
Phylogeny of the Plant Genus Pachypodium (Apocynaceae)

Background: The genus Pachypodium contains 21 species of succulent, generally spinescent shrubs 

and trees found in southern Africa and Madagascar . Pachypodium has diversified mostly into arid and 

semi-arid habitats of Madagascar , and has been cited as an example of a plant group that links the 

highly diverse arid-adapted floras of Africa and Madagascar . However, a lack of knowledge about 

phylogenetic relationships within the genus has prevented testing of this and other hypotheses about 

the group. 

Methodology/Principal Findings: We use DNA sequence data from the nuclear ribosomal ITS and 

chloroplast trnL-F region for all 21 Pachypodium species to reconstruct evolutionary relationships 

within the genus. We compare phylogenetic results to previous taxonomic classifications and 

geography. Results support three infrageneric taxa from the most recent classification of Pachypodium, 

and suggest that a group of African species (P. namaquanum, P. succulentum and P. bispinosum) may 

deserve taxonomic recognition as an infrageneric taxon. However, our results do not resolve 

relationships among major African and Malagasy lineages of the genus.

Conclusions/Significance: We present the first molecular phylogenetic analysis of Pachypodium. Our 

work has revealed five distinct lineages, most of which correspond to groups recognized in past 

taxonomic classifications. Our work also suggests that there is a complex biogeographic relationship 

between Pachypodium of Africa and Madagascar .
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Introduction

Pachypodium (Apocynaceae) comprises 21 species of spinescent, succulent, xerophytic 

shrubs and small trees distributed in Madagascar and southern Africa (Table 1). Pachypodium is 

well known for its diverse array of growth forms, from dwarf shrubs to tall monopodial ‘bottle 

trees’, as well as its showy insect-pollinated flowers (Fig. 1; Table 1; Vorster and Vorster 1973; 

Rauh 1985; Lavranos and Röösli 1996, 1999; Rapanarivo et al. 1999; Lüthy 2004). The center of 

diversity for Pachypodium is Madagascar, with 16 endemic species; the remaining five species 

are restricted to southern Africa (Fig. 1; Table 1). Most Pachypodium species are narrowly 

distributed, with specialized ecology (Vorster and Vorster 1973; Lüthy 2004; Rapanarivo et al. 

1999); habitats vary from desert to subhumid grassland, although most species are restricted to 

extremely arid environments (i.e., 8-34 cm annual precipitation; Rapanarivo et al. 1999). Those 

species that occur in more mesic habitats (up to 200 cm annual precipitation; Rapanarivo et al. 

1999) tend to occupy rocky outcrops that are probably edaphically arid.

The showy flowers and unusual growth forms of Pachypodium have made them a 

favorite of horticulturists, leading to the exploitation of wild plants (Lüthy 2006). 

Over-collecting combined with habitat destruction (Goodman et al. 2003) has led to international 

trade restrictions, highlighting the need for improved systematic understanding of Pachypodium.

In Madagascar, Pachypodium forms a component of the strongly endemic xerophytic 

flora (Rapanarivo et al. 1999). These high levels of endemism in the xerophytic flora of 

Madagascar are attributed to the great antiquity of arid conditions on the island (Koechlin 1972); 

a climate suitable for the growth of xerophytic plants is thought to have prevailed in at least part 

of Madagascar throughout the Cenozoic (0-65 Ma; Wells 2003). In addition, Pachypodium is part 

of a large group of arid-adapted plants—including many other succulents, such as Euphorbia and 
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Aloe—with representatives in both Africa and Madagascar (Leroy 1978; Jürgens 1997); these 

plants provide evidence for a biogeographic link between arid regions of Africa and Madagascar, 

many of which are widely disjunct from one-another or isolated by intervening mesic habitats 

(Leroy 1978). However, without an explicit phylogenetic framework, it is impossible to decipher 

the history of Pachypodium diversification in the Afro-Malagasy region.

Several taxonomic classifications of Malagasy Pachypodium have been proposed on the 

basis of morphological characteristics (Table 2). However, the African species of Pachypodium 

have been inconsistently treated, leading to a lack of knowledge on their relationship to 

Malagasy species. Some workers have assumed that the long temporal and wide geographic 

separation between Madagascar and Africa (Yoder and Nowak 2006) corresponds to a deep 

genetic divergence between Pachypodium species from the two regions (Perrier de la Bâthie 

1934; Lüthy 2004). Indeed, Perrier de la Bâthie (1934) suggested that the two groups might not 

be one-another's closest relatives. Nevertheless, the implied divergence is not strongly reflected 

by morphology; Lüthy (2004) cited only one trait—the presence of brachyblasts in African 

species—to separate the two groups. Overall, the monophyly of African and Malagasy 

Pachypodium, proposed infrageneric taxa, and Pachypodium itself, has never been tested.

We reconstruct the evolutionary history of Pachypodium using nuclear ribosomal ITS and 

chloroplast trnL-F DNA sequence data. Two additional chloroplast loci were included in the 

project design (trnS-G intergenic spacer and rpL16; Shaw et al. 2005), but proved insufficiently 

variable to justify further development. However, both ITS and trnL-F have proven utility for 

species-level phylogenetic reconstruction in plants (Baldwin et al. 1995; Shaw et al. 2005). Our 

specific aims were to 1) test infrageneric classifications of Pachypodium and 2) determine 
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relationships between the African and Malagasy members of Pachypodium, including patterns of 

diversification between the two landmasses. 

Materials and Methods

Taxon sampling

We generated new ITS and trnL-F sequences from 56 Pachypodium samples representing 

all 27 minimum-rank taxa (species and subspecies) in the most recent revision of the genus 

(Lüthy 2004; Tables 1 and 2). An additional ITS sequence was generated for Funtumia africana

—a close relative of Pachypodium (Livshultz et al. 2007)—for use in rooting the ITS tree. 

