then reduce respiratory substrates and consequently decrease the Q10 of heterotrophic respiration under grazing systems (Cao et al., 2004). However, previous studies also suggest that livestock may stimulate root exudation and litter decomposition, which can increase the quality of SOM and thus promote the Q10 of heterotrophic respiration (Zhao et al., 2016). Furthermore, the Q10 of fine root respiration is higher than that of microbes (Boone, et al., 1998). Therefore, grazing may alter the Q10 of Rs by changing the composition of Rs.

Grazing and enclosure are the representative land management modes of the typical steppe, but the effects of different management methods on the carbon cycle in grassland ecosystems have not been clear yet. We designed and implemented an experimental study to improve the understanding of the impact of different grazing systems on carbon cycling and the soil carbon budget of grasslands in the Inner Mongolian plateau. This study focuses on the effects of grazing on typical steppe, those effects may vary with grazing patterns simultaneously. Combined with soil, vegetation or microbial indicators, the purpose of this study is to further explore how grazing affects Rs and its Q10. The results contribute to help to assess the ecological effects and climate responses of typical steppe under different grazing systems. The objectives of the study were to (1) reveal the annual dynamics of Rs and its relationship to environmental variables (i.e., soil temperature and soil moisture) and (2) explain the effects of different grazing systems on soil respiration and determine the Q10 values of Rs in different grazing systems. Our hypotheses were as follows: (1) Grazing reduces Rs by inhibiting the growth and activity of the plant and soil microbial community; (2) The effect of grazing on Rs may be different between rest-rotation grazing and year-long grazing systems; and (3) Grazing alters Q10 by changing the proportion of root respiration in Rs.

Materials & Methods

Study area

The study area is located in Duolun County (41°46’-42°39’N, 115°50’-116°55’E), Inner Mongolia Autonomous Region, China. The annual mean air temperature is 3.3 °C, with a maximum mean temperature of 19.9 °C in July and a minimum mean temperature of -15.9 °C in January. The mean annual precipitation is 399 mm, and 88% of the precipitation occurs during the growing season extending for approximately 150 days from May to September (Miao et al., 2009).
vegetation in the study area is classified as typical steppe and dominated by *Stipa krylovii* Roshev., *Leymus chinensis* (Trin.) Tzvelev., *Artemisia frigida* Willd., *Agropyron cristatum* (L.) Gaertn., *Allium bidentatum* Fisch., and *Cleistogenes squarrosa* (L.) Keng. (Li et al., 2013). SOC ranged from 1% to 3%, and soil total nitrogen (TN) ranged from 0.1% to 0.3% in this study.

We selected three established grazing systems at Duolun Restoration Ecology Station (42°02′ N, 116°17′ E), which is managed by the Institute of Botany, Chinese Academy of Sciences. The “year-long grazing system” had been grazed by 4.75 sheep ha⁻¹ yr⁻¹ since 2002. The “rest-rotation grazing system” had been grazed by 2~4.5 sheep ha⁻¹ yr⁻¹ since 2004, with an annual rest period from 10 March to 10 June. In the “grazing exclusion system”, livestock had been completely excluded since 2002. We randomly located three experimental plots, each 10 m×5 m, within the area of each grazing system.

Soil respiration, temperature and moisture

Rs was measured on each plot in late December 2014 and during the 2015 growing season in late March, May, July, August and September. To measure Rs, one PVC collar (20 cm in diameter and 7 cm in height) was set up at a random location within each plot. The collars were inserted into the soil where aboveground biomass had been removed at least 24 h before the Rs measurement was to be taken in order to exclude CO₂ released by aboveground vegetation. The collars were maintained in the plots for the six measurements to minimize the effect of soil heterogeneity. The daily dynamics of Rs were captured by hourly measurement for 24 h. Each measurement lasted 3 min, including 120 s of observation in which the first 30 s was excluded due to the change in air pressure, and 30 s of pre- and post-purge time. Respiration rates were measured using a LI-COR 8150 automatic soil CO₂ efflux measurement system with a portable chamber (LI-COR Inc., Lincoln, NE, USA). The soil temperature and moisture content at a depth of 5 cm adjacent to the collar were simultaneously measured using a LI-COR 8150-203 thermocouple probe and a LI-COR 8150-204 ECH2O Model EC-5 soil volumetric moisture content probe, respectively (Decagon Device, Inc., Pullman, WA, USA).

