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Abstract: Soil temperature and moisture have a close relationship, the accurate controlling of which is 14 
important for crop growth. Mechanistic models built by previous studies need exhaustive parameters 15 
and seldom consider time stochasticity and lagging effect. To circumvent these problems, this study 16 
designed a data-driven stochastic model analyzing soil moisture-heat coupling. Firstly, three vector 17 
autoregression models are built using hourly data on soil moisture and temperature at the depth of 10 18 
cm, 30 cm, and 90 cm. Secondly, from impulse response functions, the time lag and intensity of two 19 
variables’ response to one unit of positive shock can be obtained, which describe the time length and 20 
strength at which temperature and moisture affect each other, indicating the degree of coupling. 21 
Thirdly, Granger causality tests unfold whether one variable’s past value helps predict the other’s future 22 
value. Analyzing data obtained from Shangqiu Experiment Station in Central China, we obtained three 23 
conclusions. Firstly, moisture’s response time lag is 25 h, 50 h, and 120 h, while temperature’s response 24 
time lag is 50 h, 120 h, and 120 h at 10 cm, 30 cm, and 90 cm. Secondly, temperature’s response 25 
intensity is 0.2004°C, 0.0163°C and 0.0035°C for 1% variation in moisture, and moisture’s response 26 
intensity is 0.0638%, 0.0163% and 0.0050% for 1°C variation in temperature at 10 cm, 30 cm and 90 27 
cm. Thirdly, the past value of soil moisture helps predict soil temperature at 10 cm, 30 cm, and 90 cm. 28 
Besides, the past value of soil temperature helps predict soil moisture at 10 cm and 30 cm, but not at 29 
90 cm. We verified this model by using data from a different year and linking it to Soil Plant Atmospheric 30 
Continuum model.  31 

Introduction 32 

The hydrothermal conditions of a wheat-soil system are essential to the dynamic balance of heat, 33 
moisture and organic matter within the entire system and the thriving of wheat (Yang et al. 2012; Sun 34 
et al. 2018). Because of complicated biological, physical and chemical processes like soil respiration, 35 
soil evaporation, plant transpiration and so on, soil temperature and moisture have a close dynamic 36 
relationship with each other. Therefore, in order to better control and predict the hydrothermal 37 
conditions of a wheat-soil system, models simulating soil moisture-heat coupling need to be established 38 
(Perez et al. 2013; Whelan et al. 2015).   39 

Most of the models employed to simulate moisture-heat coupling of soil are mechanistic models 40 
which call for complex parameters on soil properties and neglect time stochasticity. The following are 41 
some examples. Philip and de Vries (1957) took soil evaporation under different temperature into 42 
consideration and brought up the theory of moisture-gas-heat coupling transport under mass and 43 
energy balance. However, they did not consider the time lag effect and temporal heterogeneity. Based 44 
on the Philip model, Nassar and Horton (1989) used the water, heat, and salt transport equations which 45 
are based on Darcy’s, Fourier’s and Fick's laws to establish a model for the coupled transport of water, 46 
heat, and solute. But the model required a bunch of complicated parameters. Based on the theoretical 47 
integrity, Liu et al. (2005) established a model for describing the migration of heat, moisture, and gas 48 
in arid surface porous soil composed of a wet unsaturated layer and a dry but saturated layer. Bittelli 49 
et al. (2008) established a fully coupled numerical model to solve the governing equations for liquid 50 
water, water vapor and heat transfer in bare soil. Whelan et al. (2015) studied the impact of 51 
temperature and moisture on soil water repellency by designing and conducting experiments and 52 
factorial ANOVAs. However, the study fails to further explore characteristics like time lag and intensity 53 
of temperature and moisture’s influence on each other. Lu and Dong (2015) set up a closed-formed 54 
equation for the thermal conductivity of unsaturated soils and shows that the soil water retention curve 55 
(SWRC) can be used to predict the thermal conductivity of sands. Striegl and Loheide (2012) developed 56 
a distributed soil moisture sensing system that addressed the difficulty of characterizing both spatial 57 
and temporal soil moisture dynamics at site scales. However, under wet conditions insensitivity of the 58 
instrument response curve adversely affected accuracy. Steele‐Dunne et al. (2010) used distributed 59 



temperature sensing (DTS) to obtain simultaneous measurements of soil moisture over large areas, but 60 
they fail to address the complexity of deriving soil moisture due to the uncertainty and non-uniqueness 61 
in the relationship between thermal conductivity and soil moisture. 62 

Most of the models mentioned above are deterministic. Since in reality soil moisture and soil 63 
temperature constantly vary with disturbances from an assortment of factors like weather and soil, 64 
stochastic models are more accurate in terms of prediction than deterministic models (Bolin et al. (in 65 
press)). Moreover, mechanistic models mentioned above require a lot of parameters which are difficult 66 
to obtain in some cases and some models can only be applied to a certain situation which is quite 67 
limited (Pan et al. 2018). In comparison, time series models prove to have a wider application since 68 
they can be easily established even if nothing but the hydrological time series data are in hand. In 69 
addition, although the hysteresis effect has been included in previous models like Soil Plant 70 
Atmospheric Continuum (SPAC), few indices have been established to quantify the lagging effect.  71 

To take random variation into consideration, and to deal with the situation when only time series 72 
data are in hand, we designed a stochastic modeling technique for accurately analyzing moisture-heat 73 
coupling within a wheat-soil system. The model consists of three two-dimensional vector 74 
autoregression models, impulse response functions and Granger causality tests.  75 

Methods  76 

Models 77 

Vector Autoregression Model 78 

Vector autoregression model treats all variables as endogenous variables, accounting for Sims’ 79 
critique that the exogeneity1 assumptions of some of the variables in simultaneous equations models 80 
are ad hoc and often not backed by fully developed theories. Impulse response analysis and Granger 81 
causality tests are tools which have been proposed for disentangling the relations between the 82 
variables in a vector autoregression model (Droumaguet et al. 2017; Bouri et al. 2018). The process of 83 
establishing a vector autoregression system is as follows.  84 

First, we remove the seasonality of the time series 𝑥𝑡, t=1, 2, …, n. Seasonality in a time series is 85 
a regular pattern of changes that repeats over S time periods, where S defines the number of time 86 
periods until the pattern repeats again. In this case, S = 24 (hours per day) is the span of the periodic 87 
seasonal behavior. Seasonal differencing is defined as a difference between a value and a value with 88 
lag that is a multiple of S. With S = 24, a seasonal difference is 𝑦𝑡=(1 − 𝐵24)𝑥𝑡 = 𝑥𝑡 − 𝑥𝑡−24, t = 25, 89 
26, …, n, where B is the lag operator.  90 