Pachypodium and Funtumia tissues for DNA analysis were taken from greenhouse or garden 

plants (appendix 1). Tissues were obtained by D. Burge, Walter Röösli, Nicholas Plummer, and 

Anurag Agrawal. Specimens were identified by W. Röösli, N. Plummer, or D. Burge according to 

the taxonomic revision of Lüthy (2004) and subsequent descriptions of new taxa (Lüthy 2005; 

Lüthy and Lavranos 2005). Plants were selected based on geographic distribution, with a larger 

amount of sampling for widespread taxa. Between one and eight populations of each taxon were 

used (Tables 1 and 2). Additional non-Pachypodium trnL-F sequences, for rooting trees, were 

obtained from GenBank (F. africana [EF456206], Holarrhena curtisii [EF456122], Kibatalia 

macrophylla [EF456119], Malouetia bequaertiana [EF456243], and Mascarenhasia 

lisianthiflora [EF456174]). These taxa were selected on the basis of their close relationship with 

Pachypodium (Livshultz et al. 2007).

Molecular methods
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Total genomic DNA was extracted from silica-dried leaves or seeds using the DNeasy 

Plant Mini Kit (Qiagen, Germantown, MD) according to the manufacturer’s instructions. For 

seeds, up to three excised embryos from a single parent plant were pooled prior to DNA 

extraction (Burge and Barker 2010). DNA was extracted from seeds when silica-dried material 

for the same plant was not available, or proved recalcitrant to extraction of high quality DNA. 

All polymerase chain reactions were performed using Qiagen Taq DNA Polymerase. 

Amplifications were performed using an initial incubation at 94°C for 10 min and 30 cycles of 

three-step PCR (1 min at 94°C, 30 s at 45°C, and 2 min at 72°C), followed by final extension at 

72°C for 7 min. PCR was performed on a Perkin Elmer GeneAmp thermocycler. The primers 

ITS4 (White et al. 1990) and ITSA (Blattner and Kadereit 1999) were used to amplify the 

ITS1-5.8S-ITS2 region of the nuclear ribosomal DNA. Primers ‘c’ and ‘f’ (Taberlet et al. 1991) 

or a combination of these with internal primers ‘d’ and ‘e’ were used to amplify the trnL-F 

chloroplast region. For some plants, sequencing of ITS was problematic as a result of variation in 

length among ITS copies present in individual plants. Consequently, cloning of the ITS region 

was required for some plants. Cloning was carried out using the pGEM-T Easy Vector kit 

(ProMega, Madison, WI) according to the manufacturer’s instructions. NIA inserts were 

amplified directly from up to four positive colonies using the PCR protocol described above. For 

all PCR reactions, excess primer and dNTPs were removed using exonuclease I (New England 

Biolabs, Ipswich, MA [NEB]; 0.2 units/μl PCR product) and antarctic phosphatase (NEB; 1.0 

unit/μl PCR product) incubated for 15 min at 37°C followed by 15 min at 80°C. For sequencing 

we used Big Dye chemistry (Applied Biosystems, Foster City, CA) according to the 

manufacturer’s instructions. Sequences were determined bidirectionally on an Applied 
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Biosystems 3100 Genetic Analyzer at the Duke University Institute for Genome Science and 

Policy Sequencing Core Facility.

Sequence editing and alignment

All sequences were assembled and edited in Sequencher 4.1 (Gene Codes Corporation). 

In the case of the five plants for which ITS was cloned, we assessed sequence variation using an 

alignment of cloned sequences (hereafter ‘isolates’). Two plants yielded pools of identical 

isolates (P011 and P021, appendix 1), one yielded four different types of isolate (P053), and two 

were represented by a single successfully cloned isolate (P046 and P048). For the plant with 

more than one isolate type (P053), we included all four isolates in the phylogenetic analyses of 

ITS; for the plants with identical isolates, we selected a single isolate to represent each plant. 

New ITS and trnL-F sequences for Pachypodium were deposited in GenBank (appendix 1).

The 60 new ITS and 55 new trnL-F sequences, along with additional outgroup sequences 

from GenBank, were used to create separate alignments for the two regions (Table 3; 

Supplemental Alignments S2 and S3). Sequences were aligned in MUSCLE (Edgar 2004) under 

default settings. For ITS, several indel- and repeat-rich regions (54 bp total) were excluded due 

to alignment ambiguity. A portion of trnL-F not available for some taxa (the 3' trnL intron) was 

recoded as missing data. Indels were not recoded for analysis.

Following individual alignment of ITS and trnL-F, we endeavored to create a combined 

alignment. Preliminary analyses showed that for the single Pachypodium sample represented by 

more than one cloned ITS sequence (P053; Table 1), the four sequences formed a monophyletic 

group. Thus, a single sequence from this group was selected at random. For the final combined 

alignment (Supplemental Alignment S2), the entire trnL-F region was coded as missing data for 
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the two Pachypodium samples from which trnL-F was not obtained (P. bispinosum A049 and P. 

brevicaule subsp. leucoxanthum, P066). To test for conflict between the nuclear (ITS) and 

chloroplast (trnL-F) portions of the alignment, we used the incongruence length difference test 

(Farris et al. 1995), implemented in PAUP* v 4.0 (Swofford 2000) as the partition homogeneity 

test. The test used 1000 random repetitions of the parsimony analysis described below (see 

Phylogenetic analyses). Results showed significant disagreement between ITS and trnL-F (P = 

0.047; 953/1000 trees). To account for this conflict, we ran all of our phylogenetic analyses on 

the separate trnL-F and ITS alignments, noting any well-supported conflicts between the results, 

and compared these to results from the combined alignment (see Discussion).

Phylogenetic analyses

Trees were reconstructed using Bayesian, maximum likelihood (ML), and maximum 

parsimony (MP) techniques. Bayesian analyses were carried out based on the best fit model of 

evolution from jModelTest 2, under default parameters (Posada and Crandall 1998; Guindon and 

Gascuel 2003; Darriba et al. 2012; ITS: GTR+I+G; trnL-F: GTR+I). Bayesian sampling was 

performed in MrBayes v 3.2.1 (Ronquist and Huelsenbeck 2003), using the models of sequence 

evolution identified by jModelTest 2; all other parameters of MrBayes were left at default values; 

for the combined tree, no rate or model constraints were imposed between the two partitions. 