Plant aboveground and root biomass

Aboveground biomass was measured at the end of December 2014 and during May, July, and September 2015; root biomass was measured during May, July and September 2015. Aboveground biomass was removed from a randomly located 0.5 m×0.5 m quadrant in each plot and oven-dried together with litter at 65 °C to a constant weight. Root biomass was collected using an 8 cm diameter soil drill sampler, and three cores were collected at 0–20 cm deep from random locations in each plot to be mixed as one composite sample. The roots were washed and oven-dried at 65 °C to a constant weight.

Soil microbial biomass and soil nutrients

The collected soil samples were separated from the root biomass. Part of each sample was passed through a 2-mm sieve to analyze soil microbial biomass carbon (MBC), dissolved organic carbon (DOC) and phospholipid fatty acids (PLFAs). The composition of the microbial community composition in each fraction was assessed using PLFA analysis following the method of Bossio and Scow (1998). MBC was estimated using the chloroform fumigation-extraction method and calculated as the difference in extracted organic carbon between the fumigated and
control parts divided of the soil sample divided by a conversion factor of 0.45 (Vance et al., 1987). DOC was determined as the extracted organic carbon in the control soil (Vance et al., 1987). PLFAs (including i14:0, 15:0, i15:0, a15:0, 16:0, 10me16:0, i16:0, 16:1w5c, 16:1w7c, 10me17:0, a17:0, i17:0, cy17:0, 17:1w8c, 18:0, 10me18:0, 18:1w5c, 18:1w7, 18:1w9c, 18:2w6c, cy19:0, 20:1w9c and 20:4w6c) were identified by bacterial biomarkers, while fungal PLFAs, actinobacterial PLFAs and protozoal PLFAs were assessed following the method of Huang et al. (2014).

The balance of each soil sample was passed through a 0.25-mm sieve for analysis of soil total nitrogen (TN) and total phosphorus (TP). TN and TP were measured by the semi-micro-Kjeldahl method (Bremner 1960) with a PerkinElmer 2400 series II CHNS/O analyzer (PerkinElmer, Inc., Norwalk CA, USA) and a SPECTRO ARCOS EOP analyzer (Spectro, Inc., GER), respectively.

Data analysis

Q_{10} is defined as the rate of increase in soil respiration as a consequence of increasing the temperature by 10 °C and is derived from the following relationships:

\[R_s = a \cdot e^{bT} \]
\[Q_{10} = e^{\frac{1}{10b}} \]

where \(R_s \) (μmol·m\(^{-2}\)·s\(^{-1}\)) is soil respiration, \(T \) (°C) is the soil temperature at a depth of 5 cm, and \(a \) and \(b \) are fitted parameters.

The response of \(R_s \) to soil moisture was modeled using a quadratic polynomial function of the following form:

\[R_s = e^{x^2+fx+g} \]

where \(R_s \) (μmol·m\(^{-2}\)·s\(^{-1}\)) is soil respiration; \(x \) (%) is the soil moisture content at a depth of 5 cm; and \(e, f \) and \(g \) are fitted parameters.

All statistical analyses were performed using SPSS 12.0 (SPSS for Windows, Chicago, USA), and the SEM analyses were conducted using SPSS AMOS 24.0.0 (SPSS Inc, Chicago, USA).

Results

Soil temperature and moisture

Soil temperature and soil moisture varied significantly among the three grazing systems in the same month during the period of observation (P<0.05, Fig. 1a and b). Soil temperatures exhibited consistent seasonal dynamics across all grazing systems, with the maximum soil temperature occurring in July 2015 and the minimum occurring in December 2014 (Fig. 1a). The low-vegetation cover plots (year-long grazing and rest-rotation grazing systems) had higher soil temperatures than the high-vegetation cover plots (grazing exclusion system) due to the absence of canopy shading.