Next, we check the stationarity of the time series after seasonal adjustment, because average 91 
values of non-stationary time series cannot be used if the time period is not set since they are 92 
influenced by changes in time. A stochastic process is called stationary when the average and variance 93 
values are constant in the corresponding period and covariance values between any two time points 94 
depend not on the specific time point but on the lag between these two time points. The three 95 
conditions stated above for a time series {𝑦𝑡} to be stationary can be expressed in the following way: 96 

𝐸(𝑦𝑡) = 𝜇, 𝑉𝑎𝑟(𝑦𝑡) = 𝜎2, 𝐶𝑜𝑣(𝑦𝑡 , 𝑦𝑡−𝑘) = 𝛾𝑘,  (1) 

where μ, σ2, and γ are average, variance, and auto-covariance, respectively. 97 
If the time series has a unit root, then it is not stationary. Under such circumstances, we restore 98 

the stationarity of the time series by making a difference of it. We use the Augmented Dickey-Fuller 99 
(ADF) test method to check the stationarity of the time series by testing whether the time series has a 100 
unit root. There are three model variants corresponding to three couples of hypothesis in the ADF test. 101 

The first is an autoregressive model variant (referred to as AR), which specifies a test of the null 102 
model: 103 

                                                 
1  Exogenous variables are also called "input variables", thus “exogeneity” describes whether the variable is 

exogenous or not. An exogenous variable is completely determined by the external part of the system and are input 

into the system. It only affects the system and is not affected by the system. 



𝐻0: 𝑦𝑡 = 𝑦𝑡−1 + 𝛽1∆𝑦𝑡−1 + 𝛽2∆𝑦𝑡−2 + ⋯ + 𝛽𝑝∆𝑦𝑡−𝑝 + 𝜀𝑡,  (2) 

against the alternative model: 104 

𝐻1: 𝑦𝑡 = ∅𝑦𝑡−1 + 𝛽1∆𝑦𝑡−1 + 𝛽2∆𝑦𝑡−2 + ⋯+ 𝛽𝑝∆𝑦𝑡−𝑝 + 𝜀𝑡,  (3) 

with ∅ < 1, where β1, β2, …, βp are regression coefficients, and 𝜀𝑡 is the error term.  105 
The second is an autoregressive model with drift variant (referred to as ARD), which specifies a 106 

test of the null model: 107 

𝐻0: 𝑦𝑡 = 𝑦𝑡−1 + 𝛽1∆𝑦𝑡−1 + 𝛽2∆𝑦𝑡−2 + ⋯ + 𝛽𝑝∆𝑦𝑡−𝑝 + 𝜀𝑡,  (4) 

against the alternative model: 108 

𝑦𝑡 = 𝑐 + ∅𝑦𝑡−1 + 𝛽1∆𝑦𝑡−1 + 𝛽2∆𝑦𝑡−2 + ⋯+ 𝛽𝑝∆𝑦𝑡−𝑝 + 𝜀𝑡,  (5) 

with ∅ < 1, where c is the constant term, β1, β2, …, βp are regression coefficients, and 𝜀𝑡 is the error 109 
term.  110 

The third is a trend-stationary model variant (referred to as TS), which specifies a test of the null 111 
model: 112 

𝐻0: 𝑦𝑡 = 𝑐 + 𝑦𝑡−1 + 𝛽1∆𝑦𝑡−1 + 𝛽2∆𝑦𝑡−2 + ⋯+ 𝛽𝑝∆𝑦𝑡−𝑝 + 𝜀𝑡,  (6) 

against the alternative model: 113 

𝐻1: 𝑦𝑡 = 𝑐 + 𝛿𝑡 + ∅𝑦𝑡−1 + 𝛽1∆𝑦𝑡−1 + 𝛽2∆𝑦𝑡−2 + ⋯+ 𝛽𝑝∆𝑦𝑡−𝑝 + 𝜀𝑡,  (7) 

with ∅ < 1, where c is the constant term, 𝛿 is the coefficient of the trend term, β1, β2, …, βp are 114 
regression coefficients, and 𝜀𝑡 is the error term (Chen et al. 2018). 115 

Then, we have to determine the optimal lag order for the vector autoregression model. The proper 116 
selection of lag is important because long lag structures reduce the error term’s correlation yet they 117 
may lack efficiency. We use the estimators AIC (Akaike information criterion) and BIC (Bayesian 118 
information criterion), both of which are founded on information theory and estimate relative 119 
goodness of fit of given models, as standards of choosing the optimal lag of the vector autoregression 120 
model (Mao et al. 2018).  121 

AIC value of a model is calculated as follows:  122 

𝐴𝐼𝐶 = 2𝑘 − 2ln (𝐿̂),  (8) 

where k is the number of estimated parameters in the model and 𝐿̂ is the maximum value of the 123 
likelihood function for the model. 124 

BIC value of a model is calculated as follows: 125 

𝐵𝐼𝐶 = ln (𝑛)𝑘 − 2ln (𝐿̂),  (9) 

where n is the number of data points in x or the number of observations.  126 
When fitting the models, it is possible to increase the simulation accuracy by adding parameters, 127 

but doing so may result in overfitting. Both BIC and AIC attempt to solve this problem by introducing a 128 
penalty term for the number of parameters in the model. And the lag order corresponding to the lowest 129 
AIC value or BIC value is taken as the optimal lag order. we We use maximum likelihood estimation2 to 130 
estimate the model parameters.  131 

The stability test of the established model is required because if the model is unstable, some 132 
results will not be valid (such as the standard error of the impulse response function). In this paper, we 133 
use the AR root test and if all the roots of the vector autoregression model estimated based on empirical 134 
data have a reciprocal of less than 1 (that is, if they are within the unit circle), they are stable. 135 

The way to check whether a vector autoregression model is stationary is as follow. For vector 136 
autoregression model 137 

                                                 
2 The method of maximum likelihood is based on the likelihood function. Suppose we are given a family of 

distributions {𝑓(∙; 𝜃)|𝜃 ∈ Θ}, where 𝜃 denotes the parameters (possibly multi-dimensional) for the model. The 

method defines a maximum likelihood estimate: 𝜃 ∈ {argmax
𝜃∈Θ

ℒ(𝜃; 𝓍)}, where ℒ(𝜃; 𝓍) denotes the likelihood 

function, because intuitively this selects parameter values that make the data most probable.  