Analyses were carried out as follows: 1) three separate runs of 1 X 107 MCMC generations, 

sampling every 1000 generations, 2) examination of run output for convergence (standard 

deviation of split frequencies nearing 0.001) 3) removal of the first 1000 samples (10%) as 

burnin after visual inspection of likelihood score plots, (4) comparison of consensus trees for 

each run, and (5) combination of post-burnin samples from all three runs to compute a 50% 
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majority-rule consensus tree (conducted in PAUP* v 4.0 [Swofford 2000]). A partitioned model 

of sequence evolution was used for the analysis of the combined data.

Maximum likelihood analyses were carried out in GARLI v 2.0 (Zwickl 2006). For each 

alignment, two search replicates were performed in a single execution. Models of evolution were 

the same as those described for Bayesian analyses, with a partitioned model applied to the 

combined alignment. Other parameters were kept at default. Statistical support was inferred with 

100 replicates of bootstrap reweighting (Felsenstein 1985), implemented as in the tree search.

Maximum parsimony analysis was conducted in PAUP* v 4.0 (Swofford 2002). An initial 

heuristic search of 100 random taxon addition replicates was conducted with 

tree-bisection-reconnection branch swapping (TBR) and MULPARS in effect, retaining only ten 

trees from each replicate. A strict consensus of these trees was then used as a constraint tree in a 

second heuristic search using the similar parameters as above, but with 1000 random sequence 

addition replicates, and retaining 100 trees per addition replicate. We used this method due to the 

excessive number of trees generated by unconstrained searches. This strategy checks for shorter 

trees than those found by the initial search, demonstrating that the final consensus tree reflects all 

of the most parsimonious trees (Catalán, Kellogg, and Olmstead, 1997). We also ran searches on 

the three alignments using an unconstrained search with the nearest neighbor interchange (NNI) 

swapping algorithm, which produced trees of exactly the same length as the constrained 

searches. In the interest of brevity, we present results only for the constrained searches. We 

estimated Bootstrap support (Felsenstein 1985) for our parsimony trees using 100 

pseudoreplicates and the same search setting as described above, including use of a constraint 

tree. We treated gaps as missing data for all phylogenetic analyses.
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Topology testing

We used Templeton's nonparametric test (1983), as implemented in PAUP* v 4.0 

(Swofford 2002), to evaluate several key phylogenetic relationships. Templeton’s test compares 

pairs of topologies, measuring relative statistical support for the trees within a sequence dataset 

(alignment). For these tests, we compared the best tree from the original parsimony tree search 

(see above) to the best tree from a search using a constraint (e.g., African Pachypodium 

constrained as monophyletic). For more on these tests, see below (Results).

Results

Alignments

The ITS region had an aligned length of 658 bp (Supplemental Alignment S1). Of the 156 

(included) variable positions within the ingroup, 110 were parsimony informative (Table 3). The 

trnL-F region had an aligned length of 961 bp (Supplemental Alignment S2). Of the 33 variable 

positions within the ingroup, 18 were parsimony-informative (Table 3). The combined alignment 

contained 61 terminals, with an aligned length of 1619 bp (Supplemental Alignment S3). Of the 

184 (included) variable positions in the ingroup, 114 were parsimony informative.

Phylogenetic trees

The Bayesian 50% majority-rule consensus tree for ITS contained 13 internal nodes with 

a posterior probability (PP) of 1.0 (Supplemental Treefile S4, A; Fig. 2). By contrast, the 

trnL-F-based Bayesian tree contained only five internal nodes with a PP of 1.0 (Supplemental 

Treefile S5, A; Fig. 2). The combined ITS and trnL-F tree contained 17 internal nodes with a PP 

of 1.0 (Supplemental Treefile S6, A; Fig. 3). 
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Maximum parsimony searches based on ITS data alone resulted in 4851 trees of 324 

steps (Table 4; Supplemental Treefile S4, B); a total of 12 internal nodes had bootstrap (BS) 

support greater than or equal to 95% (Supplemental Treefile S4, C). Searches using trnL-F data 

alone resulted in 8 trees of 71 steps (Table 4; Supplemental Treefile S5, B); only one internal 

node had BS support greater than or equal to 95% (Supplemental Treefile S5, C). Searches on the 

combined ITS and trnL-F data resulted in 4582 trees of 394 steps (Table 4; Supplemental 

Treefile S6, B); a total of 8 internal nodes had BS support greater than or equal to 95% 

(Supplemental Treefile S6, C; Fig. 3). In all cases, use of a constraint tree failed to find any trees 

of equal or shorter length that contradicted the respective consensus trees.

Maximum likelihood (ML) analyses support similar relationships to those indicated by 

maximum parsimony and Bayesian analyses. The best ML tree for ITS alone contained 14 

internal nodes with BS support greater than or equal to 95% (Supplemental Treefile S4, D & E). 

By contrast, the trnL-F-based ML tree contained only one internal node with BS greater than or 

equal to 95% (Supplemental Treefile S5, D & E). The best ML tree based on ITS combined with 

trnL-F contained 10 internal nodes with BS support greater than or equal to 95% (Supplemental 

Treefile S6, D & E; Fig. 3). 

Pachypodium is recovered as monophyletic in the trnL-F tree (Fig. 2A), but lack of broad 

outgroup sampling for ITS prevents assessment of Pachypodium monophyly based on nuclear 

DNA; support for Pachypodium monophyly in the combined tree is driven by trnL-F. Six of the 

11 minimum-rank Pachypodium taxa (species and subspecies) represented by more than one 

sampled plant (Table 1) are monophyletic in the combined tree, four with strong support (PP 1.0; 

MP bootstrap ≥ 95%; P. baronii, P. decaryi, P. rosulatum subsp. rosulatum, and P. windsorii; Fig. 