The soil moisture content fluctuated substantially in response to irregular rainfall, peaking in September 2015 (Fig. 1b). The average soil moisture content during observation was 7.89%, 9.87%, and 10.89% for the yearlong grazing, rest-rotation grazing and grazing exclusion plots, respectively.

Soil respiration and Q_{10}
Rs showed significant variation among the grazing systems in all months (P<0.05). The Rs ranges were 0.07-1.89, 0.06-2.57 and 0.03-3.47 μmol·m⁻²·s⁻¹ for the year-long grazing, rest-rotation grazing and grazing exclusion systems, respectively (Fig. 1c). Rs was lowest in December 2014 for all three grazing systems. It peaked in July for the grazing exclusion and rest-rotation grazing plots and in August for the yearlong grazing plots (Fig. 1c). Averaged across the period of observation, Rs was highest in the rest-rotation plots (1.26 μmol·m⁻²·s⁻¹), followed by the grazing exclusion (0.98 μmol·m⁻²·s⁻¹) and yearlong grazing (0.94 μmol·m⁻²·s⁻¹) plots. During the 2015 growing season (from May to September), the average Rs values were 1.32, 1.81 and 1.42 μmol·m⁻²·s⁻¹ for the yearlong grazing, rest-rotation grazing and grazing exclusion systems, respectively.

Significant exponential relationships were found between Rs and soil temperature for all grazing systems and sample times, with R² values ranging from 0.506 to 0.920 (Table 1). The Q₁₀ values for the grazing exclusion plots were lower than those for the yearlong grazing plots, except in July and September 2015, and were lower for the rest-rotation plots than for the yearlong grazing plots, except in December 2014, July 2015 and September 2015 (Table 1). Very high Q₁₀ values were recorded for all grazing systems in December 2014, and a relatively high value was recorded for the grazing exclusion system in September 2015, indicating the heightened sensitivity of Rs to temperature at these times (Table 1).

A quadratic relationship between Rs and soil moisture was derived from the monthly soil moisture measurements in each grazing system (Fig. 2). All relationships were significant (P<0.001), with R² values ranging from 0.69 to 0.77. The effect of increasing soil moisture on Rs was nonlinear at this study site.

Plant and soil properties

Aboveground biomass under the three grazing system increased over time within a growing season, and it was higher in the grazing exclusion system than in the other two systems for the same month (Fig. 3a). Root biomass showed remarkable variation between months, with the maximum biomass occurring in July 2015 (Fig. 3b). Root biomass was significantly higher in the rest-rotation grazing system than in the year-long grazing system in July and September and higher than in the grazing exclusion system in May, July and September (P<0.05). Rs increased linearly with root biomass in all grazing systems as the growing season progressed (Fig. 4).

TP and TN remained steady during the experiment in all grazing systems (Fig. 3c, d). The average TP content was 0.37, 0.32 and 0.42 g kg⁻¹, while the average TN content was 1.57, 1.63 and 2.36 kg⁻¹ for the yearlong grazing, rest-rotation grazing and grazing exclusion systems, respectively. Both the TN and TP contents of the grazing exclusion system were significantly higher than the other two systems (P<0.05, Fig. 3c, d). MBC increased during the 2015 growing season in all systems (Fig. 3e). MBC of the grazing exclusion system was 49% higher than that of the yearlong grazing system in July and 42% higher in September. DOC decreased as the growing season progressed and was higher in the yearlong grazing system than in the other two systems (Fig. 3f).

Phospholipid fatty acids
The total PLFAs declined at first and then increased from December 2014 to September 2015, and each kind of PLFA increased during the course of the growing season (Fig. 5a-e). The mean total PLFA values for the yearlong grazing, rest-rotation grazing, and grazing exclusion systems in the growing season were 29.77, 31.9, 35.88 nmol g\(^{-1}\), respectively. The highest levels for all types of PLFAs were observed in the grazing exclusion system during September (Fig. 5a-e). The average ratios of fungi to bacteria during the growing season were 0.17, 0.17 and 0.14 in the yearlong grazing, rest-rotation grazing, and grazing exclusion systems, respectively.

