2	Title:
3	Genome-wide characterization and expression analysis of PP2CA family
4	members in response to ABA and osmotic stress in Gossypium
5	
6	Authors:
7	Tingting $Lu^{1,2\dagger}$, Gaofeng $Zhang^{1\dagger}$, Yibin $Wang^1$, Shibin He^1 , Lirong Sun^{1*} and
8	Fushun Hao ^{1*}
9	¹ State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress
10	Biology, School of Life Sciences, Henan University, Kaifeng 475004, China
11	² Henan University of Animal Husbandry and Economy, Zhengzhou 450046,
12	China
13	
14	[†] These authors contributed equally to this work
15	Tingting Lu: 4147505@qq.com
16	Gaofeng Zhang: 2604035350@qq.com
17	Yibin Wang: 1532231014@qq.com
18	Shibin He: Hsb108@163.com
19	*Corresponding author
20	Lirong Sun: sunlr9208@henu.edu.cn
21	Fushun Hao: haofsh@henu.edu.cn
22	Tel. 86-371-23881387; Fax 86-371-23881387

1

Title page

23 Genome-wide characterization and expression analysis of PP2CA family members in response to ABA and osmotic stress in Gossypium 24 25 26 Tingting Lu^{1,2†}, Gaofeng Zhang^{1†}, Yibin Wang¹, Shibin He¹, Lirong Sun^{1*} and Fushun Hao1* 27 28 ¹State Key Laboratory of Cotton Biology, Henan Key Laboratory of Plant Stress 29 Biology, College of Life Sciences, Henan University, Kaifeng 475004, China 30 ²Henan University of Animal Husbandry and Economy, Zhengzhou 450046, China 31 **ABSTRACT** 32 33 Clade A type 2C protein phosphatases (PP2CAs), as central regulators of abscisic acid (ABA) signaling, negative control growth, development and responses to multiple 34 stresses in plants. PP2CA gene families have been characterized at genome-wide 35 36 levels in several diploid plants like Arabidopsis and rice. However, the information about genome organization, phylogenesis and putative functions of PP2CAs in 37 Gossypium is lacking. Here, PP2CA family members were comprehensively analyzed 38 in four Gossypium species including the diploid progenitor species G. arboretum, G. 39 40 raimondii and the tetraploid species G. hirsutum and G. barbadense, and 14, 13, 27 41 and 29-23 PP2CA genes were identified in the genomices sequences of these plants, 42 respectively. Analysis results showed that most Gossypium PP2CAs were localized in

the nucleus, and the PP2CAs were highly conserved in physical properties,

chromosomal locations, structures and phylogeny among the four cotton species.

43

44

Formatted: Font: Not Italic

45	Segmental duplication might played important roles in the formation of the PP2CAs,	Formatted: Font: Not Italic
46	and most PP2CAs may be were under purifying selection in Gossypium during	
47	evolution. Moreover, The majority of the PP2CAs were expressed specifically in	Formatted: Font: Not Italic
48	diverse tissues, and highly expressed in flowers in G. hirsutum. The GhPP2CAs	
49	displayed diverse expression patterns in responding to ABA and osmotic stress.	
50	Besides, yYeast-two hybrid assays revealed that many GhPP2CAs were capable of	Formatted: Font: Italic
		Formatted: Not Highlight
51	interaction with the cotton ABA receptors pyrabactin	 Formatted: Not Highlight
52	resistance1/PYR1-like/regulatory components of ABA receptors (PYR1/PYL/RCAR)	
53	GhPYL2-2D (Gh_D08G2587), GhPYL6-2A (Gh_A06G1418) and GhPYL9-2A	Formatted: Font: Italic
		Formatted: Font: Italic
54	(Gh_A11G0870), key regulators of ABA signaling, in the presence and/or absence of	Formatted: Font: Italic
	· · · · · · · · · · · · · · · · · · ·	Formatted: Font: Italic
55	ABA. These results gave a comprehensive view of the Gossypium PP2CAs, and are	Formatted: Font: Italic
56	valuable for further studying the functions of PP2CAs in Gossypium.	Formatted: Font: Italic
57	Keywords Gossypium; Clade A type 2C protein phosphatases (PP2CAs); gene	
58	family; phylogeny; protein interaction	
59		
60	INTRODUCTION	
61	Protein phosphorylation and dephosphorylation, as two central mechanisms of cellular	
62	signal transduction, play pivotal roles in many biological processes including growth,	

63

64

65

66

67

development and adaptations to various environmental stimuli in plants

(Schweighofer et al., 2004). They are catalyzed by protein kinases and phosphatases,

respectively. Phosphatases are generally categorized into serine/threonine (Ser/Thr)

phosphatases and tyrosine (Tyr) phosphatases according to the different amino acid

residues they dephosphorylate. Based on biochemical and pharmacological properties,

00	Solvini phosphatases can be further classified into three targe furnities.
69	phosphoprotein phosphatases (PPs), phosphoprotein metallophosphatases and
70	aspartate-based protein phosphatases (Schweighofer et al., 2004; Kerk et al., 2007;
71	Fuchs et al., 2013; Singh et al., 2015). The PPs includes PP1, PP2A, PP2B, PP4, PP5,
72	PP6 and PP7, the phosphoprotein metallophosphatases consist of
73	Mg ²⁺ /Mn ²⁺ -dependent type 2C protein phosphatases (PP2Cs) and other
74	Mg ²⁺ -dependent phosphatases (Schweighofer et al., 2004; Singh et al., 2010; Fuchs et
75	al., 2013; Singh et al., 2015). PP2Cs, which play key roles in dephosphorylation
76	events in plants, belong to a large subfamily, and can be further divided into 11 clades
77	(A-K) in Arabidopsis and rice (Singh et al., 2010) and 12 clades (A-L) in
78	Brachypodium distachyon (Cao et al., 2016). Among these, elade A proteins (PP2CAs)
79	are the ones of well-studied PP2Cs in Arabidopsis, and they have been shown to have
80	important roles in are of most importance. They controlling abscisic acid (ABA)
81	signaling, and negatively regulate plant growth, development and response to various
82	biotic and abiotic stresses in plants (<u>Tähtiharju et al., 2001;</u> Fuchs et al., 2013; Singh
83	et al., 2015). In Arabidopsis genome, 9 PP2CA members have been identified. They
84	are ABI1 (ABA insensitive 1), ABI2, HAB1 (Homology to ABI1), HAB2, AHG1 (ABA
85	hypersensitive germination 1), HAI1 (Highly ABA-induced PP2C 31), HAI2, HAI3
86	and AHG3/AtPP2CA (Fuchs et al., 2013). These genes, particularly ABI1, ABI2 and
87	<u>AHG3/PP2CA</u> alone or cooperatively control ABA-mediated transpiration, stomatal
88	closure, seed germination and root growth, and are involved in the regulation of many
89	abiotic stress responses like drought, high salinity, cold, heat and potassium

Ser/Thr phosphatases can be further classified into three large families:

68

Formatted: Font: Times New Roman

Formatted: Font: Times New Roman, Italic

Formatted: Font: Times New Roman

Formatted: Font: Not Italic

Formatted: Font: Italic

90	deprivation (Schweighofer et al., 2004; Rubio et al., 2009; Singh et al., 2015). Some	
91	PP2CAs also play important roles in responses to pathogen attack (Schweighofer et	Formatted: Font: Not Italic
92	al., 2004; Singh et al., 2015). PP2CAs are functionally redundant, and their expression	Formatted: Font: Not Italic
93	is upregulated by high concentrations of ABA_(Rubio et al., 2009; Singh et al., 2015).	
94	Moreover, PP2CAs physically interact with numerous cytosolic and nuclear localized	
95	proteins such as AtHB6 (Homeobox protein 6), CIPK8 (Calcineurin B-like	
96	protein-interacting protein kinase 8), CIPK24, and SnRK2s (Sucrose nonfermenting	
97	1-related protein kinases subfamily 2 proteins) (Ohta et al., 2003; Fuchs et al., 2013;	
98	Singh et al., 2015). SnRK2s exert central and positive roles in ABA signal cascade in	
99	plants (Fujii et al., 2009a; Fujita et al., 2009).	Formatted: Not Highlight
100	Recently, ABA receptors pyrabactin resistance1/PYR1-like/regulatory components	
101	of ABA receptors (PYR1/PYL/RCAR) (named PYLs for simplicity) have been found	
102	(Ma et al., 2009; Park et al., 2009). This is a breathtaking discovery in plants. PP2CAs	
103	were identified as co-receptors, specifically interact with PYLs and control ABA	
104	signaling. In the presence of ABA, ABA binds to PYLs, further interacts with and	
105	inhibits the activities of PP2CAs; thereby releasing and activating SnRK2s. SnRK2s	
106	subsequently regulate multiple downstream transcriptional factors and other proteins	
107	to trigger ABA responses (Fujii et al., 2009b; Geiger et al., 2009Singh et al., 2015;	
108	<u>Lee et al., 2009</u> — Zhang et al., 2017b).	Formatted: Font: Not Bold
109	Currently, PP2C gene families including PP2CAs have been analyzed at	Formatted: Font: Not Italic
110	genome-wide levels in Arabidopsis, rice, maize and Brachypodium distachyon (Xue	
111	et al., 2008; Wei and Pan, 2014; Cao et al., 2016). The domain structure of PP2CAs	