(𝑦𝑡 − 𝜇) = 𝜙1(𝑦𝑡−1 − 𝜇) + 𝜙2(𝑦𝑡−2 − 𝜇) + ⋯+ 𝜙𝑝(𝑦𝑡−𝑝 − 𝜇) + 𝜀𝑡 138 
where 𝑦𝑡  is a vector in Rn, we first write it in the form of deviation. Then we define matrix F: 139 

𝐹 =

[
 
 
 
 
𝜙1 𝜙2 𝜙3 ⋯ 𝜙𝑝−1 𝜙𝑝

𝐼𝑛 0 0 ⋯ 0 0
0 𝐼𝑛 0 ⋯ 0 0
⋮ ⋮ ⋮ ⋯ ⋮ ⋮
0 0 0 ⋯ 𝐼𝑛 0 ]

 
 
 
 

 140 

where 𝐼𝑛 is a unit matrix of n dimension. If all characteristic roots of matrix F fall within a unit circle, 141 
then the vector autoregression model is stable.  142 

Impulse Response Function 143 

The impulse response function is used to characterize the influence of a standard deviation shock 144 
of random perturbation terms on the current and future values of other variables. It can visually 145 
describe the interactions and effects between variables (Schoukens et al. 2018). We take vector 146 
autoregression that has one lag order and contains tow variables (y and z) as an example. The matrix 147 
form of structure a vector autoregression model can be written as follow. 148 

[
1 𝑏12

𝑏21 1
] [

𝑦𝑡

𝑧𝑡
] = [

𝑏10

𝑏20
] + [

𝛾11 𝛾12

𝛾21 𝛾22
] [

𝑦𝑡−1

𝑧𝑡−1
] + [

𝜀𝑦𝑡

𝜀𝑧𝑡
],  (10) 

Then we write it in the standard form as follow. 149 

[
𝑦𝑡

𝑧𝑡
] = [

𝑎10

𝑎20
] + [

𝑎11 𝑎12

𝑎21 𝑎22
] [

𝑦𝑡−1

𝑧𝑡−1
] + [

𝑒1𝑡

𝑒2𝑡
],  (11) 

Moreover, we can write it in the following form if the vector autoregression model is stable.  150 

[
𝑦𝑡

𝑧𝑡
] = [

𝑦̅𝑡

𝑧𝑡̅
] + ∑ [

𝑎11 𝑎12

𝑎21 𝑎22
]
𝑖

∞
𝑖=0 [

𝑒1𝑡−𝑖

𝑒2𝑡−𝑖
],  (12) 

For the transformation from (10) to (11), the error term can be transformed as follow.  151 

[
𝑒1𝑡

𝑒2𝑡
] = 1 (1 − 𝑏12𝑏21)⁄ [

1 −𝑏12

−𝑏21 1
] [

𝜀𝑦𝑡

𝜀𝑧𝑡
],  (13) 

By combining equation (12) and (13), we obtain 152 

[
𝑦𝑡

𝑧𝑡
] = [

𝑦̅𝑡

𝑧𝑡̅
] + 1 (1 − 𝑏12𝑏21)⁄ ∑ [

𝑎11 𝑎12

𝑎21 𝑎22
]
𝑖

∞
𝑖=0 [

1 −𝑏12

−𝑏21 1
] [

𝜀𝑦𝑡−𝑖

𝜀𝑧𝑡−𝑖
], (14) 

In order to simplify the equation, we define matrix 𝜙𝑖, and denote its elements as 𝜙𝑗𝑘(𝑖). 153 

𝜙𝑖 = 𝐴1
i (1 − 𝑏12𝑏21)⁄ [

1 −𝑏12

−𝑏21 1
], (15) 

Thus, the moving average of the equation (11) and (12) can be expressed as 154 

[
𝑦𝑡

𝑧𝑡
] = [

𝑦̅𝑡

𝑧𝑡̅
] + ∑ [

𝜙11(𝑖) 𝜙12(𝑖)
𝜙21(𝑖) 𝜙22(𝑖)

]∞
𝑖=0 [

𝜀𝑦𝑡−𝑖

𝜀𝑧𝑡−𝑖
], (16) 

Moving average is a useful tool for studying the mutual influence between the two series {𝑦𝑡} and 155 
{𝑧𝑡}, for the impulse response function of {𝑦𝑡} and {𝑧𝑡} to one unit shock of 𝜀𝑦𝑡 and 𝜀𝑧𝑡 can be 156 
built using the coefficients of 𝜙𝑖 . Here 𝜙11(𝑖) , 𝜙12(𝑖), 𝜙21(𝑖) and 𝜙22(𝑖)  are called impulse 157 
response functions. And the graphs of these functions show the impulse response of the time series to 158 
one unit of positive shock.  159 
    To be more specific, coefficient 𝜙12(0) indicates the current impact of one unit positive change 160 
in 𝜀𝑧𝑡  have on 𝑦𝑡 . Similarly, after one period of calibration, 𝜙11(1) and 𝜙12(1) also denote the 161 
impact of one unit positive change in 𝜀𝑦𝑡 and 𝜀𝑧𝑡 have on 𝑦𝑡+1. The cumulative effect of 𝜀𝑦𝑡 and 162 
𝜀𝑧𝑡’s unit impulse response can be obtained by the appropriate add up of the coefficients of the impulse 163 
response functions. For instance, after 𝑛 periods the impact of 𝜀𝑧𝑡 on 𝑦𝑡+𝑛 is 𝜙12(𝑛). Therefore, 164 
after 𝑛  periods the accumulative impact of 𝜀𝑧𝑡  on 𝑦𝑡  is ∑ 𝜙12(𝑖)

𝑛
𝑖=0 . If 𝑛  tends to be positive 165 

infinite, the accumulative effect can be obtained. Since we have assumed that 𝑦𝑡  and 𝑧𝑡  are 166 
stationary, when 𝑗 and 𝑘 approximate infinite, the value of 𝜙𝑗𝑘(𝑖) is 0. Since all parameters of the 167 



vector autoregression system can be calculated, it is totally possible to track every value of 𝜀𝑦𝑡 and 168 
𝜀𝑧𝑡’s impact on {𝑦𝑡} and {𝑧𝑡} can be calculated. The time when 𝜙𝑗𝑘(𝑖) approximates 0 is the time 169 
lag of impulse response, and the gap between the positive largest value and negative largest value of 170 
𝜙𝑗𝑘(𝑖) can be used to describe the intensity of the impulse response.  171 

Granger Causality Test 172 

The Granger causality test is used to test if the variable y can be used to predict the variable x. 173 
That is when the variable x is regressed according to the past value of the variable y, the explanatory 174 
ability of the regression can be significantly enhanced. It should be noted that two variables have a 175 
temporal "causal relationship" but do not necessarily have a logical causal relationship. 176 

In an attempt to test whether past values of y helps predict x, we do first perform the an ordinary 177 
least squares (OLS) estimation first: 178 