Relationships among Q\(_{10}\), Rs and other factors under different grazing systems

Rs and Q\(_{10}\) were affected by grazing, climate, DOC, plant and soil microbes; these factors were related to each other. Therefore, the structural equation model (SEM) was used to explore the influence mechanism of Rs and Q\(_{10}\). The SEM explained 70% and 63% of the variance of Rs and Q\(_{10}\), respectively, under different grazing systems (Fig. 6). Among the variables influencing Rs and Q\(_{10}\), the increase in PLFAs and soil temperature resulted in a highly significant enhancement of Rs (P<0.001). The standardized total effect coefficients of PLFAs and soil temperature on Rs were 0.634 and 0.621, respectively. The increase in the soil temperature by seasonal variation resulted in a highly significant decrease in Q\(_{10}\) (P<0.001), and the standardized total effect coefficient was -0.775. Grazing had an insignificant negative direct effect (-0.051) on Rs, and an indirect negative effect (-0.078) by decreasing aboveground biomass, PLFAs and soil moisture. Grazing had a small indirect positive effect (0.026) by decreasing the aboveground biomass and increasing soil moisture on Q\(_{10}\). The result of the SEM indicated that increased grazing inhibited Rs and enhanced Q\(_{10}\). When the standardized total effects were compared (Table 2), the effect of grazing on Rs and Q\(_{10}\) was lower than the effects of soil temperature or moisture.

Discussion

Response of plant biomass, soil properties and microbial community to grazing

Grazing is well-acknowledged to have impacts on the growth of vegetation (Porensky et al., 2016), basic soil properties and soil microbial biomass (Raich and Nadelhoffer, 1989) in grassland ecosystems. In the present study, we found that root biomass in yearlong grazing and rest-rotation grazing systems were higher than that in grazing exclusion systems (Fig. 3). These results can be explained by the grazing optimization hypothesis proposed by McNaughton (1979), which suggested that moderate grazing stimulates vegetation regeneration. Moreover, plants would supply more nutrients to roots instead of shoots as a change in growth strategy due to grazing (Bai et al., 2015; Frank et al., 2002). But the root biomass increased significantly only in rest-rotation grazing systems, which indicated that rest-rotation grazing could take into account result in economic benefits and grassland restoration.

We found that soil total carbon and total phosphorus were more abundant in the grazing exclusion system than in the yearlong grazing and rest-rotation grazing systems (Fig. 3). Similarly, previous studies also found that grazing had a negative effect on the storage of soil nutrients (Han et al., 2008), whereas fencing improved the physical and chemical properties of soil (Dormaar et al., 1989). Loss of soil nutrient elements may limit the growth of vegetation and
the soil microbial community, and it also could be an important reference index for the
establishment of grassland management mode. In contrast to inorganic elements, DOC increased
with intensified grazing during the growing season, except in July of 2015 when the rest-rotation
grazing system was being implemented (Fig. 3f). DOC has been recognized to play an important
role in regulating soil carbon mineralization and soil respiration in grassland ecosystems (Zhou et
al., 2016). The increase in DOC caused by grazing provided more respiration substrates, which
may consequently enhance Rs.
Soil microbes are crucial in regulating Rs by transforming soil carbon into CO₂ flux during
decomposition (Chapin et al., 2011). We found that grazing generally suppressed the MBC in the
2015 growing season (Fig. 3e), which is consistent with results from Bardgett and Leemans
(1995). The result of the PLFA assays also showed that grazing significantly decreased the total
PLFAs, bacterial PLFAs and actinomycelial PLFAs in the middle and late growing season (Fig.
5). The decrease in microbial biomass is likely attributed to livestock trampling disturbing the
soil microenvironment and thus inhibiting soil microbe reproduction, although the increase in the
root biomass caused by grazing may provide more exudates, promoting microbial growth. We
also found that the F:B ratio in yearlong grazing and rest-rotation grazing systems was higher
than that in grazing exclusion systems. This increased F:B ratio by grazing might be attributed to
the grazing-induced increase in soil C:N ratio by increasing SOC and decreasing TN since
substrates with high C:N ratios are conducive to fungal growth. Fungi play an important role in a
large number of soil ecosystem processes, particularly in nutrient cycling and maintaining soil
structure (Wal et al., 2006). As a higher F:B ratio in soil could reflect a more stable ecosystem
status (Vries et al., 2006), moderate grazing might to some extent improve the stability of
grassland ecosystems.