112 was also studied (Schweighofer et al., 2004). Moreover, the expression patterns of 113 PP2CAs have been examined in response to ABA and multiple stresses in Formatted: Font: Not Italic Arabidopsis, rice, maize and Brachypodium distachyon (Xue et al., 2008; Wei and 114 115 Pan, 2014; ZhangCao et al., 20162017a). However, knowledge about the genomic 116 information and expression profiles of PP2CAs in cotton is unknown to date. 117 Cotton is the most important fiber crop, which provides the spinnable lint for the 118 textile industry in the world. The yield and quality of cotton are adversely affected by many abiotic stresses such as drought and high salinity, which are governed by ABA 119 120 signaling (Hauser et al., 2011; Liang et al., 2017; Ullah et al., 2017). Therefore, it is Formatted: Font: Times New Roman, 12 pt Formatted: Font: Times New Roman, 12 pt essential for us to uncover the functional mechanisms of PP2CAs in ABA signal 121 Formatted: Font: Times New Roman, 12 pt transduction pathway in cotton. Here, we carried out a genome-wide identification of 122 123 PP2CA gene family in diploid G. arboretum (A2) and G. raimondii (D5), and their 124 decendant tetraploid species G. hirsutum (AD1) and G. barbadense (AD2). The 125 evolutionary relationships of these PP2CAs were analyzed. Changes in the 126 transcriptional levels of the PP2CAs were also investigated in diverse tissues and in Formatted: Font: Not Italic response to ABA and osmotic stress in G. hirsutum. Furthermore, the interactions 127 128 between G. hirsutum PP2CAs and several GhPYLs were detected by the yeast-two Formatted: Font: Italic hybrid method. These results may be valuable for further functional characterization 129 130 of cotton PP2CAs in ABA signaling in the future. 131 MATERIALS AND METHODS 132

133

Analysis of the PP2C family in four Gossypium species

of 80 AtPP2Cs were initially applied as queries to survey search against the databases 135 of G. arboreum (BGI-CGB v2.0 assembly genome), G. raimondii (JGI assembly v2.0 136 137 data.), G. hirsutum (NAU-NBI v1.1 assembly genome) (www.cottongen.org) and G. 138 barbadense (http://database.chgc.sh.cn/cotton/index.html), respectively, using the 139 BLAST program with default setting (E-value<e-10) (Camacho et al., 2009). After 140 removing the redundant sequences from the data set, the putative Gossypium PP2Cs were then characterized using the PP2C model (PF00481) (http://pfam.xfam.org/) by 141 142 the Hmmer software (http://hmmer.org/), and the proteins without a PP2C catalytic domain were deleted. The molecular weight (MW) and the isoelectric point (pI) of 143 online ExPaSy 144 Gossypium were predicted by the tool 145 (http://web.expasy.org/protparam/), which can give various physico-chemical 146 properties of a protein based on its amino acid sequence (the extinction coefficient 147 and the absorbance of a native protein in water at 280 nm were used).. was applied to 148 analyze the properties of PP2CAs in Gossypium. The subcellular localizations of 149 predicted 150 (http://www.csbio.sjtu.edu.cn/bioinf/Cell-PLoc/). The composition and position of exons and introns of the PP2CAs were obtained from the website 151 (https://www.cottongen.org/) and characterized by the Gene Structure Display Server 152 153 (GSDS) tools (http://gsds.cbi.pku.edu.cn/) (Hu et al., 2015). The conserved domains PP2CAs validated **NCBI** 154 of were

(https://www.ncbi.nlm.nih.gov/Structure/cdd/wrpsb.cgi) using the automatic mode

To explore all the members of the PP2C family in Gossypium, the protein sequences

134

155

Formatted: Font: Italic

Formatted: Font: Not Bold

Formatted: Font: Not Bold

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Not Highlight

Formatted: Font color: Blue

156 (Marchler-Bauer et al., 2017). and SMART (http://smart.embl-heidelberg.de/). The 157 MEME program (meme-suite.org/tools/meme) was applied to determine the motifs of 158 PP2CAs in Gossypium ('any number of repetitions' to be distributed in sequences was 159 set). The locations of Gossypium PP2CAs in chromosomes were assessed using the 160 MapInspect 161 (http://www.mybiosoftware.com/mapinspect-compare-display-linkage-maps.html). 162 Analysis of synteny and Ka/Ks of PP2CAs Formatted: Font: Italic Formatted: Font: Italic Formatted: Font: Not Italic The homologous regions of PP2CAs in Gossypium were identified by the MCScanx 163 software (http://chibba.pgml.uga.edu/mcscan2/), and syntenic blocks were determined 164 165 by the CIRCOS program (http://www.circos.ca/). The syntenic maps of the PP2CAs were obtained using the circos-0.69±3 software with default parameters 166 167 (http://www.circos.ca/). Some genes located within the same or adjacent intergenic region were regarded as tandem duplications. The nucleotide substitution parameters 168 169 Ka (non-synonymous) and Ks (synonymous) were assessed by the PAML program Formatted: Font: Italic Formatted: Font: Italic 170 (http://abacus.gene.ucl.ac.uk/software/paml.html). Then, the ratio of Ka/Ks was Formatted: Font: Italic Formatted: Font: Italic 171 calculated. <u>Ka/Ks<1 means purifying selection</u>; <u>Ka/Ks=1 indicates neutral selection</u>, Formatted: Font: Italic Formatted: Font: Italic 172 while *Ka/Ks>*1 represents positive selection. Formatted: Font: Italic Formatted: Font: Italic 173 Phylogenetic analysis of PP2CAs Commented [JEF1]: Is there a reference for this? Formatted: Font: Italic Formatted: Font: Italic We downloaded tThe PP2CA databases were downloaded for Arabidopsis thaliana 174 175 (http://www.arabidopsis.org/), Theobroma cacao (http://cocoagendb.cirad.fr), Ricinus

communis (http://castorbean.jcvi.org), Populus trichocarpa

(http://www.phytozome.net/poplar), Glycine max 177 (http://www.phytozome.net/soybean), Brachypodium distachyon 178 (http://plants.ensembl.org/Brachypodium_distachyon/Info/Index), Oryza sativa 179 180 (http://rapdb.dna.affrc.go.jp), and the four Gossypium species mentioned above. The 181 amino acid sequences of PP2CAs were aligned by the MUSCLE software (Edgar et Formatted: Font: (Default) Times New Roman 182 al., 2004), and a phylogenetic tree of the PP2CAs was generated using the IQ-TREE Formatted: Font: (Default) Times New Roman Formatted: Font: (Default) Times New Roman, No 183 server (http://www.iqtree.org/) following the neighbor joiningmaximum likelihood Formatted: Font: (Default) Times New Roman, No 184 method (Neighbor-Joining, NJML) method (Nguyen et al., 2015; Trifinopoulos et al. Formatted: Font: Not Bold, No underline 185 2016). The ModelFinder, tree reconstruction and ultrafast bootstrap were used (Minh Formatted: Font: Not Bold, No underline Formatted: Font: Not Bold. No underline 186 et al., 2013). The evolutionary tree was redrawn by the FigTree v1.4.4 software. Onethousand bootstrap trials with the Clustal W tool (Larkin et al., 2007) and the MEGA-187 188 5.0 software (http://www.megasoftware.net/) were used. 189 Measurements of GhPP2CAs expression in tissues and in response to ABA or Formatted: Font: Italic 190 osmotic stress Formatted: Font: Italic 191 For measuring the expression of GhPP2CAs in tissues in each experiment, about 2 g samples of roots, stems or leaves were collected from 10 G. hirsutum L. acc. Texas Formatted: Font: Italic 192 Commented [JEF2]: What is the estimated age of the Marker-1 (TM-1) plants grown in soil for 21 d. About 20 flowers were got-collected 1 193 plants when you started the experiment? It sounds like they are only 21 days old and normally they only have a 194 d post anthesis, and about 5 g fibers were obtained from ovules 23 d post anthesis. For few leaves and could not produce the necessary flowers. Were the seeds planted in soil and 21 days later you 195 monitoring the expression of GhPP2CAs after ABA treatment or under osmotic stress, started collecting leaves, roots, stems? Once stem is collected that pretty much kills a 21 day old plant and can three-week-old TM-1 plants grown in liquid 1/2 MS medium (Murashige and Skoog, 196 not produce flowers. Were seeds sown on MS medium and then 21 days later sprayed with ABA or treated with 197 1962) in a growth chamber (day/night temperature cycle of 28°C/26°C, 14 h light/10 PEG? Please clarify more the details of the plant establishment and plant age of sampling. 198 h dark, and about 50% relative humidity) were sprayed with 100 μM ABA or treated Formatted: Not Highlight