𝑥𝑡 = 𝑐1 + 𝑎1𝑥𝑡−1 + 𝑎2𝑥𝑡−2 + ⋯+ 𝑎𝑝𝑥𝑡−𝑝 + 𝑏1𝑦𝑡−1 + 𝑏2𝑦𝑡−2 + ⋯+ 𝑏𝑝𝑥𝑡−𝑝 + 𝑢𝑡,  (17) 

And we propose the null hypothesis: 179 

𝐻0: 𝑏1 = 𝑏2 = ⋯ = 𝑏𝑝 = 0,  (18) 

which means that y is not the Granger reason for x. To conduct an F-test for this hypothesis, first, we 180 
estimate the equation without restriction 𝐻0, and obtain the sum of residual: 181 

𝑅𝑆𝑆0 = ∑ 𝑢̂𝑡
2𝑇

𝑡=1 ,  (19) 

Then, we estimate the equation with restriction 𝐻0, and obtain the sum of residual: 182 

𝑅𝑆𝑆1 = ∑ 𝑒̂𝑡
2𝑇

𝑡=1 ,  (20) 

We build the F statistic using the expression below: 183 

(𝑅𝑆𝑆1−𝑅𝑆𝑆0) 𝑝⁄

𝑅𝑆𝑆0 (𝑇−2𝑝−1)⁄
~𝐹(𝑝, 𝑇 − 2𝑝 − 1),  (21) 

where T is the size of the sample. Based on the data, if the value of F statistic is higher than the critical 184 
value, then we reject the null hypothesis and admit that increasing the lag order of y can significantly 185 
improve the explanatory ability of the model. Under such circumstances, we say that the past value of 186 
y helps predict x (Stokes & Purdon 2018).  187 

Stochastic Model System for Soil Moisture-heat Coupling 188 

First, we build three vector autoregression models at the depth of 10 cm, 30 cm, and 90 cm. We 189 
choose these three depths because, during the greening period which is around 15th March, the 190 
diameter of wheat root reaches its maximum approximately at the depth of 10 cm, 30 cm, and 90 cm, 191 
respectively, thus resulting in more water absorption at these three depths. In addition, usually, the 192 
soil is divided into topsoil, subsoil, and substratum, the representative depths of which approximate 10 193 
cm, 30 cm, and 90 cm. In addition, we select hourly data on soil moisture and temperature from 194 
December to May because this period covers the main growing stages of winter wheat. This time period 195 
can be adjusted according to the growing stages of different wheat species (Awad et al. 2018). 196 

Second, we build six impulse response functions for these three vector autoregression systems. 197 
Based on the results of impulse response function analysis, we are able to obtain the time lag and 198 
intensity of impulse response. For example, if one unit of positive shock is given to soil temperature at 199 
the depth of 10 cm, we calculate the time length during which obvious deviation from zero can be seen 200 
in soil moisture’s response to 1oC of positive variation. This provides us with the information on how 201 
long soil moisture will be influenced if there is a sudden change in temperature. In addition, the gap 202 
between the highest point and lowest point of the response is the intensity of impulse response. The 203 
larger the intensity, the stronger the influence of soil temperature has on moisture.  204 

Third, we conduct six Granger causality tests between two variables of soil moisture and 205 
temperature at three depths. According to the result of the Granger causality test, we are able to decide 206 
a more proper way of forecasting soil moisture and temperature by taking the Granger causal 207 
relationship of moisture and temperature into consideration. If, for example, at the depth of 10 cm the 208 
past value of soil temperature helps predict soil moisture, it means that the past value of soil 209 
temperature has an influence oninfluences soil moisture. Therefore, when establishing empirical 210 



models forecasting soil moisture, we should choose the ARMAX model which is an ARMA model with 211 
an exogenous variable in an attempt to take into consideration of temperature’s influence on moisture. 212 
On the other hand, if the past value of soil temperature does not help predict soil moisture, it means 213 
that the past value of soil temperature does not have a significant influence on soil moisture. If soil 214 
temperature and moisture are Granger reasons for each other, it suggests that the present value of 215 
two variables are related to each other’s past value. Thus, a vector autoregression model treating all 216 
variables as endogenous variables will be the optimal choice.  217 

Field experiment on soil moisture and temperature 218 

The experiment on the wheat of Bainong Dwarf Anti-floating No.583 was carried out at Shangqiu 219 
Experimental Station of Farmland Irrigation Institute of Chinese Academy of Agricultural Sciences with 220 
a latitude of 34° 35.222’N, longitude of 115° 34.515’E, and elevation of 55.6 m. The average annual 221 
temperature there is 13.9°C, and the frost-free period is 180 d to 230 d. In addition, the average annual 222 
precipitation is 708 mm with the precipitation from July to September accounting for 65%~75% of the 223 
total annual precipitation, and the average annual evaporation being 1735 mm. The soil of the test site 224 
is a loam, which refers to soil consists of clay (30%~40%), powder silt (30%~40%), and sand (30%~40%).    225 

The Irrigation method adopted is drip irrigation at the depth of 30 cm under soil surface. The 226 
sensor we used for acquiring datasoil water monitoring is called “Soil-Water”, which was produced in 227 
Australia. The basic components of this soil monitoring system are data collectors, solar modules, 228 
mounting components, and soil sensors. The accuracy for temperature is <0.1°C, and but the accuracy 229 
of soil moisture sensor was not provided by the manufacturer. We installed the instrument probes of 230 
the tube moisture meter at the depth of 10, 20, 30, 40, 50, 60, 70, 80, 90 and 100 cm, and measured 231 
soil moisture and soil temperature at these depths simultaneously. The instrument's temperature 232 
measurement range is from -20°C to 60°C.   233 

Among these ten sets of data, we select hourly data on soil moisture and soil temperature from 234 
December 19th, 2017 to May 30th, 2018 at the depth of 10 cm, 30 cm and 90 cm, which is in accordance 235 
with the model designed above. In addition, the selection of the measurement interval takes into 236 
account both the memory capacity of the instrument and the minimum scale of moisture transport, 237 
since one-hour interval is sufficient to show the footprint of water movement. 238 

Results 239 

Figure 1 shows data on soil moisture and temperature measured at the depth of 10, 20, 30, 40, 240 
50, 60, 70, 80, 90 and 100 cm. We can see that both soil temperature and soil moisture content exhibits 241 
periodical variations within a day and trends changing with the alternation of seasons. Soil temperature 242 
decreases with the cooling trend of climate from December to January and increases with the overall 243 
warming of the climate from February to May in next year. Soil moisture content, however, experiences 244 
a sudden hike around 2nd March and 19th March from 10 cm to 50 cm due to irrigation, and gradually 245 
decreases from March to May due to evapotranspiration, indicating an active water absorption process 246 
of winter wheat root system. Soil moisture content exhibits obvious differences among different depths. 247 

