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ABSTRACT
Background. Extensive genome rearrangements, known as chromothripsis, have been
recently identified in several cancer types. Chromothripsis leads to complex structural
variants (cSVs) causing aberrant gene expression and the formation of de novo fusion
genes, which can trigger cancer development, or worsen its clinical course. The
functional impact of cSVs can be studied at the RNA level using whole transcriptome
sequencing (total RNA-Seq). It represents a powerful tool for discovering, profiling,
and quantifying changes of gene expression in the overall genomic context. However,
bioinformatic analysis of transcriptomic data, especially in cases with cSVs, is a
complex and challenging task, and the development of proper bioinformatic tools for
transcriptome studies is necessary.
Methods. We designed a bioinformatic workflow for the analysis of total RNA-Seq data
consisting of two separate parts (pipelines): The first pipeline incorporates a statistical
solution for differential gene expression analysis in a biologically heterogeneous sample
set. We utilized results from transcriptomic arrays which were carried out in parallel to
increase the precision of the analysis. The second pipeline is used for the identification
of de novo fusion genes. Special attention was given to the filtering of false positives
(FPs), which was achieved through consensus fusion calling with several fusion gene
callers. We applied the workflow to the data obtained from ten patients with chronic
lymphocytic leukemia (CLL) to describe the consequences of their cSVs in detail. The
fusion genes identified by our pipeline were correlated with genomic break-points
detected by genomic arrays.
Results.We set up a novel solution for differential gene expression analysis of individual
samples and de novo fusion gene detection from total RNA-Seq data. The results of
the differential gene expression analysis were concordant with results obtained by
transcriptomic arrays, which demonstrates the analytical capabilities of our method.
We also showed that the consensus fusion gene detection approach was able to identify
true positives (TPs) efficiently. Detected coordinates of fusion gene junctions were in
concordance with genomic breakpoints assessed using genomic arrays.

How to cite this article Hynst J, Plevova K, Radova L, Bystry V, Pal K, Pospisilova S. 2019. Bioinformatic pipelines for whole transcrip-
tome sequencing data exploitation in leukemia patients with complex structural variants. PeerJ 7:e7071 http://doi.org/10.7717/peerj.7071

https://peerj.com
mailto:karla.plevova@mail.muni.cz
mailto:karla.plevova@gmail.com
mailto:sarka.pospisilova@ceitec.muni.cz
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7071
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.7071


Discussion. By applying our methods to real clinical samples, we proved that our
approach for total RNA-Seq data analysis generates results consistent with other
genomic analytical techniques. The data obtained by our analyses provided clues for
the study of the biological consequences of cSVs with far-reaching implications for
clinical outcome and management of cancer patients. The bioinformatic workflow is
also widely applicable for addressing other research questions in different contexts, for
which transcriptomic data are generated.

Subjects Bioinformatics, Genomics, Hematology, Oncology
Keywords Chromothripsis, Complex structural variants, Fusion gene, Gene expression,
Bioinformatic pipeline, Next-generation sequencing, Leukemia, Transcriptomics, Chronic
lymphocytic leukemia, Statistics

INTRODUCTION
Whole-genome sequencing of cancer samples has enabled the identification and detailed
description of complex structural variants (cSVs) with chromothripsis being their prime
example (Stephens et al., 2011; Rausch et al., 2012). Chromothripsis is characterized by tens
to hundreds of clustered genomic rearrangements accompanied by extensive losses of
genetic information and arises as a consequence of genomic instability. Approximately
2–3% of tumors bear chromosomes featuring the hallmarks of chromothripsis (Stephens
et al., 2011; Kinsella, Patel & Bafna, 2014). Its incidence is variable among tumor types and
peaks in brain and bone tumors (Stephens et al., 2011). There is also strong evidence
for the presence of chromothripsis and related cSVs in hematological malignancies
including chronic lymphocytic leukemia (CLL), the most common leukemia of adults
in the Western world.

In contrast to the concept of gradual accumulation of chromosomal defects in the
cancer genome, it has been assumed that chromothripsis arises in a single catastrophic
event. The most widely accepted explanation of chromothripsis origin is based on aberrant
mitosis, which is accompanied by physical separation of certain chromosomes in nuclear
structures called micronuclei (Zhang et al., 2015; Ly & Cleveland, 2017). Another possible
mechanism involved in chromothripsis formation revolves around the generation of
so-called breakage-fusion-bridge cycles (Lo et al., 2002) leading to the occurrence of
dicentric chromosomes that are disrupted during cell division. This is related to telomere
shortening and, consequently, to the absence of telomeres at chromosome ends which
enables chromosome fusion (Maciejowski et al., 2015; Ernst et al., 2016). All these events
lead to multiple clustered chromosomal aberrations that feature a unique pattern in every
affected case and alter the expression of genes in an impaired cell (Fig. 1).