199	with 10% PEG6000 (dissolved in medium) for 0, 3, 6, 12 and 24 h, respectively. Then,
200	about 2 g roots were sampled, frozen in liquid nitrogen and stored at -70°C. Total
201	RNA was extracted from some of the samples and cDNA was generated according to
202	the method described previously (Ma et al., 2012; Zhang et al., 2017b).
203	Quantitative real-time RT-PCR (qRT-PCR) experiments were constructed in an ABI
204	7500 real-time PCR amplifier using the cDNA, SYBR Green Master mix, the specific
205	primers of GhPP2CA genes (Table S1). GhUBQ7 was used as an internal control (Lu
206	et al., 2017). Experiments were independently repeated three times. The interval
207	between two repeated experiments was 7-10 d.
208	Monitoring protein interaction by yeast two-hybrid method
209	The CDS sequences of GhPYLs (GhPYL2-2D, GhPYL6-2A, and GhPYL9-2A) and
210	GhPP2CAs were amplified, and cloned into pGADT7 and pGBKT7 vectors
211	respectively using gene specific primers (Table S2). After sequencing, the fused
212	vectors were transformed into AH109. The cotransformants were plated on
213	non-selective SD/-Leu/-Trp solid medium and selective SD/-Leu/-Trp/-His/-Ade solid
214	medium as described previously (Lu et al., 2017; Zhang et al., 2017b).
215	
216	RESULTS
217	Genome-wide analysis of PP2CAs in four Gossypium species
218	To identify the putative PP2CA family members in Gossypium, the amino acid
219	sequences of 80 Arabidopsis PP2Cs (Xue et al., 2008) were used to survey the
220	Gossypium dababases. Putative PP2CA gene function was assigned to aA total of 114,

i			
221	116, 239 and 232 genomic sequences that PP2Cs were retrieved from G. arboretum, G.		
222	raimondii, G. hirsutum and G. barbadense, respectively. They were individually		
223	denominated as GaPP2Cs, GrPP2Cs, GhPP2Cs and GbPP2Cs (Table S3). According	F	ormatted: Font: Italic
004	to the abele constitute of DDCCs between Commission and Application the	$\setminus \setminus \succeq$	ormatted: Font: Italic
224	to the phylogenetic relationships of PP2Cs between Gossypium and Arabidopsis, the	_	ormatted: Font: Italic
225	Gossypium PP2Cs could be clustered into 12 clades (A-L) (Fig. S1-S4). The PP2CAs	F	ormatted: Font: Italic
226	possessed 14 GaPP2CAs, 13 GrPP2CAs, 27 GhPP2CAs and 239 GbPP2CAs,	F	ormatted: Font: Italic
		F	ormatted: Font: Italic
227	respectively. They GaPP2CAs—were named individually according to their gene	F	ormatted: Font: Italic
228	identifiers their similarity of amino acid sequences to the 9 AtPP2CAs. The	F	ormatted: Font: Italic
229	nomenclature of GaPP2CAs was similar to that of arboretum CBL proteins (GaCBLs)		
230	(Lu et al., 2017). The GrPP2CAs, GhPP2CAs and GbPP2CAs were named based on		
231	their phylogenetic relationships with GaPP2CAs (Table 1). In this report, we focused		
232	on the PP2CA family members in the four Gossypium species.		
233	It was found that Most PP2CAs from the four Gossypium species shared similar		
234	physical properties. the predicted coded amino acid lengths of Gossypium PP2CAs		
235	ranged from 118 to 593, with an average of 413420. These PP2CAs had molecular		
236	weights of 12.8 kDa (<i>GhPP2CA27</i> HAI3-2) to 66 kDa (<i>GaPP2CA6</i> GaABI2-2). The	F	ormatted: Font: Italic
237	mean theoretical pIs of PP2CAs was approximately 5.9 with a minimum of 4.65	F	ormatted: Font: Italic
238	(<u>GrPP2CA5</u> GrHAB1-2) and a maximum of 8.74 (<u>GhPP2CA22</u> GhAB12-3D) (Table	F	ormatted: Font: Italic
239	1). The PP2CAs were predicted to locate in the nucleus except some members-	F	ormatted: Font: Italic
240	distributing in the chloroplast (GaABI2 2, GaHAB1-1, GrHAB1-1, GhHAB1-1A,		
241	GhHAB1-1D, GbHAB1-1D', GbHAB1-1D) and the mitochondrion (GhHAI3-1D,		

242 GhHAB1-1A).

Phylogenetic and structural analysis of PP2CAs in Gossypium

243

ĺ		
244	In order to understand the evolutionary relationship among GaPP2CAs, GrPP2CAs,	Formatted: Font: Italic
		Formatted: Font: Italic
245	GhPP2CAs and GbPP2CAs, we conducted a phylogenetic tree using the protein	Formatted: Font: Italic
0.40		Formatted: Font: Italic
246	sequences of the Gossypium PP2CAs (Fig. 1A). As expected, most of GaPP2CAs	Formatted: Font: Italic
247	were individually clustered closely with their corresponding orthologs of GhPP2CAs	Formatted: Font: Italic
248	(GhPP2CA1-13) and GbPP2CAs (GbPP2CA1-10) in A genomes, and a majority of	Formatted: Font: Italic
		Formatted: Font: Italic
249	GrPP2CAs individually clustered closely with their homologs of GhPP2CAs	Formatted: Font: Italic
		Formatted: Font: Italic
250	(GhPP2CA14-27) and GbPP2CAs (GbPP2CA11-23) in D genomes. Noteworthily,	Formatted: Font: Italic
051	GaPP2CA10AHG3 2 clustered together with GaPP2CA11AHG3 2', and a similar	Formatted: Font: Italic
251	$Ga_{PP2CA10}^{AHO3-2}$ clustered together with $Ga_{PP2CA11}^{AHO3-2}$, and a similar	Formatted: Font: Italic
252	case occurred between GbPP2CA21ABI2-1D and GbPP2CA22ABI2-1D2 and	Formatted: Font: Italic
		Formatted: Font: Italic
253	<u>GbPP2CA16/GbPP2CA23</u> . Moreover, homologues of 143 GaPP2CAs (except	Formatted: Font: Italic
		Formatted: Font: Italic
254	GaAHG3-2') and of 13 GrPP2CAs were found in the G. hirsutum At and Dt	Formatted: Font: Italic
055	d d d d d d d d d d d d d d d d d d d	Formatted: Font: Italic
255	subgenomes, respectively; and homologs of 102 GaPP2CAs (except GaPP2CA1,	Formatted: Font: Italic
256	GaPP2CA3, GaPP2CA4 and GaAHG3 2' and GaPP2CA14ABI2 3) and 112	Formatted: Font: Italic
230	Our 120/15, Our 120/17 und Our 1105 2 und Our 120/17/18/12 5) und 112	Formatted: Font: Italic
257	GrPP2CAs (except $GrPP2CA6 ABI2 3$ and $GrPP2CA9$) were detected in the G	Formatted: Font: Italic
		Formatted: Font: Italic
258	barbadense At' or Dt' subgenomes, respectively. One GhPP2CA (GhHAI3-2) and 6	Formatted: Font: Italic
		Formatted: Font: Italic
259	GbPP2CAs (GbHAI3-2A, GbHAI3-2D, GbHAI3-3A', GbHAI3-3A, GbHAI3-3A,	Formatted: Font: Italic
000	Chapti 2D) had not askalasa in Carla askala in in Additionally days	Formatted: Font: Italic
260	GbABI1 3D) had not orthologs in <i>G. arboretum</i> and <i>G. raimondii</i> . Additionally, three	
261	pairs of paralogues with high sequence similarity in GbPP2CAs including	Formatted: Font: Italic
262	GbPP2CA8/GbPP2CA10, GbPP2CA16/GbPP2CA23, GbPP2CA21/GbPP2CA22	Formatted: Font: Italic
		Formatted: Font: Italic
263	were clustered together. were observed in GbPP2CAs. They were	Formatted: Font: Italic