Figure 1. Soil moisture (a) and temperature (b) at different depths. 248 

We use hourly data from December 19th, 2017 to May 30th, 2018 on soil moisture content at the 249 
soil depths of 10 cm, 30 cm and 90 cm (hereinafter referred to as MC10, MC30 and MC90, respectively), 250 
soil temperature at the depth of 10 cm, 30 cm and 90 cm (hereinafter referred to as ST10, ST30 and 251 
ST90, respectively). 252 

First, we remove the seasonality of the time series of MC10, ST10, MC30, ST30, MC90 and ST90, 253 
since it is known from the above figures that the six hourly time series have obvious diurnal pattern 254 
due to the periodical variations of meteorological factors, evapotranspiration, and root water uptake 255 

                                                 
3 Bainong Dwarf Anti-floating No.58 is a new epoch-making wheat variety developed in 2003 by the Wheat 

Breeding Center in Henan University of Science and Technology. This variety belongs to the semi-winter mid-

maturing variety. The plant height is about 70 cm, with high resistance to lodging and good fullness. It has high 

resistance to powdery mildew, stripe rust, leaf blight, and medium resistance to sheath blight, strong root activity, 

good ripening, and yellowing. It also has the preponderance of high yield with the average yield being 7500-8250 

kg/ha and the maximum being 10500 kg/ha. 



within a day, especially in shallow layers. After seasonal difference, the period of the data is from 256 
December 20th, 2017 to May 30th, 2018. The corresponding time series of the six detrended variables 257 
are referred to as MCSD10, STSD10, MCSD30, STSD30, MCSD90, and STSD90, respectively (Figure 2). 258 

Table 1. Unit root test results of the deseasonalized soil moisture and temperature series. 259 

1 T stat. is the t-statistic for performing the ADF test. 2 Model indicates the type of hypothesis selected and the lag 260 
period which is added to make the residual become white noise. 3 P-Value represents the corresponding p p-value. 261 
4 C.V. indicates critical value.5 * indicates a significant level of 10%, ** indicates a significant level of 5%, and *** 262 
indicates a significant level of 1%. 6 Stationary indicates that the time series is stable. 263 

Figure 2. Deseasonalized soil temperature (a) and moisture (b) at the depth of 10cm, 30cm, and 264 
90cm. 265 

According to the above results of the ADF test (Table 1), the variables of MCSD10, STSD10, 266 
MCSD30, STSD30, and MCSD90 are all stationary under the significance level of 0.01. The variable of 267 
STSD90 is stationary under the significance level of 0.05. Thus, it is appropriate to use the variables of 268 
MCSD10, STSD10, MCSD30, STSD30, MCSD90 and STSD90 to build vector autoregression models since 269 
they are all stationary.  270 

Vector Autoregression Model Establishment 271 

The values of AIC and BIC for vector autoregression models of different lags are calculated (Table 272 
2) to determine the optimal lag orders for the vector autoregression models.  273 

Table 2. Calculated ln (𝐿̂), AIC and BIC for vector autoregression model of different lags at the depth 274 
of 10 cm, 30 cm, and 90 cm. 275 

For soil depth of 10 cm, among the eight lag orders, lag order 8 has the lowest AIC value and lag 276 
order 5 has the lowest BIC value. Since model with a lag order of 5 has fewer parameters to estimate 277 
which leads to smaller estimation error for the whole model, we choose 5 as the optimal lag order 278 
(Table 2). Based on the optimal lag structure and the time series of MCSD10 and STSD10, we estimate 279 
the parameters of the vector autoregression model using maximum likelihood estimation. Most of the 280 
t-statistic of the estimated coefficients in the above regression model is significant at the 10% 281 
significance level. Although some of the coefficients are not significant, it may because multiple 282 
hysteresis values with the same variables in the same equation result in multiple collinearities. Thus, 283 
finally, we obtained the estimated vector autoregression model: 284 

[
𝑀𝐶𝑆𝐷10t

𝑆𝑇𝑆𝐷10𝑡
] = [

−0.002
0.005

] + [
1.593 −0.026
0.167 1.754

] [
𝑀𝐶𝑆𝐷10𝑡−1

𝑆𝑇𝑆𝐷10𝑡−1
] +

[
−0.631 0.019
−0.205 −0.816

] [
𝑀𝐶𝑆𝐷10𝑡−2

𝑆𝑇𝑆𝐷10𝑡−2
] + [

0.274 0.012
−0.061 0.026

] [
𝑀𝐶𝑆𝐷10𝑡−3

𝑆𝑇𝑆𝐷10𝑡−3
] +

[
−0.526 0.024
0.094 −0.060

] [
𝑀𝐶𝑆𝐷10𝑡−4

𝑆𝑇𝑆𝐷10𝑡−4
] + [

0.257 −0.031
0.008 0.068

] [
𝑀𝐶𝑆𝐷10𝑡−5

𝑆𝑇𝑆𝐷10𝑡−5
] + [

𝑢1t

𝑢2𝑡
]  

(22) 

For soil depth of 30 cm, Among the eight lag orders, lag order 8 has the lowest AIC value and the 285 
lowest BIC value. Thus, we choose 8 as the optimal lag order and build a vector autoregression model 286 
(Table 2). We obtained the estimated vector autoregression model as follow: 287 



[
𝑀𝐶𝑆𝐷30t

𝑆𝑇𝑆𝐷30𝑡
] = [

−0.002
0.001

] + [
1.182 0.117

−0.006 0.559
] [

𝑀𝐶𝑆𝐷30𝑡−1

𝑆𝑇𝑆𝐷30𝑡−1
] +

[
−0.173 −0.090
−0.022 0.344

] [
𝑀𝐶𝑆𝐷30𝑡−2

𝑆𝑇𝑆𝐷30𝑡−2
] + [

−0.016 0.020
0.042 0.228

] [
𝑀𝐶𝑆𝐷30𝑡−3

𝑆𝑇𝑆𝐷30𝑡−3
] +

[
−0.002 −0.054
−0.003 0.149

] [
𝑀𝐶𝑆𝐷30𝑡−4

𝑆𝑇𝑆𝐷30𝑡−4
] + [

0.000 0.013
−0.022 0.012

] [
𝑀𝐶𝑆𝐷30𝑡−5

𝑆𝑇𝑆𝐷30𝑡−5
] +

[
−0.006 −0.014
0.019 −0.074

] [
𝑀𝐶𝑆𝐷30𝑡−6

𝑆𝑇𝑆𝐷30𝑡−6
] + [

0.012 0.040
−0.010 −0.082

] [
𝑀𝐶𝑆𝐷30𝑡−7

𝑆𝑇𝑆𝐷30𝑡−7
] +

[
−0.027 −0.029
−0.002 −0.148

] [
𝑀𝐶𝑆𝐷30𝑡−8

𝑆𝑇𝑆𝐷30𝑡−8
] + [

𝑢1t

𝑢2𝑡
] 