Relationships between soil respiration and other factors under grazing
In accordance with the results of previous studies (Bao et al., 2016; Li and Sun, 2011), tight
linkages among Rs and plant and soil properties were found in this study (Fig. 6). Compared to
other factors, soil temperature had a significantly direct effect on Rs (R² = . p =) in the constructed
SEM. Rs in all grazing systems increased exponentially with rising soil temperature, which is
consistent with other findings (Yuste et al., 2004; Zhang et al., 2015b). Nonetheless, we also
found that in August 2015, Rs decreased by 71.8% compared to that in July in the grazing
exclusion system, while soil temperature was similar between these two months. This result
indicates that in addition to soil temperature, other factors, e.g., soil moisture, might also
contribute to monthly variation in Rs.
Soil moisture is one of the factors limiting ecological recovery in semi-arid regions (Zhang et al.,
2015b). Soil moisture was considered a dominant driver of Rs when temperature was above 20
°C in a semi-arid steppe ecosystem in Spain (Rey et al., 2011). According to the results of the
SEM, soil moisture directly inhibited Rs (Fig. 6). It is suggested that high soil moisture may
reduce Rs because the water in the soil interstices affects gaseous diffusion (Liu et al., 2014).
However, high soil moisture can also enhance the transport of organic matter among soil and
metabolic activity of soil microbes (Michalzik et al., 2003). The positive and negative effects of
moisture on Rs exist simultaneously, and their relationship fit the quadratic function well,
echoing the findings of Suseela et al., (2012). It may also explain why the Rs of the three grazing systems peaked in different months. In July and August, higher soil temperature caused moisture to become a major limiting factor of Rs; therefore, the difference in Rs between yearlong grazing and grazing exclusion aligned with changes in soil moisture. This resulted in the Rs of grazing exclusion systems peaking in July, while the Rs of yearlong grazing systems peaked in August. In the rest-rotation grazing system, Rs peaked in July but did not show a significant difference (P<0.05) between July and August. This finding was probably due to root biomass being the highest in rest-rotation grazing systems (Fig. 3), so rhizosphere respiration became the main component of Rs, and it was thus less sensitive to surface soil moisture. Due to the nonlinear effect of soil moisture on Rs, identifying the nonlinearities and thresholds could reduce some uncertainties associated with climate change decision-making.

In the present study, the average Rs from May to September was highest in the rest-rotation grazing system (1.81 \(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \)), followed by the grazing exclusion system (1.41 \(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \)) and the yearlong grazing system (1.32 \(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \)). This result indicated that grazing had a significant impact on Rs in a temperate typical steppe that was not only inhibitory, thus contradicting our first hypothesis that grazing inhibited Rs. Similarly, a study conducted under different land uses in Inner Mongolia reported that the average Rs during the growing season was 1.43±0.04 \(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \) for free grazing (only during the growing season with 9 sheep ha\(^{-1} \)) and 1.37±0.03 \(\mu \text{mol} \cdot \text{m}^{-2} \cdot \text{s}^{-1} \) for enclosed grassland grazing (Xue and Tang, 2018). In contrast to the findings of the study, the higher Rs observed under rest-rotation grazing system in our study was likely due to the lower grazing intensity (2~4.5 vs 9 sheep ha\(^{-1} \)). Rest-rotation grazing accelerated the soil carbon mineralization rate, and also reduced soil carbon stocks and increased the greenhouse effect.

In the SEM, grazing showed a minor negative direct effect on Rs, which could be explained as an increase in soil bulk density and compactness by grazing that might block gas exchange. The indirect effects of grazing on Rs were mainly mediated by plant and microbial factors. Our study found that the mean Rs and root biomass were highest under rest-rotation grazing, probably because grazing accelerated the nutrient cycle (Allard et al., 2007) and increased the transfer of plant biomass to roots (Milchunas and Lauenroth, 1993). Previous research (Tu et al., 2013; Sun et al., 2013) has shown that environmental factors affect root respiration through changes in root biomass. The root biomass was higher in grazing systems, and Rs increased linearly with root biomass in all grazing systems (Fig. 4). This finding suggests that grazing enhanced soil respiration by increasing root biomass.