GbHAB1-1D/GbHAB1-1D', GbABI2-1D/GbABI2-1D', GbHAB1-2A/GbHAB1-2A',

265 GbHAI3-3A/GbHAI3-3A'; and They were seemingly derived from GrHAB1-GaPP2CA81, GrPP2CA7 and GrPP2CA1ABI2-1, GaHAB1-2 and GaHAI3, 266 Formatted: Font: Not Italic, No underline Formatted: Font: Not Italic, No underline respectively. 267 Formatted: No underline Formatted: Font: Italic 268 Most PP2CAs had 3-4 exons except that GbAHG1D GaPP2CA6, GrPP2CA9, Formatted: Font: Not Italic, No underline Formatted: Font: Not Italic GhPP2CA22, GbPP2CA13 possessed 5 exons, and GhPP2CA27HAI3-2 and 269 Formatted: Font: Italic Formatted: Font: Italic 270 GbABII-1D had 2 exons. Among the PP2CA genes, GaPP2CA6ABI2-2, 271 GrPP2CA9ABI2-3, GhPP2CA9ABI2-3A and GhPP2CA22ABI2-3D and GhHAI3-2 individually had a longer intron sequence than other genes did (Fig. 1B). These results 272 indicate that the exon/intron structures of the Gossypium PP2CA genes were highly 273 274 conserved. The motif compositions of the PP2CA proteins were analyzed in the four 275 276 Gossypium species. Twenty putative motifs named motif 1 to motif 20 were identified. 277 Among those, motif 1, 2, 3, 4, 5, 6 and 67, 8 and 12 existed in every cluster and the majority of the PP2CA members. Moreover, most orthologous PP2CA proteins in the 278 279 four Gossypium plants had the same or very similar compositions and distributions of 280 motifs, suggesting that the PP2CA members in the same cluster likely share similar functions (Fig. 1C). 281 282 Chromosomal distributions of PP2CAs in Gossypium Formatted: Highlight To determine the putative evolutionary relationships of the Gossypium PP2CA genes, Formatted: Not Highlight 283 Formatted: Not Highlight 284 We analyzed the positions of the genes on chromosomes were analyzed. We found Formatted: Font: Italic Formatted: Not Highlight that the distributions of these PP2CAs were uneven. The 14 GaPP2CAs, 13 285 Formatted: Font: Not Italic 286 GrPP2CAs, 27 GhPP2CAs and 29-23 GbPP2CAs were distributed on 8, 9, 16 and 146

chromosomes, respectively. Most of the chromosomes contained one PP2CA gene. 287 By contrast, some chromosomes individually had two PP2CA genes. They were D11 288 and D13 in G. raimondii, At10, At13, Dt05, Dt10 and Dt13 in G. hirsutum, and Dt'07 289 290 and Dt'13 in G. barbadense. Besides, each of D09 and Dt'05 owned 3 PP2CAs. A13, 291 At05 and At'05 separately possessed 4 PP2CAs. and At'05 contained 5 PP2CAs. In 292 contrast, GaPP2CA5ABI2-1, GaPP2CA8HAB1-2, GaPP2CA14ABI2-3, 293 GhPP2CA18HAI3-2, GhPP2CA20HAI2D, GhPP2CA27ABI2-1D, 294 GbPP2CA2AHG3-2A and GbPP2CA12AHG3-1D were located on scaffolds, rather than chromosomes in which contigs were not spliced into any chromosome in genomic 295 296 mapping. We compared the positions of the orthologs of GaPP2CAs, GrPP2CAs and 297 298 GhPP2CAs or GbPP2CAs in chromosomes. As expected, most homologs of 299 GaPP2CAs and GrPP2CAs in G. hirsutum were located in their corresponding At 300 subgenomes and Dt subgenomes. The similar situation also occurred in G. barbadense. 301 However, a few homologous genes of GaPP2CAs and GrPP2CAs were not barely located in their expected corresponding homoeologous chromosomes and collinear 302 loci in G. hirsutum and G. barbadense (Fig. 2). These results imply that specific, 303 304 unique, and complex variation events in PP2CA-contained homoeologous 305 chromosomes may happen among within each of the two diploid and tetraploid species during genetic evolution.

Formatted: Font: Not Italic

Synteny analysis of PP2CA genes

306

307

308

During evolutionary processes, tandem and segmental duplications contribute to

Commented [JEF3]: It suggest to me that one could hope to focus more closely on the unique ones and simplify comparisons between species, or within a species for association with valuable responses or traits.

311 hirsutum (the related database for G. barbadense was lacking). It was found that 312 GaPP2CA10AHG3-2 and GaPP2CA11AHG3-2' ioined together, and Formatted: Font: Italic 313 GbPP2CA16GbABH-1D—and GbPP2CA23ABH-3D clustered together in the 314 chromosome. There are less than 5 genes between each pair of the genes, suggesting 315 that the two pairs of genes are tandemly duplicated. The synteny relationship of gene pairs was also explored among GaPP2CAs, 316 GrPP2CAs and GhPP2CAs. A total of 136 homologous gene pairs were observed in 317 133 collinearity blocks. Most of the blocks had one gene pairs. Some blocks owned 318 (GrPP2CA9ABI2-3/GhPP2CA22ABI2-3D, 319 pairs two gene 320 GrPP2CA10AHG3-2/GhPP2CA23AHG3-2D) between chromosomal D11 and Dt10. 321 Another block harbored three gene pairs (GrPP2CA5HAB1-2/GhPP2CA2HAB1-2A, 322 GrPP2CA6HAI2/GhPP2CA3HAI2A, GrPP2CA7HAB1-1/GhPP2CA4HAB1-1A) 323 between chromosomal D09 and At05 (Fig. 3). These findings imply that segmental duplication plays major roles in generating PP2CAs during evolution in Gossypium. 324 Formatted: Font: Not Italic Analysis of Ka/Ks values of PP2CAs 325 Formatted: Font: Italic Formatted: Font: Italic To further understand the evolution processes among Gossypium PP2CAs, the effects 326 Formatted: Font: Italic 327 of selection on duplication of PP2CA genes were determined. The non-synonymous Formatted: Font: Italic Formatted: Font: Italic 328 (Ka) and synonymous (Ks) substitutions, and Ka/Ks values were calculated for the Formatted: Font: Italic 329 homologous gene pairs among GaPP2CAs, GrPP2CAs and GhPP2CAs. The mean Formatted: Font: Italic, No underline, Font color: Auto Formatted: Font: Italic. No underline. Font color: Auto 330 values of Ka/Ks for these gene pairs between species Ga/Gh, Gr/Ga, Gr/Gh, Ga/Ga, Formatted: No underline, Font color: Auto Formatted: Font: Italic, No underline, Font color: Auto

Formatted: Font: Not Italic

expanding gene family in plants (Cannon et al., 2004). We therefore examined the

duplication relationship of the PP2CAs among G. arboretum, G. raimondii and G.

309

Gr/Gr, Gh/Gh were 0.22, 0.21, 0.22, 0.21, 0.19 and 0.21, respectively. All of them 331 were less than 1, indicating that the formation of these genes were was mainly under 332 purifying selection during evolution. The Ka/Ks ratios for the two gene pairs 333 334 GrPP2CA11AHG3-1/GhPP2CA15AHG3-1D and 335 GrPP2CA3ABI2 2/GhPP2CA21ABI2 2D were higher than 1, suggesting that the two gene pairs <u>may were</u> generated under positive selection (Fig. 4). 336 337 Phylogenetic analysis of PP2CAs in Gossypium and other plants 338 We constructed a phylogenetic tree of PP2CA proteins in G. arboretum, G. raimondii, 339 G. hirsutum, G. barbadense, A. thaliana, T. cacao, R. communis, P. trichocarpa, G. 340 distachyon and O. sativa using the maximum likelihood (ML)neighbor joining method, and analyzed the evolutionary relationships of these 341 342 PP2CAs. It was found that the PP2CAs included both dicotyledonous and 343 monocotyledonous members (Fig. 5). This suggests that these PP2CA formed before the divergence of eudicots and monocots and are in general very highly conserved. 344 345 Indeed, the PP2CAs from the eudicots Gossypium, cocao, poplar, castor, soybean and 346 Arabidopsis clustered more closely, and those of the monocots rice and distachyon 347 clustered together. Moreover, many PP2CAs from Gossypium clustered more closely with those from cocao than from poplar, castor, soybean and Arabidopsis (Fig. 5), 348 indicating that PP2CAs of Gossypium had closer relationship with those of cacao than 349 350 those of other plants. As expected, PP2CAs in the four Gossypium species always clustered together, in line with their homologous evolutionary relationships (Fig. 5). 351

Expression patterns of *GhPP2CA* genes in different tissues

352

Formatted: Font: Italic, No underline

Formatted: No underline

Formatted: Font: Italic, No underline

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Formatted: Font: Italic

Commented [JEF4]: More discussion could involve the Ka/Ks even if it is just speculation with limited results. I would expect there to be a difference in the ratios or in the terms purifying and positive selection when comparing wild versus cultivated cotton species. Cultivated plants are selected to yield in different environments or even to yield in spite of the environment which is contrary to wild species that are responding to favorable or unfavorable natural conditions to maximize survival and reproductive success with minimal fitness costs.

Commented [JEF5]: If one finds sequences characterized as PP2CA in such diverse plants then it plays a very important role in the plant and some sequences/functions are highly conserved.