(23) 

For soil depth of 90 cm, Among the eight lag orders, lag order 8 has the lowest AIC value and lag 288 
order 7 has the lowest BIC value. Since model with a lag order of 7 has fewer parameters to estimate 289 
which leads to smaller estimation error for the whole model, we choose 7 as the optimal lag order 290 
(Table 2). We obtained the estimated vector autoregression model as follow: 291 

[
𝑀𝐶𝑆𝐷90t

𝑆𝑇𝑆𝐷90𝑡
] = [

0.690 0.058
0.133 0.345

] [
𝑀𝐶𝑆𝐷90𝑡−1

𝑆𝑇𝑆𝐷90𝑡−1
] + [

0.336 0.025
0.026 0.200

] [
𝑀𝐶𝑆𝐷90𝑡−2

𝑆𝑇𝑆𝐷90𝑡−2
] +

[
0.130 −0.001
0.045 0.191

] [
𝑀𝐶𝑆𝐷90𝑡−3

𝑆𝑇𝑆𝐷90𝑡−3
] + [

−0.024 −0.010
0.079 0.103

] [
𝑀𝐶𝑆𝐷90𝑡−4

𝑆𝑇𝑆𝐷90𝑡−4
] +

[
−0.061 −0.031
−0.166 0.039

] [
𝑀𝐶𝑆𝐷90𝑡−5

𝑆𝑇𝑆𝐷90𝑡−5
] + [

−0.004 −0.008
−0.132 0.056

] [
𝑀𝐶𝑆𝐷90𝑡−6

𝑆𝑇𝑆𝐷90𝑡−6
] +

[
−0.071 −0.032
0.011 0.058

] [
𝑀𝐶𝑆𝐷90𝑡−7

𝑆𝑇𝑆𝐷90𝑡−7
] + [

𝑢1t

𝑢2𝑡
]  

(24) 

Then we check the stability of these three vector autoregression models. Figure 3 shows that all 292 
unit roots fall within the unit root circle, so it is reasonable to believe that the vector autoregression 293 
models at these three soil depths are stable, indicating that there is a long-term stable relationship 294 
between the variables selected which can be further analyzed. 295 

Figure 3. Inverse roots of AR characteristic polynomial at 10 cm (a), 30 cm (b) and 90 cm (c). 296 

Impulse Response Function Analysis 297 

The impulse response results at three different depths are shown in Table 3. 298 

Table 3. Impulse response results of MCSD10, STSD10, MCSD30, STSD30, MCSD90 and STSD90. 299 

1RP represents retrospective periods, its unit is an hour. 300 

The impulse response diagrams at three different depths are shown in Figure 4. The horizontal 301 
axis represents the number of retrospective periods from 0 h to 120 h, while the vertical axis represents 302 
the response of the dependent variable to the shock. The confidence interval is used because the vector 303 
autoregression model coefficients have some error in the estimation. Setting the confidence interval 304 
can accommodate the inherent uncertainty of the parameters. 305 

Figure 4. Impulse response of MCSD10 to shock in STSD10 (a), impulse response of STSD10 to shock in 306 
MCSD10 (b), impulse response of MCSD30 to shock in STSD30 (c), impulse response of STSD30 to shock 307 
in MCSD30 (d), impulse response of MCSD90 to shock in STSD90 (e), impulse response of STSD90 to 308 
shock in MCSD90 (f). The solid line of blue fluorescence represents the impulse response, and the red 309 
dashed line represents the confidence interval of the impulse response with a confidence level of 0.90.  310 

When STSD10 is given one unit of positive shock, MCSD10 reacts to 0.0312% in the current period, 311 
and then monotonically increases until it reaches a positive maximum of 0.0638% in the ninth period. 312 
And then it gradually decreases and falls near zero in the long run indicating that the vector 313 



autoregression system is stable. It can be seen that the impact of STSD10 on MCSD10 has a lagging 314 
effect since its impulse response is only close to zero after around 25 periods. Moreover, the intensity 315 
of the influence which can be quantified as 0.0638% is relatively high (Figure 4. (a)). 316 

When MCSD10 is given one unit of positive shock, STSD10 reacts to 0.0453°C in the current period, 317 
and then monotonically increases until it reaches a positive maximum of 0.2004°C in the fourth period. 318 
And then it gradually decreases, and fall near zero in the long run indicating that the vector 319 
autoregression system is stable. It can be seen that the impact of MCSD10 on STSD10 has a lagging 320 
effect since its impulse response never falls below zero and is only close to zero after 50 periods. 321 
Moreover, the intensity of the influence which can be quantified as 0.2004°C is quite high (Figure 4. 322 
(b)). 323 

When STSD30 is given one unit of positive shock, MCSD30 reacts to -0.0077% in the current period, 324 
and then monotonically increases until it reaches a positive maximum of 0.0086% in the 22nd, 23rd, 24th 325 
period. And then it gradually decreases and falls near zero in the long run indicating that the vector 326 
autoregression system is stable. Besides, the impact of STSD30 on MCSD30 has a lagging effect based 327 
on the fact that it is only close to zero after around 50 periods. Moreover, the intensity of the influence 328 
which can be quantified as 0.0163% is lower than the intensity of MCSD10’s response to STSD10 (Figure 329 
4. (c)). 330 

When MCSD30 is given one unit of positive shock, STSD30 reacts to -0.0045°C in the current period, 331 
and then monotonically decreases until it reaches a negative maximum of -0.0163°C at the 36th, 37th, 332 
38th, 39th period. And then it gradually increases, and fall near zero in the long run indicating that the 333 
vector autoregression system is stable. It can be seen that the impact of MCSD30 on STSD30 has a 334 
lagging effect since its impulse response is only close to zero after the 120th period. Moreover, the 335 
intensity of the influence which can be quantified as 0.0163°C is lower than the intensity of STSD10’s 336 
response to MCSD10 (Figure 4. (d)). 337 

When STSD90 is given one unit of positive shock, MCSD90 reacts to -0.0033% in the current period, 338 
and then monotonically increases until it reaches a positive maximum of 0.0017% from the 17th to 30th 339 
period. And then it gradually decreases and falls near zero in the long run indicating that the vector 340 
autoregression system is stable. It can be seen that the impact of STSD90 on MCSD90 has a lagging 341 
effect based on the fact that it is only close to zero after 120 periods. Moreover, the intensity of the 342 
influence which can be quantified as 0.0050% is lower than the intensity of MCSD30’s response to 343 
STSD30 (Figure 4. (e)). 344 