Soil microbial respiration was one of the main contributors to Rs. A previous study showed that the response of Rs to grazing was positively correlated with soil microbial biomass under moderate and heavy grazing intensities (Zhao et al., 2017). In addition, the substrate supply from photosynthesis is a main factor affecting Rs, and the aboveground biomass is proportional to Rs (Kuzyakov and Gavrichkova, 2010). In this study, Rs was positively correlated positively to aboveground biomass and microbial biomass (Fig. 6). Previous studies have shown that DOC was the substrate of soil microbial respiration, and its content and degree of decomposition positively correlated with Rs (Moinet et al., 2016). However, DOC had a negative effect on Rs in
this study mainly because the decrease in soil microbes by grazing weakened the restrictive effect of DOC on Rs. In conclusion, grazing inhibited respiration by suppressing aboveground biomass, soil moisture and soil microbial biomass. These results were consistent with the second hypothesis that grazing enhanced rhizosphere respiration but inhibited microbial respiration.

The relationships between the temperature sensitivity of soil respiration and other factors under grazing

Previous studies have reported that the Q10 of Rs is negatively correlated with soil temperature in northern temperate grasslands (Flanagan and Johnson, 2005). The higher values of Q10 in December of 2014 and March of 2015 in our study were consistent with that result, indicating that Rs could be extremely sensitive to temperature changes at very low soil temperatures. The decrease in the Q10 with increasing temperature could be related to a decline in Q10 of microbial respiration, which contributed a great proportion to Rs. A previous study conducted in forest soils found that the Q10 of SOM decomposition rates decreases with the increase of soil temperature and moisture (Schindlbacher et al., 2010), which was similar to the Q10 of Rs in our study (Fig. 6). This finding can be explained by the differential response of enzyme activity and substrate affinity to increased temperature. Enzyme activity was inhibited at low temperatures and could be enhanced by soil temperature, but the decline in enzyme substrate affinity with increased temperature could offset the promotion of soil enzyme activity (Li et al., 2017), resulting in higher Q10 and decomposition potential of SOM at low temperatures. Rs increased rapidly after removing the temperature limit; the limiting effect of temperature and the rate of increase in Rs decreased gradually in this process, meaning that Q10 decreased with increasing soil temperature. Q10 decreased more slowly as limitations were removed.

The main components of Rs are autotrophic respiration (rhizosphere respiration) and heterotrophic respiration (microbial respiration). Sensitivity of different components to temperature determine the total Q10 of Rs. Evidence regarding the response of Q10 to grazing has been inconsistent. Q10 increased under grazing exclusion in a meadow grassland (Chen et al., 2016) but was stimulated by grazing in another temperate grassland (Paz-Ferreiro et al., 2012). In this study, the temperature sensitivity of Rs in the two grazing systems was higher than that in the grazing exclusion system. Consistent with the third hypothesis, the increased Q10 from grazing in this study could be explained by the higher fine root biomass in grazing systems and higher Q10 value for rhizosphere respiration (Rr) (Boone, et al., 1998). In addition, the ‘rhizosphere priming effect’ increased the availability of labile carbon by root exudation or fresh litter, which enhanced the Q10 of heterotrophic respiration (Hopkins et al., 2013; Zhu and Cheng, 2011). These results indicate that Rs in the grassland is more susceptible to rising temperature under grazing.

Compared with yearlong grazing, rest-rotation grazing could be a reasonable way to grassland sustainable development, but the increased of soil CO2 emissions and loss of soil nutrient elements caused by rest-rotation grazing are inescapable. Given Grassland-grassland degradation caused by long-term grazing in typical steppe, grazing exclusion could be an effective way to promote grassland restoration. Due to lack of long-term observational data and multiple replicates in each plot, and because respiration of different components cannot be characterized accurately by microbial biomass and root biomass, the results of this study had
have some limitations. Future studies can set multiple gradients of grazing time or intensity to explore the varying effects of grazing, and focus on changes of different components of Rs under grazing by more effective means, and long-term measurements of Rs and soil organic matter should be performed.