353	The transcript abundances of 27 GhPP2CA in various tissues were measured by	
354	qRT-PCR to determine the putative functions of the PP2CAs in cotton. The results	
355	showed that all of the GhPP2CAs were highly expressed in flowers.	
356	GhPP2CA11AHG1A and GhPP2CA27HAI3-2 were also preferentially expressed in	
357	roots. Moreover, the transcriptional levels of GhPP2CA3, 11, 13, 27AHG1A,	Formatted: Font: Not Italic Formatted: Font: Not Italic
358	GhHAI2A, GhABII-2A and GhHAI3-2 were high in fibers. The transcripts of	Formatted: Font: Not Italic
359	GhPP2CA4, 16, 22HAB1-1A, GhHAB1-2D and GhABI2-3D were abundant in stems.	Formatted: Font: Italic Formatted: Font: Italic
360	These results imply that most cotton PP2CA members may function in reproductive	Torriacted. Fort. Italic
361	development, and some PP2CAs also play roles in some specific tissues like roots,	
362	fibers and stems (Fig. 6).	
363	Transcriptional changes of GhPP2CAs in responses to ABA and osmotic stress	
364	To gain insight into the roles of <i>GhPP2CAs</i> in ABA signaling, transcriptional	
365	abundances of $\textit{GhPP2CAs}$ in roots were detected after treatments with 100 μM ABA	
366	or 10% PEG6000 for indicated periods of time. We observed that the transcriptional	
367	levels of some GhPP2CA genes continually increased with the extension of ABA	
368	treatment time such as GhPP2CA5, 11, 18, 20, 25, 27, ABI2-1D, GhAHG1A,	Formatted: Font: Not Italic
		Formatted: Font: Not Italic
369	GhAHG3 1A, GhAHG3 3D, GhHAI2D and GhHAI3 2. In contrast, the expression	Formatted: Font: Not Italic
370	levels of some members including GhPP2CA2-4, 8, 10, 24ABI2-2A, GhAHG1D,	Formatted: Font: Not Italic
		Formatted: Font: Not Italia
371	GhAHG3-2A, GhHAB1-1A, GhHAB1-2A and GhHAI2A had decreasing trend. The	Formatted: Font: Not Italic Formatted: Font: Not Italic
372	expression levels of some genes were decreased at 3 h or 6 h but increased at 12 h or	Formatted: Font: Not Italic
373	24 h. These genes included <i>GhPP2CA1</i> , 16, 17, 19, 26. ABII 1D, GhABII 2D,	Formatted: Font: Italic
374	GhHAB1-1D, GhHAB1-2D, GhHAI3-1A, GhABI2-1D, GhAHG1A, GhAHG3-1A,	

1				
375	GhAHG3-3D, GhHAI2D, and GhHAI3-2. The expression levels of several genes			
376	increased at 3 h or 6 h but decreased at 12 h or 24 h. These genes were GhPP2CA6, 7,		Formatted: Font: Not Italic	
			Formatted: Font: Not Italic	
377	9 <u>, 12-15</u> , 21-23 <u>ABH-1A</u> , GhABH-2A, GhABI2-1A, GhABI2-2D, GhABI2-3A,		Formatted: Font: Not Italic	
			Formatted: Font: Not Italic	
378	GhABI2 3D, GhAHG3-1D, GhAHG3-2D, GhAHG3-3A and GhHAI3-1D (Fig. 7).	(
379	Treatment of cotton seedlings with PEG6000 also altered the expression of most			
380	GhPP2CA genes (Fig. 8). The majority of GhPP2CAs were upregulated after	(Formatted: Font: Italic	
381	treatments with PEG for a short time period, and downregulated afterwards. For			
382	example, the transcriptional levels of GhPP2CA8ABI2-2A and GhPP2CA21ABI2-2D			
383	were prominently enhanced at 3 h, and then reduced at 6 h, 12 h and 24 h, while those			
384	of GhPP2CA5, 6, 17, 23, 25, 26, ABH 1A, GhABH 2D, GhAHG3-1A, GhAHG3-2D,		Formatted: Font: Not Italic	
			Formatted: Font: Italic	
385	GhAHG3-3D and GhHAB1-1D were pronouncedly increased at 6 h and decreased at		Formatted: Font: Italic	
1			Formatted: Font: Italic	
386	12 h and 24 h. By contrast, the expression of some genes was significantly elevated at		Formatted: Font: Italic	
387	12 or 24 h post PEG treatment. These genes included GhPP2CA1, 3, 4, 7, 9, 12-14, 18,		Formatted: Font: Not Italic	
			Formatted: Font: Not Italic	
388	20° 24° 27. ABI1 2A, GhABI2 1A, GhABI2 1D, GhABI2 3A, GhAHG1D, GhAHG3 3A,		Formatted: Font: Not Italic	
			Formatted: Font: Not Italic	
389	GhHAB1-1A, GhHAI2A, GhHAI2D, GhHAI3-1A, GhHAI3-1D, and GhHAI3-2. The	\\\\	Formatted: Font: Not Italic	
390	overall changed trend of expression of <i>GhPP2CA10AHG3-1D</i> and		Formatted: Font: Not Italic	
390	overall enanged trend of expression of on <u>it 2 extorness to</u> and		Formatted: Font: Not Italic	
391	GhPP2CA15AHG3-2A was increased while that of GhPP2CA2, 11, 16AHG1A,		Formatted: Font: Not Italic	
			Formatted: Font: Not Italic	
392	GhHAB1-2A, and GhHAB1-2D was decreased under osmotic stress (Fig. 8). Together,		Formatted: Font: Not Italic	
I			Formatted: Font: Not Italic	
393	these data suggest that GhPP2CAs exhibit diverse expression patterns in responses to			
394	ABA and osmotic stress.			

Many GhPP2CAs interact with GhPYL2-2D, GhPYL6-2A and GhPYL9-2A

PP2CAs have been documented to interact with ABA receptor PYLs in ABA signal

395

Ú		
397	pathway (FujiiMa et al., 2009; SinghPark et al; 200915). Accordingly, we	
398	investigated the interactions between GhPP2CAs and GhYPLs in the absence or	Formatted: Font: Italic
ļ		Formatted: Font: Italic
399	presence of ABA by yeast-two hybrid method. A total of 11 GhPP2CAs were cloned,	
400	and three GhPYLs GhPYL2-2D (Gh_D08G2587), GhPYL6-2A (Gh_A06G1418) and	
401	GhPYL9-2A (Gh_A11G0870) were randomly selected and cloned. These genes were	
402	fused into yeast vectors, and yeast-two hybrid experiments were performed. In the	
403	absence of ABA, Gh <u>PP2CA2AHG3-3D</u> and Gh <u>PP2CA25HAB1-2A</u> respectively	
404	interacted with GhPYL2-2D while multiple GhPP2CAs like GhPP2CA2, 3, 6, 10, 13,	Formatted: Font: Italic
		Formatted: Font: Italic
405	15, 18, 19, 25ABH 1A, GhABH 1D, GhABH 2A, GhAHG3 1D, GhAHG3 2A,	Formatted: Font: Italic
406	GhAHG3-3D, GhHAB1-2A, GhHAI2A, and GhHAI2D individually interplayed with	
407	GhPYL2-2D in the presence of ABA (Fig. 9). In contrast, several GhPP2CAs could	Formatted: Font: Italic
		Formatted: Font: Italic
408	respectively interact with <i>GhPYL6-2A</i> or <i>GhPYL9-2A</i> either with or without ABA.	Formatted: Font: Italic
409	These <i>GhPP2CAs</i> included <i>GhPP2CA2</i> , 6, 10, 13, 15, 18, 19, 24, 25, ABII 1A,	Formatted: Font: Italic
409	These On 12 CAS included On 12 CA2, 0, 10, 13, 13, 16, 17, 24, 23, ABT 174,	Formatted: Font: Italic
410	GhABII-1D, GhABII-2A, GhAHG1D, GhAHG3-1D, GhAHG3-2A, GhAHG3-3D,	Formatted: Font: Italic
411	GhHAB1 2A and GhHAI2D. Besides, GhPP2CA3HAI2A interact with GhPYL9-2A	Formatted: Font: Italic
	/ A	Formatted: Font: Italic
412	but not with <i>GhPYL6-2A</i> either in the presence or absence of ABA (Fig. 10, Fig. 11).	Formatted: Font: Italic
410	The annual to invaluate of Ch. D.D.C.A. differentially interest with Ch.D.VI. in manual disc.	Formattadi Fasti Italia
413	These results imply that GhPP2CAs differentially interact with GhPYLs in responding	Formatted: Font: Italic Formatted: Font: Italic
414	to ABA in cotton.	Tornatted. Fort. Italic
415		
416	DISCUSSION	

PP2CAs are central components of ABA signal transduction pathway, and negatively

control ABA and stress responses in plants (Fuchs et al., 2013; Singh et al., 2015).