When MCSD90 is given one unit of positive shock, STSD90 reacts to -0.0107°C in the current period, 345 
and then monotonically increases and reaches a relatively stable value of -0.0035°C at around the 120th 346 
period. It can be seen that the impact of MCSD90 on STSD90 has a lagging effect. Moreover, the 347 
intensity of the influence which can be quantified as 0.0035°C is lower than the intensity of STSD30’s 348 
response to MCSD30 (Figure 4. (f)). 349 

Granger Causality Test 350 

By carrying out Granger causality test, we figured out whether the past value of STSD10 (STSD30, 351 
STSD90) helps predict MCSD10 (MCSD30, MCSD90) and whether the past value of MCSD10 (MCSD30, 352 
MCSD90) helps predict STSD10 (STSD30, STSD90).  353 

From the results in Table 4 and Table 5, it is known that the past value of MCSD10 helps predict 354 
STSD10, but the past value of STSD10 does not help predict MCSD10. This means that the past value of 355 
soil moisture content is helpful in terms of predicting the present value of soil temperature at the depth 356 
of 10 cm, while soil temperature has a small influence in terms of predicting soil moisture content at 357 
the depth of 10 cm. Besides, the results also indicate soil moisture content varies ahead of soil 358 
temperature.  359 

From Table 6 and Table 7, we can see that at the significance level of 0.05 and 0.10, the past value 360 
of MCSD30 helps predict STSD30 and the past value of STSD30 helps predict MCSD30. This suggests 361 
that the past value of soil moisture content is helpful in terms of predicting the present value of soil 362 
temperature at the depth of 30 cm, and the past value of soil temperature is helpful in terms of 363 
predicting the present value of soil moisture content at the depth of 30 cm.  364 

From Table 8 and Table 9, we can see that at the significance level of 0.01, 0.05 and 0.10, the past 365 
value of MCSD90 helps predict STSD90 and the past value of STSD90 helps predict MCSD90. This 366 
suggests that the past value of soil moisture content is helpful in terms of predicting the present value 367 



of soil temperature at the depth of 90 cm, and the past value of soil temperature is helpful in terms of 368 
predicting the present value of soil moisture content at the depth of 90 cm. 369 

Table 4. Granger causality test determining whether STSD10 helps predict MCSD10. 370 

Table 5. Granger causality test determining whether MCSD10 helps predict STSD10. 371 

Table 6. Granger causality test determining whether STSD30 helps predict MCSD30. 372 

Table 7. Granger causality test determining whether MCSD30 helps predict STSD30. 373 

Table 8. Granger causality test determining whether STSD90 helps predict MCSD90. 374 

Table 9. Granger causality test determining whether MCSD90 helps predict STSD90. 375 

Discussions 376 

Specific results 377 

Firstly, the time lag of soil temperature’s response to shock in soil moisture is about 25 h at 10 cm, 378 
50 h at 30 cm, and 120 h at 90 cm, while the time lag of soil moisture’s response to shock in soil 379 
temperature is for about 50 h at 10 cm and longer than 120 h at 30 cm and 90 cm.  380 

Secondly, the intensity of soil temperature’s impulse response to shock in soil moisture decreases 381 
from 0.2004°C at the depth of 10 cm, to 0.0163°C at the depth of 30 cm, and finally to 0.0035°C at the 382 
depth of 90 cm. Similarly, the intensity of soil moisture’s impulse response to soil temperature also 383 
decreases from 0.0638% at the depth of 10 cm, to 0.0163% at the depth of 30 cm, and finally to 0.0050% 384 
at the depth of 90 cm.  385 

Thirdly, soil moisture is the Granger reason of soil temperature at the depth of 10 cm, 30 cm, and 386 
90 cm. This means that the past value of soil moisture is helpful in terms of predicting the present value 387 
of soil temperature, and probably is the actual logical reason for changes in soil temperature. However, 388 
the causal relationship does not necessarily mean that there exists a direct connection between soil 389 
temperature and moisture, since a series of physical and biological processes may complicate the 390 
relations between soil temperature and moisture. While soil temperature does not help predict soil 391 
moisture at the depth of 10 cm, it helps predict soil moisture at the depth of 30 cm and 90 cm. Therefore, 392 
according to the basic principles of Granger causality test, when predicting the dynamic variation of soil 393 
temperature and moisture at the depth of 30 cm and 90 cm, the other variable’s past values should be 394 
taken into consideration, which means that a vector autoregression model may be a better choice. In 395 
comparison, at the depth of 10 cm, the past value of soil temperature is not helpful for predicting the 396 
present value of soil moisture. However, it may be more accurate to incorporate soil moisture as an 397 
exogenous variable when predicting soil temperature at 10 cm.  398 

Verification of the model 399 

To begin with, the model we proposed can be supported and explained by established mechanistic 400 
models. In 1966, Philip proposed the concept of a complete Soil-Plant-Atmosphere Continuum (SPAC), 401 
laying the theoretical foundation for modern farmland water research. Based on this, Meng and Xia 402 
(2005) established a dynamic coupling model by calibrating parameters that describes the 403 
hydrothermal conditions during crop growth and the law for crop transpiration. Through this coupling 404 
model, they hope to reveal the law for moisture and heat transfer of the SPAC. The SPAC is divided into 405 
three layers, namely, the atmosphere at a high altitude, the plant canopy which is simplified into one 406 
layer at the momentum transfer junction, and the soil layer. To be more specific, the top of the soil 407 
layer is set to be the soil surface, and the bottom of the soil layer is set to be at the groundwater level. 408 
According to the mathematical expression of total latent and sensible heat consumption of SPAC, the 409 
mathematical expression of plant transpiration latent and sensible heat consumption, the 410 
mathematical expression of soil evaporation latent and sensible heat consumption, and the model of 411 
soil moisture migration and heat transfer, the results obtained from data-driven vector autoregression 412 
models can be reasonably explained.  413 



To begin with, the lagging effect of impulse response between soil temperature and moisture can 414 
be explained as follows. Moisture’s lagging effect on temperature can be partly interpreted by one of  415 
the basic equation s within the model of soil moisture migration and heat transfer equation:.  416 