Conclusions

In this study, the mean Rs varied significantly among different grazing systems. Diverse effects of grazing management on soil CO$_2$ flux occurred in this temperate grassland, as the mean Rs was lowest in the year-long grazing system but highest in the rest-rotation grazing system. The difference in Rs among the grazing systems was closely associated with changes in soil temperature, soil moisture, potential substrate availability and soil microbial activity. Since rhizospheric respiration increased with increasing root biomass stimulated by grazing and was more sensitive to increased temperature, the temperature sensitivity (Q$_{10}$) of Rs was enhanced in grazing systems. Therefore, grazing has the potential to make Rs more susceptible to global warming. In addition, the occurrence of the highest contents of TN, TP and MBC in the grazing exclusion system demonstrated the value of grazing exclusion for conserving soil nutrients and microbial biomass. Higher F:B ratios in the grazing systems were likely due to more suitable soil management. By altering plant roots and their control over the soil microbial community, grazing profoundly influences soil decomposition and thus can regulate the carbon budget in grassland ecosystems. A better understanding of the effects of grazing on Rs has practical implications for ecological restoration in a typical steppe.

Acknowledgements

This work was funded by National Natural Science Foundation of China (31770519) and the National Key R&D Program of China (2017YFC0503805). We thank the Duolun Restoration Ecology Research Station (part of the Institute of Botany, Chinese Academy of Sciences) for providing access to the study site.

References

Reduced grazing pressure delivers production and environmental benefits for the typical steppe of north China. *Scientific Reports* 5: 16434 DOI: 10.1038/srep16434.

Reduced grazing pressure delivers production and environmental benefits for the typical steppe of north China. *Scientific Reports* 5: 16434 DOI: 10.1038/srep16434.

FIG1 Dynamics of (a) soil temperature, (b) soil moisture content and (c) soil respiration under three different grazing systems from December 2014 to September 2015. The error bars represent the standard errors.
FIG2 Quadratic relationships between soil respiration and soil moisture from December 2014 to September 2015 in (a) yearlong grazing system, (b) rest-rotation grazing system, (c) grazing exclusion system.

R^2 is the goodness of fit for the function, and the P value is the significance of the overall function.
FIG3 Dynamics of (a) aboveground biomass, (b) root biomass, (c) total phosphorus (TP), (d) total nitrogen (TN), (e) microbial biomass carbon (MBC) and (f) dissolved organic carbon (DOC) under three different grazing systems from December 2014 to September 2015.

FIG4 Linear relationships between soil respiration and root biomass in May, July and September 2015 under (a) yearlong grazing system, (b) rest-rotation grazing system and (c) grazing exclusion system.

R^2 is the goodness of fit for the function, and the P value is the significance of the overall function.
FIG5 Dynamics of phospholipid fatty acids (PLFAs, nmol g⁻¹) under different grazing systems from December 2014 to September 2015 showing (a) total PLFAs, (b) bacterial PLFAs, (c) actinobacterial PLFAs, (d) fungal PLFAs, (e) protozoal PLFAs and (f) the ratio of fungal: bacterial PLFAs (F:B ratio).

The different letters represent significant differences (P < 0.05) among the different grazing systems in the same month. The error bars represent the standard errors.
FIG6 Structural equation model (SEM) describing the effects of grazing, environmental factors, and biotic factors on soil respiration and Q_{10}.

The SEM was performed with data from December 2014 and from May, July and September 2015. ST, SM, ABM, DOC, PLFA, Rs and Q_{10} represent the soil temperature, soil moisture, aboveground biomass, dissolved organic carbon, phospholipid fatty acids, soil respiration and temperature sensitivity for Rs, respectively. The blue or red lines, the direction of the arrows and the thickness of the lines indicate positive or negative effects, the direction of the effects and the severity of the effects, respectively. R^2 denotes the proportion of variables explained by these drivers. The numbers close to the lines are the standardized direct influence coefficients. The *, ** and *** at the top right of the numbers indicate that the effects were significant at $P<0.05$, $P<0.01$ and $P<0.001$, respectively. χ^2, chi-square; df, degrees of freedom; p, probability level.