3). The following multi-taxon clades are also recovered with high levels of support in the 
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combined tree (PP = 1.0; MP BS ≥ 95%): 1) the Malagasy P. decaryi, P. rutenbergianum, and P. 

sofiense, 2) the African P. lealii and P. saundersii, 3) the African P. namaquanum, P. 

succulentum, and P. bispinosum, 4) an 11-taxon group corresponding to section Gymnopus 

(Table 2), and 5) a smaller group nested within Gymnopus comprising P. brevicaule subsp. 

brevicaule, P. densiflorum, P. eburneum, P. inopinatum, and P. rosulatum subsp. bicolor.

Topology test results

Based on the results from our initial tree searches (Figs. 2 and 3), we were interested to 

know whether the data could reject 1) monophyly of African Pachypodium, 2) monophyly of 

Malagasy Pachypodium, and 3) reciprocal monophyly of African and Malagasy Pachypodium. 

These tests were done by comparing the most parsimonious tree from the original heuristic tree 

search to the most parsimonious tree from a search in which one of the above groups was used as 

a constraint. We carried out these analyses for ITS and for the combined data. Because the trnL-F 

region was not sampled for one of the African species (P. bispinosum), we were not able to 

evaluate these hypotheses on the basis of chloroplast DNA alone. For ITS, the shortest tree 

compatible with the first constraint (monophyletic African Pachypodium) was four steps longer 

(328 steps) than the unconstrained tree (324 steps), which was judged not to be significant based 

on a Templeton test (P = 0.25). A similar result was obtained for the combined data (396 steps in 

the constrained tree versus 394 steps in the unconstrained tree; P = 0.64). For the second 

constraint (monophyletic Malagasy Pachypodium), the shortest ITS tree compatible with the 

constraint was only one step longer than the unconstrained tree, which was also not significant 

based on a Templeton test (P = 0.71); again, the combined data were in agreement (both trees 

394 steps; P = 1.0). Finally, for the third constraint (reciprocal monophyly of African and 
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Malagasy Pachypodium), the shortest ITS tree compatible with the constraint was five steps 

longer than the unconstrained tree, which was not a significant difference (P = 0.1); the 

combined data support this result (constrained tree 398 steps; P = 0.29).

Discussion

Conflict

Our study identified significant conflict between the nuclear and chloroplast datasets, 

based on the incongruence length difference test (see Materials and methods). However, we 

elected to combine the datasets for further analysis. Our choice to unite the conflicting datasets is 

a conditional combination approach (Bull et al. 1993; Huelsenbeck et al. 1996), based on the lack 

of conflict between well-supported internal nodes (also called “hard conflict”) in the trnL-F and 

ITS trees (Fig. 2). Our combined approach should be treated as tentative, despite the lack of 

clearly conflicting internal nodes in ITS versus trnL-F trees.

Phylogenetic relationships

Our trnL-F trees suggest that Pachypodium is monophyletic, based on sampling of 

closely related genera. However, because of a lack of appropriate outgroups for the nuclear 

region (ITS), we were unable to evaluate the hypothesis of Pachypodium monophyly on the basis 

of both genomes. Nevertheless, the monophyly of Pachypodium is generally uncontroversial, and 

is supported by other molecular phylogenetic research (Livshultz et al. 2007), as well as a suite 

of morphological characters, including alternate phyllotaxy (most Apocynaceae have opposite 

leaf arrangement), a horseshoe-shaped retinacle (the connection between the anther and the style 

head), loss of colleters associated with the calyx, and stem succulence (Sennblad et al. 1998).
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Overall, our data do not provide sufficient phylogenetic resolution to draw conclusions 

concerning the monophyly or non-monophyly of African and Malagasy Pachypodium. Despite 

the recovery of several well-supported lineages in both African and Malagasy Pachypodium, the 

basal branching relationships among these lineages is not well resolved by ITS, trnL-F, or the 

combined data (Figs. 2 and 3). However, it should be noted that trnL-F provides some evidence 

for the cohesiveness of African Pachypodium (Fig. 2B); lack of ITS data for reliably vouchered 

P. bispinosum makes it impossible to test this hypothesis using trnL-F, although sequence data 

for samples of P. bispinosum of unknown wild origin (horticultural strains) do group with other 

African species in trnL-F trees (D. Burge and A. Agrawal, unpublished data). In general, there 

are four mutually excusive hypotheses on the relationship between African and Malagasy 

Pachypodium, each of which may represent a valid interpretation of our results: 1) reciprocally 

monophyletic African and Malagasy Pachypodium, 2) monophyletic Malagasy Pachypodium 

derived from within a basal grade of African Pachypodium, rendering African Pachypodium 

paraphyletic, 3) monophyletic African Pachypodium arising from a basal grade of Malagasy 

Pachypodium, with Malagasy Pachypodium paraphyletic, and 4) neither African nor Malagasy 

Pachypodium monophyletic. Topology tests could not reject any of these hypotheses.

A recent estimate of 37-64 Ma for the divergence of stem Apocynaceae from its closest 

relatives among the Gentianales (Bell et al. 2010) implies that the crown age of Pachypodium is 

probably more recent than the ~ 80 Ma timing for the isolation of Madagascar from Africa 

(Yoder and Nowak 2006). In fact, a recent review of Madagascar biogeography suggests that 

most of Madagascar’s biotic connections are best explained by long-distance dispersal during the 

Cenozoic, rather than ancient Gondwanan vicariance (Yoder and Nowak 2006). Thus, if 

Pachypodium did not originate in Madagascar, it must have arrived on the island via 
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long-distance dispersal. However, the lack of phylogenetic resolution among major African and 

Malagasy lineages of Pachypodium prevents preventing reliable reconstruction of geographic 

range evolution, including dispersal-vicariance scenarios between Africa and Madagascar. 