Next-generation sequencing (NGS) serves as a powerful tool for describing any
abnormalities occurring in the genome and has also been instrumental in discovering and
describing cSVs. However, in many NGS experiments, consequent bioinformatic analysis
remains challenging. Publicly available tools are often developed for a specific purpose
with limitations in different experimental settings and do not take into account all genomic
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Figure 1 Schematic representation of the mechanism of chromothripsis.During chromothripsis, chro-
mosomes are scattered into hundreds of fragments that persist as intermediates and eventually rejoin to-
gether via error-prone DNA repair mechanisms. Such an event can lead to the loss of functional genes and
directly or indirectly influence gene expression in affected regions. Another common and frequently ob-
served feature is the formation of aberrant fusion genes, which leads to a change in gene expression and
production of fusion proteins with novel structure and functions.

Full-size DOI: 10.7717/peerj.7071/fig-1

rearrangements that might be present in a sample. Moreover, when attempting to describe
the impact of cSVs on cell phenotype, each case should be considered independently. The
reason for such an approach is that, although there are a limited number of processes
causing cSVs among individual cases, they affect different genomic loci with different
impact. Thus, we developed a statistical approach for differential gene expression analysis
from total RNA-Seq data, which is based on the comparison of individual cases within a
tested dataset. Applying the method on a set of ten CLL samples, our strategy provided
highly convincing gene candidates. In the next step, we focused on the identification of
fusion genes and their stemming breakpoints from total RNA-Seq data. Due to the high rate
of FP results of different methods, we developed a pipeline combining available analytic
tools to maximize TP rate in dataset. Results were then cross-checked with data from
genomic arrays in order to assess the sensitivity and specificity of our method.
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MATERIALS & METHODS
Data generation and preprocessing
Our pipelines were developed and tested on total RNA-Seq data generated from ten CLL
cases (T1-T10) with cSVs that were previously detected using genomic CytoScanTM HD
Arrays and analyzed with Chromosome Analysis Suite (Thermo Fisher Scientific). These
cases were identified during the long-term clinical research at the University Hospital Brno
and were classified as chromothripsis as they showed clustered copy number alterations on
a limited number of chromosomes. Genomic breakpoint localization was extracted for all
detected copy number variants and losses of heterozygosity. Total RNA-Seq libraries were
prepared with TruSeq R© Stranded Total RNA kit (Illumina) with Ribo-Zero ribosomal
RNA depletion and sequenced using an Illumina HiSeq 2500 machine producing 125bp
long pair-end reads. Sequencing read quality was evaluated in FastQC software. Adapter
sequences were trimmed from raw reads using Trimmomatic software (Bolger, Lohse &
Usadel, 2014) (version 0.32) according to sequencing facility standards. In parallel, we
performed GeneChip R© Human Transcriptome Arrays 2.0 (Thermo Fisher Scientific)
to complement expression data from the RNA-Seq experiment. These data were then
analyzed by the Transcriptome Analysis Console (Thermo Fisher Scientific) by comparing
each consecutive sample to all other samples using a one-way ANOVA statistical test
to identify a unique expression pattern in each sample. Identified fusion gene junctions
and their respective sequencing reads were visualized in the Integrative Genomic Viewer
(Thorvaldsdottir, Robinson & Mesirov, 2013).

The study was approved by the Ethical Committee of the University Hospital Brno
under the ref. no. 15-31834A. All patients involved in the study provided their written
informed consent to the research use of their samples.

RNA-Seq data processing for differential genes expression analysis
Processed reads were mapped to the hg38 human genome reference using STAR, a splice-
aware aligner (Dobin et al., 2013). We chose the genome reference over the transcriptome
as recommended by best practices for RNA-Seq data when non-canonical junctions and
fusion transcripts are of interest (Conesa et al., 2016). The parameters of the STAR aligner
were set to default settings according to best practices.