417

419	They have been identified in several plants including <i>Arabidopsis</i> , rice, maize and			
420	Brachypodium distachyon in recent years (Xue et al., 2008; Wei and Pan, 2014; Cao			
421	et al., 2016). However, phylogenesis and putative functions of PP2CAs in Gossypium			
422	remain elusive. In the present study, 14, 13, 27 and 29-23 PP2CA genes were			
423	characterized in genomes of G. arboretum, G. raimondii, G. hirsutum and G.			
424	barbadense, respectively (Table 1). Compared to the number of PP2CAs in			
425	Arabidopsis (10), rice (10), maize (16) and Brachypodium distachyon (8), that in G.			
426	hirsutum and G. barbadense was great (Xue et al., 2008; Wei and Pan, 2014; Cao et			
427	al., 2016). This suggests that more complex and elaborate ABA signaling mechanisms			
428	modulated by PP2CAs may exist in the upland and island cotton species. Conceivably.			
429	the high number of PP2CAs of the two species is related to their tetraploid nature. The			
430	two plants retain most PP2CA homologs of both G. araboreum and G. raimondii but			
431	not a copy of either one progenitor during evolution. This may be due to long-term			
432	human selection forwithin these two tetraploid-the cotton species for higher yields,			
433	growth in that grow better in hotter dryier regions, day neutral flowering, and			
434	adaptation to agronomic areas far outside their original habitats. with high yields.			
435	These advantageousaltered characteristics may be associated with more PP2CA			
436	proteins and complex ABA signal mechanisms in the cultivated cotton plants than in			
437	wild plants and in the greater opportunities to accumulate sequences, amenable to			
438	mutation and selection, in a tetraploid genome than in a diploid genome.			
439	Analysis results revealed that the physical properties of PP2CAs are similar among			
440	the four cotton species (Table 1) pointing to the conservative functions of the PP2CA			

441	members in Gossypium. Moreover, the predicted subcellular localizations of most-	Formatted: Not Highlight
442	Gossypium PP2CAs were the nucleus, consistent with those of PP2CAs in	
443	Arabidopsis, rice, maize and Brachypodium distachyon, (Xue et al., 2008; Wei and	Formatted: No underline, Font color: Auto
444	Pan, 2014; Cao et al., 2016). These data imply that the functions of PP2CAs are	
445	conserved among different plants, reflecting the importance of PP2CAs in regulating-	
446	gene expression in plants.	
447	We noticed that 27 GhPP2CAs and 23 GbPP2CAs individually had their	Formatted: Font: Italic
448	corresponding orthologs in G arboretum or G raimondii (Fig. 1), indicating that those	Formatted: Font: Italic
449	PP2CAs in G. hirsutum and G. barbadense are ancestrally related to those directly	
450	descended from those PP2CAs in the two diploid species. However, no orthologs of	
451	GhHAI3 2, GbABI1 3D, GbHAI3 2A, GbHAI3 2D, GbHAI3 3A, GbHAI3 3A' and	
452	GbHAI3-3D were found in the diploid cotton genomes (Fig. 1), implying that these	
453	PP2CAs likely generated through gene duplication. Additionally, no orthologous	
454	genes of GaPP2CA1, 3, 4, 14AHG3-3, GrPP2CA6ABH-2 and GrPP2CA9HAI2	
455	were observed in <i>G barbadense</i> (Fig. 1). This hints that these genes are possibly lost,_	
456	or these genes arose after the tetraploid species appeared and separated from the	
457	diploid species during the evolutionary processes.	
458	The structures and the numbers of introns and exons in PP2CAs were similar	Formatted: Font: Not Italic
459	among the 4 Gossypium species as well as Arabidopsis, rice, maize and	
460	Brachypodium distachyon (Xue et al., 2008; Wei and Pan, 2014; Cao et al., 2016),	
461	suggesting that the PP2CAs undergo conserved evolutionary processes even after the	Formatted: Font: Not Italic
462	divergence of monocotyledons and dicotyledons. Colinearity results showed that 136	

463	homologous gene pairs existed among GaPP2CAs, GrPP2CAs and GhPP2CAs (Fig.	
464	3), indicating that PP2CA genes expand primarily through segmental duplication of	
104		
465	DNA. <u>Segmental duplicates may be more often maintained through subsequent gene</u>	Formatted: Font: Times New Roman, 12 pt
466	subfunctionalization compared to tandem duplicates (Lynch and Conery, 2000).	Formatted: Font: Times New Roman, 12 pt
467	Accordingly, these PP2CAs most probably had diverse functions in Gossypium.	
468	Moreover, in agreement with our results, Arabidopsis phosphatase family genes also	Formatted: Font: Italic
469	showed to have high-segmental duplication property (Cannon et al., 2004), suggesting	
470	the evolutionalry mechanism of PP2CAs may be conserved in plants. The mean	
471	values of Ka/Ks for majority of PP2CA homologous gene pairs were less than 1 (Fig.	Formatted: Font: Italic
I 472	4), implying that the homologous genes between any two of <i>G. arboretum</i> , <i>G</i> .	Formatted: Font: Italic
473	raimondii and G. hirsutum were under purifying selection during evolution.	
474	Phylogenetic results showed that the PP2CA members from monocotyledonous	
475	plants clustered together, and similar results occurred in dicotyledonous PP2CAs (Fig.	
476	5). This suggests that great changes in DNA sequences of the PP2CAs have taken	
477	place after isolation of monocotyledons and dicotyledons although these genes shared	
478	a common ancestor. PP2CAs in Gossypium always clustered together with those in T.	
479	cacao rather than with those in A. thaliana, R. communis, P. trichocarpa, G. max, B.	
480	distachyon and O. sativa (Fig. 5), pointing to the closer evolutionary relationship of	
481	Gossypium with T. cacao. That is, most of homologous PP2CA members in	
482	Gossypium and cacao may were generated before separation of the two plantsgenera	
483	from a closethe common ancestors. The common PP2CAs across all plants show	

that they still have core functions essential to basic plant survival and functions.

485	Differences in PP2CAs that follow differentiation of different genera and even species	
486	show that they are still diverse and can accommodate functions specific to the	
487	survival of species and even in response to selection by man. 'Housekeeping'	
488	PP2CAs could probably be subtracted from the picture to illuminate the more unique	
489	ones to better understand functions of individual PP2CAs and their roles in specific	
490	species, traits, or even agronomic performance of specific cultivars.	
491	Transcript abundance analysis indicated that the majority of the GhPP2CAs was	
492	predominantly expressed in flowers (Fig. 6), suggesting that <i>GhPP2CA</i> -mediated	Formatted: Font: Italic
493	ABA signaling may be of great importance in flower development of cotton. High	
494	expression of <i>GhPP2CAs</i> in flowers was likely due to the importance of timing	Formatted: Font: Italic
495	flowering to environmental conditions of native Gossypium plants. Because	Formatted: Font: Italic
496	evolution of some species is tied to long-term human selection of cotton plants with	
497	high yields of fibrers and good adaptations to hot and dry growth conditions. Cotton	
498	yields are closely associated with flowering in agronomic conditions created by man	
499	that often are much different than the natural habitats of wild or ancestral Gossypium	Formatted: Font: Italic
500	species (e.g. cultivation only in summers of temperate-tropical latitudes instead of	
501	perennial growth in tropical, latitudes closer to the equator). Drought and hot stresses	
502	should limit flower development. PP2CAs are negative regulators of the adverse	
503	stress ore s; and therefore, may facilitate flowering of cotton in these newer	
504	environments. The expression of most <i>GhPP2CAs</i> was upregulated after treatment	
505	with ABA or PEG6000 (Fig. 7, Fig. 8), in good agreement with the results from	
506	AtPP2CAs, OsPP2CAs and BdPP2CAs (Xue et al. 2008; Cao et al. 2016). These	

507	findings imply that PP2CAs are essential for plant response to ABA and osmotic		
508	stress.		
509	The interactions between 11 <i>GhPP2CA</i> proteins and 3 <i>GhPYLs</i> were examined.	(Formatted: Font: Italic
540			Formatted: Font: Italic
510	The results revealed that most <i>GhPP2CAs</i> can individually interact with the three		Formatted: Font: Italic
511	GhPYLs in the absence or presence of ABA (Fig. 9-11). GhPYLs are homologs of		Formatted: Font: Italic
			Formatted: Font: Italic
512	AtPYLs and some <i>GhPYLs</i> are functional ABA receptors (Liang et al., 2017; Zhang		Formatted: Font: Italic
513	et al., 2017b). These data indicate that a large number of <i>GhPP2CAs</i> are functional	(Formatted: Font: Italic
514	phosphatases, and may play roles via interactions with GhPYLs in ABA-dependent or	(Formatted: Font: Italic
515	ABA-independent manner in cotton. The detailed mechanisms of <i>GhPP2CAs</i> in ABA	(Formatted: Font: Italic
516	signaling will be further explored in the future.		
517	CONCLUSIONS		
518	In <u>Tt</u> otalty, 14, 13, 27 and <u>29-23 PP2CA</u> genes were characterized from <i>G. arboretum</i> ,		
519	G. raimondii, G. hirsutum and G. barbadense, respectively. These genes shared high		
520	similarity in physical properties, chromosomal locations, structures and phylogeny		
521	among the species. Most of them <u>might bewere</u> under purifying selection during		
522	evolution. Moreover, PP2CAs displayed specific expression patterns in tissues and		Commented [JEF6]: Be more consistent with the italics
I F00	diverse expression profiles in response to ABA and osmotic stress in <i>G. hirsutum</i> .		and remove them when they are not needed.
523	diverse expression profiles in response to ABA and osmotic stress in G. nursulum.	X	Formatted: Font: Not Italic
524	Yeast-two hybrid experiments indicated that most <i>GhPP2CAs</i> interacted with	(Formatted: Font: Italic
525	GhPYL2-2D, GhPYL6-2A and GhPYL9-2A with or without ABA. These findings		Formatted: Font: Italic
I			Formatted: Font: Italic
526	provide essential information for in-depth investigations of the functions of PP2CAs		Formatted: Font: Italic
527	in Gossypium in the future.		