Additional molecular phylogenetic work will be required to obtain better support for 

basal-branching relationships in Pachypodium, particularly the relationship between African and 

Malagasy species. This work will likely require the sequencing of additional loci, from both the 

chloroplast and nuclear genome. Resolution of relationships among species from Lüthy's (2004) 

section Gymnopus will also require additional work. In Gymnopus , a number of widespread 

species (e.g., P. densiflorum and P. brevicaule) are non-monophyletic. The lack of phylogenetic 

cohesiveness among populations in such species is consistent with both hybridization following 

initial divergence, as well as incomplete lineage sorting (retention of ancestral polymorphisms; 

Pamilo and Nei 1988; Maddison and Knowles 2006), a phenomenon that often occurs during 

rapid diversification). For future studies on section Gymnopus, rapidly evolving genetic markers 

such as low-copy nuclear genes may help to discern species-trees from gene-trees, while 

population genetic markers such as AFLPs and microsatellites might also help to decipher 

complex relationships, especially in regions of geographic overlap among species.

Testing classification

Our exhaustive sampling of Pachypodium species and subspecies (Table 1) has provided 

the opportunity to test existing morphology-based hypotheses on infrageneric relationships. Our 

results support the most recent infrageneric classification of Pachypodium proposed by Lüthy 

(2004; Table 2). Lüthy’s (2004) shrubby, predominantly yellow-flowered section Gymnopus is 

clearly monophyletic (Fig. 3, PP 1.0; MP & ML BS 100%), as is the shrubby, red-flowered 
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section Porphyropodium (Fig. 3, PP 0.98; MP and ML 98%). Our results also indicate a very 

close relationship between Porphyropodium and Gymnopus (Fig. 3, PP 0.96; MP and ML BS > 

86%), a relationship not emphasized by past classifications. Finally, the third section recognized 

in Lüthy’s (2004) classification, the mostly arborescent, white-flowered Leucopodium, is 

marginally supported in the combined phylogenetic tree (Fig. 3, PP 0.94; ML BS 71%). Overall, 

our results also support the tradition of using corolla color as a basis for circumscription of taxa 

within Pachypodium (Fig. 3; Poisson 1924; Pichon 1949; Perrier de la Bâthie 1934; Lüthy 2004). 

Nonetheless, we agree with Lüthy (2004) that an ideal infrageneric classification should use 

multiple morphological characteristics to define groups.

Below the section level, previous classifications of Pachypodium are not well supported 

by our molecular phylogenetic results. One clear exception is Lüthy’s (2004) series Contorta 

(Table 2), which was defined on the basis of seed morphology to include the arborescent P. 

rutenbergianum and P. sofiense, as well as the limestone-endemic P. decaryi. Our results show 

that this group is strongly monophyletic (Fig. 3, PP 1.0; MP and ML BS 100%), confirming the 

detailed work of Lüthy (2004). However, this contrasts with most previous opinions. Pichon 

(1949), for example, allied P. decaryi with another limestone endemic, P. ambongense. 

Within section Gymnopus, Lüthy’s (2004) series Densiflora (Table 2) roughly 

corresponds to a clade that we recover nested inside Gymnopus (Fig. 3, Clade A, PP 1.0; MP BS 

76%). However, Clade A includes P. rosulatum subsp. bicolor and P. brevicaule subsp. 

brevicaule, both considered members of series Ramosa by Lüthy (2004). Our results indicate that 

the floral characters used by Lüthy (2004) and others to define groups within Gymnopus (Table 

2) are homoplasious.
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Most past classifications of Pachypodium have dealt in very sparse detail, if at all, with 

the distinctive and morphologically heterogeneous African members of the genus. As discussed 

above (see Phylogenetic relationships), our results suggest that African Pachypodium comprises 

two distinctive lineages, one containing the morphologically similar P. lealii and P. saundersii 

(Rapanarivo et al. 1999), and a second containing the bizarre monopodial tree P. namaquanum 

and the tuberous shrubs P. bispinosum and P. succulentum. The close relationship between P. 

lealii and P. saundersii (Fig. 3, PP 1.0; MP BS 95%) has been noted for some time, as indicated 

by a reduction to synonymy under P. saundersii that was undertaken by Rowley (1973). The 

close relationship of P. namaquanum to P. bispinosum and P. succulentum was less expected 

(Fig. 3, PP 1.0; MP and ML BS 100%). Vorster and Vorster (1973) did propose a close 

relationship between P. namaquanum and P. bispinosum based on corolla shape. However, these 

authors also proposed that the asymmetrical flowers of P. succulentum linked this species to P. 

lealii and P. saundersii more than to P. bispinosum. Our results clearly show that P. bispinosum 

and P. succulentum are one another’s closest relatives, sister to P. namaquanum.

Conservation

Conservation planning for threatened flora and fauna must take into consideration the 

evolutionary potential of populations and taxa (Forest et al. 2007). Ignoring evolutionary 

potential will lead to losses of diversity that compromise the ability of these groups to adapt and 

survive in the long-term. In the case of Pachypodium, phylogenetic results presented here show 

that several species and groups of species are strongly divergent from other Pachypodium (e.g., 

P. decaryi and most African Pachypodium; Fig. 3). These groups represent important islands of 

phylogenetic diversity within Pachypodium, the loss of which would drastically reduce the 
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overall diversity of the genus. Many members of the Gymnopus section of Pachypodium, by 

contrast, are very shallowly divergent based on our results (Fig. 3). The members of Gymnopus 

are adapted to a great variety of habitats, and therefore may contain much ecological diversity in 

terms of local adaptation (Lüthy 2004). However, in comparison to highly divergent taxa such as 

P. decaryi, each individual Gymnopus taxon represent a very small proportion of the total 

phylogenetic diversity of Pachypodium. In light of the always-limited resources available for 

conservation, an effort should be made to prioritize the protection of phylogenetically divergent 

lineages of Pachypodium as well as the overall genetic diversity of the genus. We recommend 

stronger conservation measures—including greater restrictions on the trade of wild-collected 

plants—for very narrowly distributed species having Bayesian PP of 1.0 in the combined ITS 

and trnL-F tree (Fig. 3). This includes the Malagasy P. baronii, P. windsorii, and P. decaryi. The 

highly divergent African species are not included in this list due to their relatively wide 

geographic distributions.
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Appendix 1. Sampled plants and DNA sequences. For each plant the within-study code is 

in brackets, followed by collector and collector number, herbarium or living collection for 

deposition of voucher specimen (in parentheses; ZSS indicates living collection of 

Sukkulenten-Sammlung Zürich), provenance, and GenBank numbers for ITS and trnL-F; 

Abbreviation ‘s.n.’ indicates no collection number.