𝐶v
𝜕𝑇

𝜕𝑡
=

𝜕

𝜕𝑧
(𝐾h

𝜕𝑇

𝜕z
), (25) 

where T is soil temperature, 𝐶v is soil volumetric heat capacity, and 𝐾h is soil thermal conductivity. 417 
𝐶v and 𝐾h are close correlated with soil moisture content 𝜃 and can be expressed in the single factor 418 
function form of 𝜃. From the equation above, we can deduce that when there is a fluctuation in soil 419 
moisture content, the first-order derivative of temperature T’s function on time t will change. Thus, 420 
although the contemporary value of temperature will not change, it’s successive value will change 421 
gradually in accordance with the change of the first-order derivative. Finally, at some point after the 422 
interference point, the deviation of temperature will reach its maximum, accounting for moisture’s 423 
lagging effect on temperature. Temperature’s lagging effect on moisture is to some extent related to 424 
the relationship between water vapor relative saturation and soil temperature.  425 

ℎ2 = 𝑒𝑥𝑝 (
𝑀g𝜓2

𝑅(𝑇2+273.16)
),  (26) 

where ℎ2 is the water vapor relative saturation of the air at the soil surface, 𝜓2 represents water 426 
potential at the soil surface, 𝑅 is the universal gas constant, and 𝑇2 denotes soil surface temperature. 427 
Though other possible reasons for the lagging effect may exist, one major process can be deduced from 428 
the expression above, where a fluctuation in soil temperature will first cause deviation in water vapor 429 
relative saturation, and then change in water vapor relative saturation will cause the corresponding 430 
variation in soil moisture through a series of complicated processes. In this way, a time lag exists.  431 
 The result that the time lag and intensity of the impulse response change with depth can be 432 
explained by several processes, some of which can be expressed as follows.  433 

𝑆w = [(4𝑚 − 1) 𝑙𝑟(𝑡)⁄ − (8𝑚 − 4) 𝑙𝑟2(𝑡)⁄ ]𝐸v(𝑡)  (27) 

𝐸v(𝑡) = ∫ 𝑆w(𝑧, 𝑡)
𝑙𝑟(𝑡)

0
𝑑𝑧  (28) 

Where 𝑆w is the water absorption intensity of roots, 𝑚 denotes the ratio of water absorption rate 434 
of the upper part to that of the lower part of roots, 𝑙𝑟(𝑡) represents root depth, and 𝐸v  is crop 435 
transpiration rate. Equation (27) describes how 𝑆w is influenced by depth and time. Equation (28) 436 
describes the way in which plant transpiration is influenced by 𝑆w at different soil depths (Lei et al., 437 
1988). Given that there exists a close relationship between soil temperature and plant transpiration 438 
latent and sensible heat consumption, it can be deduced that soil temperature varies with depth.  439 

In addition to physical explanations, we used data from a different year and partly verified the 440 
universality of the model. We collected data on soil temperature and moisture content at the same test 441 
site from December 19th, 2016 to May 30th, 2017 at the depth of 10 cm, 30 cm, and 90 cm, during which 442 
the same irrigation method, i.e., drip irrigation, has been adopted. Then, we used the same method 443 
stated above to build three vector autoregression models. Next, we built impulse response functions 444 
and conducted Granger causality tests. The results we obtained are as follows. First, the time lag of soil 445 
moisture’s impulse response is 30 h, 70 h, and longer than 120 h, while the time lag of temperature’s 446 
impulse response is about 60 h, longer than 120 h, and longer than 120 h at 10 cm, 30 cm, and 90 cm. 447 
Second, temperature’s response intensity is 0.1989°C, 0.0157°C and 0.0031°C for 1% of variation in soil 448 
moisture, and moisture’s response intensity is 0.0578%, 0.0169% and 0.0057% for 1°C of variation in 449 
soil temperature at 10 cm, 30 cm and 90 cm. Third, soil moisture is helpful in terms of predicting soil 450 
temperature at the depth of 10 cm, 30 cm, and 90 cm. Besides, soil temperature is helpful in terms of 451 
predicting soil moisture at the depth of 10 cm and 30 cm, but has no obvious relationship with soil 452 
moisture at 90 cm.  453 

By comparing the results with those of 2017-2018, we can discover that the ratios for the intensity 454 
of soil temperature’s impulse response to moisture among three depths during both periods 455 
approximate 200:16:3. And the ratios for the intensity of moisture’s impulse response to temperature 456 
during both periods approximate 60:17:6. Moreover, the results of Granger causality tests are the same, 457 
indicating certain stability in terms of the physical and biological processes that involve the variation of 458 
soil temperature and moisture in the same area. This demonstrates that for the same area the data-459 



driven model we proposed has consistency and the results we obtained are not out of a sudden. Thus, 460 
the method of building data-driven vector autoregression models can be used to study the 461 
characteristics of soil heat-moisture coupling. Although the numerical results of this model will change 462 
with different soil properties in different areas, the method can be applied in the same way.  463 

Conclusions 464 

We designed a purely data-driven stochastic model for analyzing moisture-heat coupling of a 465 
wheat-soil system, which consists of three vector autoregression models built at the depth of 10 cm, 466 
30 cm, and 90 cm, impulse response functions, and Granger causality tests. For the empirical test of 467 
this method, we use the hourly data on soil moisture and soil temperature at the depth of 10 cm, 30 468 
cm, and 90 cm obtained at Shangqiu Experiment Station. Following conclusions can be drawn from the 469 
models. 470 

Firstly, the time lag of soil temperature’s influence on soil moisture is for about 25 h at 10 cm, 50 471 
h at 30 cm, and 120 h at 90 cm, while the time lag of soil moisture’s influence on soil temperature is for 472 
about 50 h at 10 cm and longer than 120 h at 30 cm and 90 cm. Secondly, the intensity of soil 473 
temperature’s impulse response to shock in soil moisture is 0.2004°C, 0.0163°C and 0.0035°C for 1% 474 
variation in soil moisture respectively at the depth of 10 cm, 30 cm, and 90 cm. Similarly, the intensity 475 
of soil moisture’s impulse response is 0.0638%, 0.0163% and 0.0050% for 1°C of variation in soil 476 
temperature respectively at the depth of 10 cm, 30 cm, and 90 cm. Thirdly, soil moisture is helpful in 477 
terms of predicting soil temperature at the depth of 10 cm, 30 cm, and 90 cm. While soil temperature 478 
helps predict soil moisture at the depth of 10 cm and 30 cm, it has no obvious correlation with soil 479 
moisture at 90 cm.  480 

Although the proposed method for analyzing moisture-heat coupling in a wheat-soil system has 481 
some advantages such as data-driven and easy to achieve, there are limitations. One is that the vector 482 
autoregression model is based on the linear hypothesis, so other nonlinear data-driven models should 483 
be further studied. In additionAlso, since the soil of our experiment site is loam, we ought to further 484 
explore whether such a method can be applied to other kinds of soil using data from different 485 
experiment sites. We are currently working on this. 486 
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