529	ADDITIONAL INFORMATION AND DECLARATIONS
530	Funding
531	This work was supported by Foundation of Program for young backbone teachers in
532	universities of Henan Province [2016GGJS-024], the scientific research and
533	innovation team in Henan University of Animal Husbandry and Economy
534	(2018KYTD18), and the "111" Project. The funders had no role in study design, data
535	collection and analysis, decision to publish, or preparation of the manuscript.
536	Grant Disclosures
537	The following grant information was disclosed by the authors:
538	Program for young backbone teachers in universities of Henan Province:
539	2016GGJS-024.
540	Foundation of scientific research and innovation team in Henan University of Animal
541	Husbandry and Economy: (2018KYTD18).
542	"111" Project.
543	Competing Interests
544	The authors declare there are no competing interests.
545	Author Contributions
546	• Tingting Lu and Gaofeng Zhang analyzed the data and performed the experiments,
547	• Yibin Wang and Shibin He contributed to prepare various
548	reagents/materials/analysis tools.
549	• Lirong Sun and Fushun Hao conceived and designed the experiments, and wrote the
550	manuscript.

551		
552	REFERENCES	
553	Camacho C, Coulouris G, Avagyan V, Ma N, Papadopoulos J, Bealer K, Madden	Formatted: Font: Times New Roman, 12 pt, Bold, No underline
554	LT, 2009, Blast+: architecture and applications. BMC Bioinformatics 10: 421.	Formatted: Font: Times New Roman, 12 pt, Bold, No underline
555	Cannon SB, Mitra A, Baumgarten A, Young ND, May G. 2004. The roles of	Formatted: Indent: Left: 0", Hanging: 2 ch
556	segmental and tandem gene duplication in the evolution of large gene families in	Formatted: Font: Times New Roman, 12 pt, Bold, No underline
557	Arabidopsis thaliana. BMC Plant Biol 4 :10.	Formatted: Font: Times New Roman, 12 pt, No underline Formatted: Font: Times New Roman, 12 pt, Bold, Not
558	Cao J, Jiang M, Li P, Chu Z. 2016. Genome-wide identification and evolutionary	Italic, No underline Formatted: Font: Bold, No underline
559	analyses of the PP2C gene family with their expression profiling in response to	Formatted: Font: Times New Roman, 12 pt, No underline
560	multiple stresses in Brachypodium distachyon. BMC Genomics 17:175.	Formatted: Font: 16 pt
561	Edgar RC, 2004. Muscle: multiple sequence alignment with high accuracy and high	Formatted: Font: (Default) Times New Roman, 12 pt, Bold, No underline
562	throughput, Nucleic Acids Res. 32:1792–1797.	Formatted: Indent: Left: 0", Hanging: 2 ch
l		Formatted: Font: Bold, No underline
563	Fuchs S, Grill E, Meskiene I, Schweighofer A. 2013. Type 2C protein phosphatases	Formatted: Font: Times New Roman, 12 pt, Not Italic
564	in plants. FEBS Journal 280:681–693.	Formatted: Font: (Default) Times New Roman, 12 pt, No Italic
1		Formatted: Font: (Default) Times New Roman, 12 pt
565	Fujii H, Zhu JK. 2009a. Arabidopsis mutant deficient in 3 abscisic acid-activated	Formatted: Font: (Default) Times New Roman, 12 pt, No Italic
566	protein kinases reveals critical roles in growth, reproduction, and stress.	Formatted: Font: (Default) Times New Roman, 12 pt, Bold, Not Italic
567	Proceedings of the National Academy of Sciences 106:8380–8385.	Formatted: Font: Bold, Not Italic
568	Fujii H, Chinnusamy V, Rodrigues A, Rubio S, Antoni R, Park SY, Cutler SR,	Formatted: Font: (Default) Times New Roman, 12 pt, No Italic
569	Sheen J, Rodriguez PL, Zhu JK. 2009b. In vitro reconstitution of an abscisic	
570	acid signalling pathway. <i>Nature</i> 462 :660–664.	
571	Fujita Y , Nakashima K , Yoshida T , Katagiri T, Kidokoro S, Kanamori N,	Formatted: Font: Times New Roman, 12 pt, Bold, Not Italic

Formatted: Indent: Left: 0", Hanging: 2 ch

Formatted: Font: Bold, Not Italic

Umezawa T, Fujita M, Maruyama K, Ishiyama K, Kobayashi M, Nakasone

573	S, Yamada K, Ito T, Shinozaki K, Yamaguchi-Shinozake K, 2009. Three	-1	Formatted	
574	SnRK2 protein kinases are the main positive regulators of abscisic acid signaling	//		
575	in response to water stress in Arabidopsis, Plant and Cell Physiology	<i> </i>	Formatted: Font: Times New Roman, 12 pt	
		\geq	Formatted	
576	50: 2123–2132.		Formatted: Font: Times New Roman, 12 pt, Not Ita	alic
577	Geiger D , Scherzer S , Mumm P , Stange A, Marten I, Bauer H, Ache P, Matschi	_/	Formatted	
578	S, Liese A, AI-Rasheid KA, Romeis T, Hedrich R, 2009. Activity of guard cell			
579	anion channel SLAC1 is controlled by drought-stress signaling			
580	kinase-phosphatase pair. Proceedings of the National Academy of Sciences			
581	106: 21425–21430.		Formatted	
582	Hauser F, Waadt R, Schroeder J. 2011. Evolution of Abscisic Acid Synthesis and		Formatted	(
583	Signaling Mechanisms. <u>Current Biology</u> , 21:346–355.		Formatted: Font: Times New Roman, 12 pt, Not Ita	alic
584	Himmelbach A, Hoffmann T, Leube M, Höhener B, Grill E. 2002. Homeodomain			
585	protein ATHB6 is a target of the protein phosphatase ABH and regulates			
586	hormone responses in Arabidopsis. EMBO J 21:3029 3038.			
587	Hu B, Jin J, Guo AY, Zhang H, Luo J, Gao G. 2015, GSDS 2.0: an upgraded gene		Formatted: Font: Times New Roman, 12 pt, Bold	
			Formatted: Indent: Left: 0", Hanging: 2 ch	
588	feature visualization server. Bioinformatics 31: 1296–1297.	\subset	Formatted	
589	Kerk D, Templeton G, Moorhead GBG. 2007. Evolutionary radiation pattern of		Formatted	
590	novel protein phosphatases revealed by analysis of protein data from the			
591	completely sequenced genomes of humans, green algae, and higher plants. Plant			
592	Physiology 146 :351–367.			
593	Larkin MA, Blackshields G, Brown NP, Chenna R, McGettigan PA, McWilliam			
594	H, Valentin F, Wallace IM, Wilm A, Lopez R, Thompson JD, Gibson TJ,			

595	Higgins DG. 2007. Clustal W and Clustal X version 2.0. Bioinformatics		
596	23 :2947 2948.		
597	Lee SC, Lan W, Buchanan BB, Luan S, 2009. A protein kinase-phosphatase pair		Formatted: Font: Times New Roman, 12 pt, Bold, Not Italic
598	interacts with an ion channel to regulate ABA signaling in plant guard cells.		Formatted: Font: Times New Roman, 12 pt, Bold, Not Italic
599	Proceedings of the National Academy of Sciences 106:21419-21424.		Formatted: Indent: Left: 0", Hanging: 2 ch
555	proceedings of the Hamonan Tedatemy of Sciences 200,21119	. //\	Formatted: Font: Bold, Not Italic
600	Liang C, Liu Y, Li Y, Meng Z, Yan R, Zhu T, Wang Y, Kang S, Abid MA, Malik	1	Formatted: Font: Bold, Not Italic
		$\mathbb{N} \setminus \mathbb{N}$	Formatted: Font: Times New Roman, 12 pt, Not Italic
601	W, Sun G, Guo S, Zhang R. 2017. Activation of ABA receptors gene	$\ \ / \ $	Formatted: Font: Times New Roman, 12 pt
602	GhPYL9-11A is positively correlated with cotton drought tolerance in transgenic	\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\\	Formatted: Font: Times New Roman, 12 pt, Bold, Not Italic
000	A 1'1 ' E		Formatted: Font: Times New Roman, 12 pt, Not Italic
603	Arabidopsis. Frontiers in Plant Science 8:1453.	/	Formatted: Font: Times New Roman, 12 pt, Not Italic
604	Lu TT, Zhang GF, Sun LR, Wang J, Hao FS. 2017. Genome-wide identification of		Formatted: Font: Times New Roman, 12 pt, Not Italic
605	CBL family and expression analysis of CBLs in response to potassium		
606	deficiency in cotton. PeerJ 5:e3653.		
607	Lynch M, Conery JS. 2000. The evolutionary fate and consequences of duplicate		Formatted: Font: Bold
001			Formatted: Indent: Left: 0", Hanging: 2 ch
608	genes. <u>Science</u> 290:1151–1155.		Formatted: Font: Italic
ļ			Formatted: Font: Bold
609	Ma LY, Zhang H, Sun LR, Jiao YH, Zhang GZ, Miao C, Hao FS. 2012. NADPH		
610	oxidase AtrbohD and AtrbohF function in ROS-dependent regulation of Na^+/K^+		
611	homeostasis in Arabidopsis under salt stress. Journal of Experimental Botany		
612	63 :305–317.		
613	Marchler-Bauer A, Bo Y, Han L, He J, Lanczycki CJ, Lu S, Chitsaz F,		