Funtumia africana—[OG1] National Botanic Garden of Belgium 19514728 (BR), 

cultivated Plant; ITS: KC189049.

Pachypodium ambongense—[P003] W. Röösli, R. Hoffman, & M. Grubenmann, s.n., 

collected 25.xi.1989 (P, ZSS), Namoroka, Madagascar; ITS: HQ847410; trnL-F: HQ847465. P. 

baronii—[P004] A. Razafindratsira, s.n., collected 3.i.1988 (ZSS), Befandriana Nord, 

Madagascar; ITS: HQ847411; trnL-F: HQ847466. [P005] W. Röösli & B. Rechberger, s.n., 

collected xii.1990 (ZSS), Mandritsara, Madagascar; ITS: HQ847412; trnL-F: HQ847467. P. 

bispinosum—[A049] A. Agrawal, s.n. (DUKE), cultivated plant; ITS: JN256214. P. brevicaule 

subsp. brevicaule—[P006] W. Röösli & R. Hoffman 92/98 (ZSS), Mount Ibity, Madagascar; 

ITS: HQ847414; trnL-F: HQ847469. [P007] W. Röösli & R. Hoffman 43/01 (Z), Ranomainty, 

Madagascar; ITS: HQ847415; trnL-F: HQ847470. [P008] J. Lüthy, s.n., collected 1.vi.2006 

(ZSS), Andrembesoa, Madagascar; ITS: HQ847416; trnL-F: HQ847471. P. brevicaule subsp. 

leucoxanthum—[P066] J. Lüthy, s.n., collected 6.i.2006 (ZSS), undisclosed locality, 
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Madagascar; ITS: KC189050.P. decaryi—[P009] W. Rauh 72255 (HEID), Montagne des 

Francais, Madagascar; ITS: HQ847417; trnL-F: HQ847472. [P010] W. Röösli & R. Hoffman 

22/99 (ZSS), Montagne des Francais, Madagascar; ITS: HQ847418; trnL-F: HQ847473. [P011] 

W. Röösli & R. Hoffman 22/00 (ZSS), Ankarana, Madagascar; ITS: HQ847419; trnL-F: 

HQ847474. P. densiflorum—[P012] W. Röösli & R. Hoffman 01/94 (ZSS), Mount Ibity, 

Madagascar; ITS: HQ847420; trnL-F: HQ847475. [P013] W. Röösli & R. Hoffman 42/01 (ZSS), 

Ranomainty, Madagascar; ITS: HQ847421; trnL-F: HQ847476. [P014] W. Röösli & R. 

Hoffman, s.n., collected 1.xii.1992 (ZSS), Ambatofinandrahana, Madagascar; ITS: HQ847422; 

trnL-F: HQ847477. [P015] W. Röösli & B. Rechberger, s.n., collected 20.i.1989 (ZSS), 

Fianarantsoa, Madagascar; ITS: HQ847423; trnL-F: HQ847478. [P016] W. Röösli & R. 

Hoffman 57/98 (K, P, WAG), Plateaux Horombe, Madagascar; ITS: HQ847424; trnL-F: 

HQ847479. [P017] W. Röösli & R. Hoffman 45/93 (ZSS), 107 km W Antsirabe, Madagascar; 

ITS: HQ847425; trnL-F: HQ847480. [P018] W. Röösli & R. Hoffman 31/03 (ZSS), Mahatsinjo, 

Madagascar; ITS: HQ847426; trnL-F: HQ847481. [P049] A. Razafindratsira, s.n., collected 

xii.2006 (ZSS), Ambodiriana, Madagascar; ITS: HQ847427; trnL-F: HQ847482. P. eburneum—

[P019] W. Röösli & R. Hoffman 01/96 (P, MO, TAN, WAG, ZSS), Mount Ibity, Madagascar; 

ITS: HQ847428; trnL-F: HQ847483. [P020] J. Lüthy, s.n., collected 1.vi.2006 (ZSS), 

Andrembesoa, Madagascar; ITS: HQ847429; trnL-F: HQ847484. P. geayi—[P021] W. Röösli & 

R. Hoffman 29/04 (ZSS), Ifaty, Madagascar; ITS: HQ847430; trnL-F: HQ847485. P. 

horombense—[P022] W. Röösli & B. Rechberger, s.n., collected 21.xii.1990 (ZSS), Betroka, 

Madagascar; ITS: HQ847431; trnL-F: HQ847486. [P023] W. Röösli & R. Hoffman 34/01 (ZSS), 

Beraketa, Madagascar; ITS: HQ847432; trnL-F: HQ847487. [P024] W. Röösli & R. Hoffman 

73/96 (WAG), Andalatanosy, Madagascar; ITS: HQ847433; trnL-F: HQ847488. P. inopinatum
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—[P025] W. Röösli & R. Hoffman 46/93 (P, TAN, HEID, WAG, ZSS), Manakana, Madagascar; 

ITS: HQ847434; trnL-F: HQ847489. P. lamerei—[P001] W. Röösli & R. Hoffman 18/06 (ZSS), 

Fiherenana River, Madagascar; ITS: HQ847435; trnL-F: HQ847490. [P026] W. Röösli & R. 

Hoffman 20/02 (ZSS), Fiherenana River, Madagascar; ITS: HQ847436; trnL-F: HQ847491. 