Table 1 Temporal variation in the soil respiration–temperature relationship (equation 1) and Q_{10} among three grazing systems. The R^2 and P values refer to equation 1.

<table>
<thead>
<tr>
<th>Date</th>
<th>Year/month</th>
<th>Grazing systems</th>
<th>Equation 1 $R_s = a \cdot e^{b \cdot T}$</th>
<th>Q_{10}</th>
<th>R^2</th>
<th>P</th>
</tr>
</thead>
<tbody>
<tr>
<td>2014-12</td>
<td></td>
<td>Yearlong grazing</td>
<td>$2.298e^{0.308T}$</td>
<td>21.76</td>
<td>0.804</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rest rotation grazing</td>
<td>$1.191e^{0.331T}$</td>
<td>27.39</td>
<td>0.740</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grazing exclusion</td>
<td>$0.541e^{0.298T}$</td>
<td>19.69</td>
<td>0.644</td>
<td><0.001</td>
</tr>
<tr>
<td>2015-03</td>
<td></td>
<td>Yearlong grazing</td>
<td>$0.14e^{0.100T}$</td>
<td>2.72</td>
<td>0.506</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rest rotation grazing</td>
<td>$0.113e^{0.092T}$</td>
<td>2.51</td>
<td>0.655</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grazing exclusion</td>
<td>$0.111e^{0.067T}$</td>
<td>1.82</td>
<td>0.677</td>
<td><0.001</td>
</tr>
<tr>
<td>2015-05</td>
<td></td>
<td>Yearlong grazing</td>
<td>$0.171e^{0.067T}$</td>
<td>1.95</td>
<td>0.736</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Rest rotation grazing</td>
<td>$0.288e^{0.053T}$</td>
<td>1.70</td>
<td>0.883</td>
<td><0.001</td>
</tr>
<tr>
<td></td>
<td></td>
<td>Grazing exclusion</td>
<td>$0.166e^{0.049T}$</td>
<td>1.63</td>
<td>0.889</td>
<td><0.001</td>
</tr>
</tbody>
</table>
Table 2 Standardized total effects of ST, SM, grazing, ABM, DOC and PLFAs on ABM, DOC, Rs and Q_{10}.

<table>
<thead>
<tr>
<th>Year</th>
<th>Grazing</th>
<th>SM</th>
<th>ST</th>
<th>ABM</th>
<th>DOC</th>
<th>PLFA</th>
</tr>
</thead>
<tbody>
<tr>
<td>2015-07</td>
<td>Yearlong grazing</td>
<td>0.810e$^{0.024T}$</td>
<td>1.28</td>
<td>0.743</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rest rotation grazing</td>
<td>0.975e$^{0.041T}$</td>
<td>1.51</td>
<td>0.883</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grazing exclusion</td>
<td>1.496e$^{0.04T}$</td>
<td>1.49</td>
<td>0.750</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>2015-08</td>
<td>Yearlong grazing</td>
<td>0.614e$^{0.056T}$</td>
<td>1.75</td>
<td>0.920</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rest rotation grazing</td>
<td>0.950e$^{0.044T}$</td>
<td>1.55</td>
<td>0.901</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grazing exclusion</td>
<td>0.545e$^{0.028T}$</td>
<td>1.32</td>
<td>0.789</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td>2015-09</td>
<td>Yearlong grazing</td>
<td>0.655e$^{0.043T}$</td>
<td>1.54</td>
<td>0.746</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Rest rotation grazing</td>
<td>0.948e$^{0.043T}$</td>
<td>1.54</td>
<td>0.915</td>
<td><0.001</td>
<td></td>
</tr>
<tr>
<td></td>
<td>Grazing exclusion</td>
<td>0.125e$^{0.193T}$</td>
<td>6.89</td>
<td>0.855</td>
<td><0.001</td>
<td></td>
</tr>
</tbody>
</table>

ST, SM, ABM, DOC, PLFAs, Rs and Q_{10} represent soil temperature, soil moisture, aboveground biomass, dissolved organic carbon, phospholipid fatty acids, soil respiration and temperature sensitivity of soil respiration respectively. NE.Bib