Derbyshire MK, Geer RC, Gonzales NR, Gwadz M, Hurwitz DI, Lu F,

Marchler GH, Song JS, Thanki N, Wang Z, Yamashita RA, Zhang D,

Zheng C, Geer LY, Bryant SH. 2017. CDD/SPARCLE: functional

614

615

617	classification of proteins via subfamily domain architectures. Nucleic Acids
618	Research 45: D200-D203.
619	Ma Y, Szostkiewicz I, Korte A, Moes A, Yang Y, Christmann A, Grill E. 2009.
520	Regulators of PP2C phosphatase activity function as abscisic acid sensors.
621	Science 324 :1064–1068.
522	Minh BQ, Nguyen MA, von Haeseler A. 2013, Ultrafast approximation for
523	phylogenetic bootstrap. Molecular & Biology & Evolution 30:1188–1195.
624	Murashige T, Skoog F. 1962. A revised medium for rapid growth and bio-assays
625	with tobacco tissue culture. <i>Physiologia Plantarum</i> 15 :473–497.
626	Nguven LT, Schmidt HA, Von Haeseler A, Minh BQ, 2015, IQ-TREE; a fast and
627	effective stochastic algorithm for estimating maximum-likelihood phylogenies.
628	Molecular Biology and Evolution 32:268–274.
529	Ohta M, Guo Y, Halfter U, Zhu J. 2003. A novel domain in the protein kinase
630	SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proceedings
631	of the National Academy of Science 100:11771–11776.
632	Park SY, Fung P, Nishimura N, Jensen DR, Fujii H, Zhao Y, Lumba S, Santiago
533	J, Rodrigues A, Chow TF, Alfred SE, Bonetta D, Finkelstein R, Provart
634	NJ,Desveaux D, Rodriguez PL, McCourt P, Zhu JK, Schroeder JI, Volkman
635	BF, Cutler SR. 2009. Abscisic acid inhibits type 2C protein phosphatases via
636	the PYR/PYL family of START proteins. <i>Science</i> 324 :1068–1071.
637	Rubio S, Rodrigues A, Saez A, Dizon MB, Galle A, Kim TH, Santiago J, Flexas J,
538	Schroeder JI, Rodriguez PL, 2009. Triple loss of function of protein

Formatted	(
Formatted	
Formatted	()
Formatted	
Formatted	<u></u>
Formatted	
Formatted	
Formatted	
Formatted	<u></u>
Formatted	
Formatted	<u></u>
Formatted	<u></u>
Formatted	
Formatted	
Formatted	
Formatted	<u></u>
Formatted	
Formatted	()
Formatted	
Formatted	<u></u>
Formatted	<u></u>
Formatted	<u></u>
Formatted	

ĺ			
639	phosphatases type 2C leads to partial constitutive response to endogenous	Form	atted: Font: Times New Roman, 12 pt, Not Italic
	·	Form	atted: Font: Times New Roman, 12 pt, Not Italic
640	abscisic acid. Plant Physiol 150:1345–1355.	Form	atted: Font: Times New Roman, 12 pt, Not Italic
641	Ohta M, Guo Y, Halfter U, Zhu J. 2003. A novel domain in the protein kinase-	Form	atted: Font: Times New Roman, 12 pt, Not Italic
041	Onta 11, Guo 1, Hanter C, Zhu 3, 2005. A nover domain in the protein kinase	Form	atted: Font: Times New Roman, 12 pt, Not Italic
642	SOS2 mediates interaction with the protein phosphatase 2C ABI2. Proc Natl-	Form	atted: Font: Times New Roman, 12 pt, Not Italic
		Form	atted: Font: Times New Roman, 12 pt, Not Italic
643	Acad Sci USA 100:11771 11776.	Form	atted: Font: Times New Roman, 12 pt, Not Italic
ļ			atted: Font: Times New Roman, 12 pt, Not Italic
644	Schweighofer A, Hirt H, Meskiene I. 2004. Plant PP2C phosphatases: emerging		atted: Font: Times New Roman, 12 pt
645	functions in stress signaling. Trends in Plant Science 9:236–243.	Form Italic	atted: Font: Times New Roman, 12 pt, Bold, Not
			atted: Font: Times New Roman, 12 pt, Not Italic
646	Singh A, Giri J, Kapoor S, Tyagi AK, Pandey GK. 2010. Protein phosphatase		atted: Font: Times New Roman, 12 pt, Not Italic
647	complement in rice: genome-wide identification and transcriptional analysis	Form	atted: Font: 16 pt
648	under abiotic stress conditions and reproductive development. BMC Genomics		
649	11 :435.		
650	Singh A, Pandey A, Srivastava AK, Tran LS, Pandey GK. 2015. Plant protein		
651	phosphatases 2C: from genomic diversity to functional multiplicity and	Form	atted: Font: Italic
652	importance in stress management. Critical Reviews in Biotechnology	Form Italic	atted: Font: Times New Roman, 12 pt, Bold, Not
1		Form	atted: Indent: Left: 0", Hanging: 2 ch
653	36 :1023–1035.	Form	atted: Font: Bold, Not Italic
654	<u>Tähtiharju S, Palva T. 2001.</u> Antisense inhibition of protein phosphatase 2C	Form Italic	atted: Font: Times New Roman, 12 pt, Bold, Not
CEE	and and a collection in Application	Form	atted: Font: Bold, Not Italic
655	accelerates cold acclimation in Arabidopsis thaliana. The Plant Journal 26:	Form	atted: Font: Times New Roman, 12 pt, Bold, Not
656	<u>461–470.</u>	Form	atted: Font: Times New Roman, 12 pt, Not Italic
		Form	atted: Font: Times New Roman, 12 pt, Not Italic
657	Trifinopoulos J, Nguyen LT, Von Haeseler A, Minh BQ. 2016, W-IQ-TREE: a fast	//	atted: Font: Times New Roman, 12 pt, Not Italic
658			<u> </u>
	online phylogenetic tool for maximum likelihood analysis. Nucleic Acids	Form	atted: Font: Times New Roman, 12 pt
000	online phylogenetic tool for maximum likelihood analysis. <i>Nucleic Acids</i>		atted: Font: Times New Roman, 12 pt atted: Font: Times New Roman, 12 pt, Not Italic
659		Form	
	online phylogenetic tool for maximum likelihood analysis. <i>Nucleic Acids Research</i> 44:232–235.	Form	atted: Font: Times New Roman, 12 pt, Not Italic
		Form Form	atted: Font: Times New Roman, 12 pt, Not Italic

Formatted: Font: Times New Roman, 12 pt

661	increased crop per drop. Plant Biotechnology Journal 15: 271–284,
662	Wei K, Pan S. 2014. Maize protein phosphatase gene family: identification and
663	molecular characterization. BMC Genomics 15:773.
664	Xue T, Wang D, Zhang S, Ehlting J, Ni F, Jakab S, Zheng C, Zhong Y. 2008.
665	Genome-wide and expression analysis of protein phosphatase 2C in rice and
666	Arabidopsis. BMC Genomics 9:550.
667	Zhang F, Wei Q, Shi J, Jin X, He Y, Zhang Y, Luo Q, Wang Y, Chang J, Yang G,
668	He G. 2017a. Brachypodium distachyon BdPP2CA6 interacts with BdPYLs and
669	BdSnRK2 and positively regulates salt tolerance in transgenic Arabidopsis.
670	Frontiers in Plant Science 8:264.
671	Zhang GF, Lu TT, Miao WW, Sun LR, Tian M, Wang J, Hao FS. 2017b.
672	Genome-wide identification of ABA receptor PYL family and expression
673	analysis of PYLs in response to ABA and osmotic stress in Gossypium. PeerJ
674	5 :e4126.
675	

Formatted: Font: Times New Roman, 12 pt, Not Italic

Formatted: Font: Times New Roman, 12 pt

Formatted: Font: Times New Roman, 12 pt

Formatted: Font: 20 pt