[P027] W. Röösli & R. Hoffman, s.n., collected 26.i.1994 (WAG, ZSS), Ihosy, Madagascar; ITS: 

HQ847437; trnL-F: HQ847492. [P028] W. Röösli & R. Hoffman, s.n., collected 24.i.1994 (ZSS), 

Beraketa, Madagascar; ITS: HQ847438; trnL-F: HQ847493. [P029] W. Röösli & R. Hoffman 

31/01 (WAG, ZSS), Andalatanosy, Madagascar; ITS: HQ847439; trnL-F: HQ847494. [P030] W. 

Röösli & R. Hoffman 19/01 (ZSS), Lac Anony, Madagascar; ITS: HQ847440; trnL-F: 

HQ847495. [P031] W. Röösli & R. Hoffman 79/96 (P, WAG, ZSS), Fort Dauphin, Madagascar; 

ITS: HQ847441; trnL-F: HQ847496. P. lealii—[P053] Huntington Botanic Garden 85642 

(DUKE), cultivated Plant; ITS: HQ847442; JN256217; JN256216; JN256215; trnL-F: 

HQ847497. P. menabeum—[P032] W. Röösli & B. Rechberger, s.n., collected 10.xii.1991 

(ZSS), Antsalova, Madagascar; ITS: HQ847443; trnL-F: HQ847498. [P033] W. Röösli & R. 

Hoffman 07/03 (ZSS), Antsalova, Madagascar; ITS: HQ847444; trnL-F: HQ847499. [P034] W. 

Röösli & R. Hoffman 03/02 (ZSS), Bekopaka, Madagascar; ITS: HQ847445; trnL-F: 

HQ847500. P. mikea—[P002] W. Röösli & R. Hoffman 26/05 (P, TAN), South of Morombe, 

Madagascar; ITS: HQ847446; trnL-F: HQ847501. P. namaquanum—[P054] J. Lüthy, s.n. 

(University of Bern Institute of Plant Sciences, living collection), cultivated Plant; ITS: 

HQ847447; trnL-F: HQ847502. P. rosulatum subsp. bemarahense—[P035] W. Röösli & R. 

Hoffman 08/03 (TAN), Antsalova, Madagascar; ITS: HQ847448; trnL-F: HQ847503. P. 

rosulatum subsp. bicolor—[P036] W. Röösli & R. Hoffman 42/93 (P, MO, TAN, WAG, ZSS), 

Berevo, Madagascar; ITS: HQ847449; trnL-F: HQ847504. P. rosulatum subsp. cactipes—
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[P037] W. Röösli & R. Hoffman 77/96 (BR, K, MO, P, TAN, WAG, ZSS), Fort Dauphin, 

Madagascar; ITS: HQ847450; trnL-F: HQ847505. P. rosulatum subsp. gracilius—[P038] W. 

Röösli & R. Hoffman 36/01 (ZSS), Isalo, Madagascar; ITS: HQ847451; trnL-F: HQ847506. 

[P039] W. Röösli & R. Hoffman 42/05 (K, MO, WAG), Bezaha, Madagascar; ITS: HQ847452; 

trnL-F: HQ847507. P. rosulatum subsp. makayense—[P040] W. Röösli & R. Hoffman 08/02 

(MO, P, TAN), Makay, Madagascar; ITS: HQ847453; trnL-F: HQ847508. P. rosulatum subsp. 

rosulatum—[P041] W. Röösli & R. Hoffman 26/96 (WAG, ZSS), Antsakabary, Madagascar; 

ITS: HQ847454; trnL-F: HQ847509. [P042] W. Röösli & R. Hoffman 21/95 (MO, P, WAG, 

ZSS), Mandritsara, Madagascar; ITS: HQ847455; trnL-F: HQ847510. [P043] A. Razafindratsira, 

s.n., collected 30.xii.1991 (ZSS), Bealanana, Madagascar; ITS: HQ847456; trnL-F: HQ847511. 

[P044] W. Röösli & R. Hoffman 29/95 (ZSS), Ananalava, Madagascar; ITS: HQ847457; trnL-F: 

HQ847512. [P045] W. Röösli & R. Hoffman 23/03 (ZSS), Benetsy, Madagascar; ITS: 

HQ847458; trnL-F: HQ847513. P. rutenbergianum—[P046] W. Röösli & R. Hoffman 19a/95 

(ZSS), Anjohibe, Madagascar; ITS: HQ847459; trnL-F: HQ847514. P. saundersii—[P055] M. 

Lehmann, s.n. (plants grown by N. Plummer) (DUKE), Karongwe Game Reserve, South Africa; 

ITS: HQ847460; trnL-F: HQ847515. P. sofiense—[P048] W. Röösli & R. Hoffman 14/96 (P, 

WAG), Mandritsara, Madagascar; ITS: HQ847461; trnL-F: HQ847516. P. succulentum—[P056] 

J. Lavranos, s.n. (University of Bern Institute of Plant Sciences, living collection), Grahamstoon, 

South Africa; ITS: HQ847462; trnL-F: HQ847517. P. windsorii—[P050] A. Razafindratsira, s.n., 

collected 22.xii.1989 (ZSS), Windsor Castle, Madagascar; ITS: HQ847463; trnL-F: HQ847518. 

[P051] W. Röösli & R. Hoffman 17/00 (ZSS), Montagne des Francais, Madagascar; ITS: 

HQ847464; trnL-F: HQ847519.
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Figure 1

Geographic distribution of Pachypodium

Inset is sampling of Pachypodium in Madagascar (appendix 1). Sampling in Africa not mapped. Data 

for distributions is approximate, adapted from Lüthy (2006) and Vorster and Vorster (1973).

Pre
Pri

nts
Pre

Pri
nts



Pre
Pri

nts
Pre

Pri
nts



Figure 2

Bayesian consensus phylograms for individual genetic regions

Left, ITS; right, trnL-F. Numbers above branches are Bayesian posterior probability (PP) from the 

50% majority rule consensus tree; thickened branches have PP of 1.0. Taxon names are abbreviated 

(see Table 1). ITS tree is midpoint rooted. Zigzag line indicates that the branch connecting the 

outgroup to Pachypodium is not shown to scale (see Supplemental Treefile S4 and S5).
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Figure 3

Bayesian consensus phylogram for combined data

Numbers above branches are (from left to right) 1) Bayesian posterior probability (PP) from the 50% 

majority rule consensus tree, 2) maximum parsimony bootstrap support, and 3) maximum likelihood 

bootstrap support; thickened branches have PP of 1.0. Selected subgeneric taxa are from of Lüthy 

(2004); colored bars indicate predominant color of corolla lobes (Table 1). Dashed line indicates a 

branch not shown to scale (see Supplemental Treefile S6).
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Table 1(on next page)

Pachypodium species, sampling, geography, and traits

Pre
Pri

nts
Pre

Pri
nts



Taxon Sample
d

Geography Form Corolla

Pachypodium ambongense H.Poiss. 1 Madagascar Shru
b

White

P. baronii Constantin and Bois 2 Madagascar Shru
b

Red

P. bispinosum (L.f.) A.DC. 1 Southern Africa Shru
b

Pink

P. brevicaule Baker subsp. brevicaule 3 Madagascar Shru
b

Yellow

P. brevicaule Baker subsp. leucoxanthum Lüthy 1 Madagascar Shru
b

White

P. decaryi H.Poiss. 3 Madagascar Shru
b

White

P. densiflorum Baker 8 Madagascar Shru
b

Yellow

P. eburneum Lavranos and Rapan. 2 Madagascar Shru
b

White

P. geayi Costantin and Bois 1 Madagascar Tree White
P. horombense H.Poiss. 3 Madagascar Shru

b
Yellow

P. inopinatum Lavranos 1 Madagascar Shru
b

White

P. lamerei Drake 7 Madagascar Tree White
P. lealii Welw. 1 Southern Africa Tree White
P. menabeum Leandri 3 Madagascar Tree White
P. mikea Lüthy 1 Madagascar Tree White
P. namaquanum (Wyley ex Harv.) Welw. 1 Southern Africa Shru

b
Red

P. rosulatum Baker subsp. bemarahense Lüthy and Lavranos 1 Madagascar Shru
b

Yellow

P. rosulatum Baker subsp. bicolor (Lavranos and Rapan.) Lüthy 1 Madagascar Shru
b

Yellow

P. rosulatum Baker subsp. cactipes (K.Schum.) Lüthy 1 Madagascar Shru Yellow
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b
P. rosulatum Baker subsp. gracilius (H.Perrier) Lüthy 2 Madagascar Shru

b
Yellow

P. rosulatum Baker subsp. makayense (Lavranos) Lüthy 1 Madagascar Shru
b

Yellow

P. rosulatum Baker subsp. rosulatum 5 Madagascar Shru
b

Yellow

P. rutenbergianum Vatke 1 Madagascar Tree White
P. saundersii N.E.Br. 1 Southern Africa Shru

b
White

P. sofiense (H.Poiss.) H.Perrier 1 Madagascar Tree White
P. succulentum (L.f.) A.DC. 1 Southern Africa Shru

b
Pink

P. windsorii H.Poiss. 2 Madagascar Shru
b

Red

Note. Taxon, according to revision of Lüthy 2004; Sampled, number of individuals sampled for genetic analysis; Geography, indicates 
whether the species is endemic to Madagascar or southern Africa; Corolla, indicates the overall color of the corolla (Rapanarivo et al. 
1999; Lüthy 2006).
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Table 2(on next page)

Summary of Pachypodium classification.
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Subgenus Section Series Species or subspecies
Nesopodium Gymnopus Ramosa P. brevicaule subsp. brevicaule

P. brevicaule subsp. leucoxanthum
P. rosulatum subsp. bemarahense
P. rosulatum subsp. bicolor
P. rosulatum subsp. cactipes
P. rosulatum subsp. gracilius
P. rosulatum subsp. makayense
P. rosulatum subsp. rosulatum

Densiflora P. densiflorum
P. eburneum
P. horombense
P. inopinatum

Leucopodium Contorta P. decaryi
P. rutenbergianum
P. sofiense

Ternata P. geayi
P. lamerei
P. mikea

Pseudoternat
a

P. ambongense

P. menabeum
Porphyropodiu
m

P. baronii

P. windsorii
Pachypodiu
m

P. bispinosum

P. lealii
P. namaquanum
P. saundersii
P. succulentum

Note. See Table 1 for taxon authorities; table includes later descriptions of new  Pachypodium 
species  by  Lüthy  (2005;  P.  mikea),  Lüthy  and  Lavranos  (2005;  P.  rosulatum subsp. 
bemarahense), and Lüthy (2008; P. brevicaule subsp. leucoxanthum).
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Table 3(on next page)

Summary statistics for DNA alignments.
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Name Region Terminals Total length Included 
length

G + C Variable PIC

Supplemental Alignment S1 ITS 60 658 604 53.7 
%

156 (226) 110 (116)

Supplemental Alignment S2 trnL-F 59 961 961 36.4 
%

33 (64) 18 (36)

Supplemental Alignment S3 ITS  and 
trnL-F

61 1619 1565 43.1 
%

184 (285) 114 (140)

Note. Total Length, the length of the complete alignment, counting portions excluded from analysis; Included length, the total number 
of characters included in the phylogenetic analysis. G + C, the G + C content of the complete (total length) alignment; Variable, the 
number of variable characters in the ingroup, followed by the number of variable characters in the full alignment (in parentheses);  
PIC, the number of parsimony-informative characters in the ingroup, followed by the number of parsimony informative characters in  
the full alignment (in parentheses).
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Table 4(on next page)

Summary statistics for maximum parsimony tree searches.
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Tree Region Total MP trees Step
s

CI RI

Supplemental Treefile S4, B ITS 4851 324 0.82 0.95
Supplemental Treefile S5, B trnL-F 8 71 0.93 0.97
Supplemental Treefile S6, B ITS  and 

trnL-F
4582 394 0.83 0.92

Note. CI, consistency index; RI, retention index.
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