Gene expression analysis from RNA-Seq data is based on counting reads covering gene
regions (defined by reference relative GTF file) and statistical analysis of these read counts.
In the first step, we used an htseq-count script (Anders, Pyl & Huber, 2015), which efficiently
counts reads that align to or overlap withmore than one gene. For this purpose, the software
parameter union was applied. The reads were then assigned to gene regions irrespective of
DNA strand orientation. A read count table was used as an input for consequent statistical
analysis of differential gene expression; low-expressed genes were filtered out from the
dataset to decrease dataset complexity and avoid FP. Of the ten CLL cases in our cohort, we
expected at least six samples to be covered by at least one read. However, these criteria can
be modified in the pipeline according to the actual dataset analyzed. Pre-filtered read count
table was then normalized using the rpkm() function from edgeR Bioconductor package
(Robinson, McCarthy & Smyth, 2010). The function applies the RPKM (reads per kilobase
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per million mapped reads) method, which performs data normalization based on a read
length and a total number of sequencing reads with respect to gene length. Obtained log2
scale normalized expressions were subjected to further computational steps, for which we
developed a novel statistical pairwise comparison (PComp) approach that allows obtaining
a gene expression profile of individual samples.

Design and evaluation of novel statistical approach PComp
For the read count (expression) table resulting from RNA-Seq data processing steps, linear
regression model with confidence bands containing expression values for all possible
sample combinations (i.e., T1–T2, . . . , T1–T10) was applied to identify gene outliers in
particular sample. Only genes constantly lying outside these bands in all possible sample
combinationwere stored. In the next step, one sample t -test was applied to assess the p.value
to every single gene outlier in a given sample according to the gene expression in the rest
of the samples. All gene candidates with significant p.value that can be specified manually
(default 0.05) were considered as differentially expressed. Graphical representation of
PComp algorithm is depicted in Fig. 2 with artificial expression values. Obtained results
were compared to the transcriptomic array results representing a gold standard for gene
expression analysis.

RNA-Seq data were also subjected to a differential gene expression analysis using widely
used and well-established algorithm limma (Ritchie et al., 2015) to gain an insight on
overall performance of our PComp tool. Using limma we compared gene expression in a
single sample (group 1) with all other samples (group 2) in all possible combinations and
correlated the results to the PComp output.

Identification of gene fusions in cSVs cases from RNA-Seq
Based on a literature search (Liu et al., 2016), four state of the art tools for gene fusion
detection—EricScript (Benelli et al., 2012), JAFFA (Davidson, Majewski & Oshlack, 2015),
FusionCatcher (Nicorici et al., 2014), and TopHat-fusion (Kim & Salzberg, 2011)—were
tested in our approach. TopHat-fusion was excluded due to a high rate of FP results
and time-consuming computation in comparison to other methods. Thus, three tools—
EricScript, JAFFA, and FusionCatcher—were run in parallel in our bioinformatic workflow
for fusion gene identification; default settings were used for all of them. Although read
alignment algorithms differ among the selected tools (Kent, 2002; Li & Durbin, 2009;
Langmead & Salzberg, 2012; Dobin et al., 2013), the utilized computational algorithms
follow similar concept (Kumar et al., 2016). In general, the mapping step consists of two
alignments, one to the hg38 reference and the other to putative junction reference for each
potential fusion. During these steps, unmapped and discordant pair-end reads that were
mapped uniquely to different loci of the genome were identified, and a library of putative
fusion junctions was derived. Reads were then realigned to the putative fusion junction
sequences and annotated, a split-read signature (reads spanning fusion junctions) was
recognized, and potential fusion genes were reported.

For efficient fusion gene detection, we developed an in-house meta-caller, which
combines results from the selected tools into a consensus call. Each piece of software
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Figure 2 Expression data plots demonstrating our statistical algorithm PComp for differential gene
expression assessment. A solid red line represents the linear regression line, while dashed red curves de-
limit 99.9% confidence bands (A–I). Selected expressed genes identified in an RNA-Seq experiment for
sample T1 are highlighted as green and red dots. The green dots represent a gene that is considered sig-
nificantly differentially expressed in all sample pair combinations, i.e., the gene is outside the confidence
band with p < 0.001 for all pairs. The gene highlighted as red dots is not significantly differentially ex-
pressed when comparing T1 sample to T4, T6, and T8 (C, E, G), thus not differentially expressed as a
whole. Down/up-regulation was taken into account.

Full-size DOI: 10.7717/peerj.7071/fig-2

applies various metrics enabling classification of fusions to confidence subsets. In the
first meta-caller step, detected fusions were filtered in individual callers as follows: for
EricScript fusions with an Eric score (ES) of over 0.90, for JAFFA only fusions with
the ‘‘HighConfidence’’ tag, and for FusionCatcher only high confidence fusions. In the
consequent consensus call only fusions that passed at least two callers were kept which
allowed increasing TP fusion rate and removal of FP fusions arising as specific artifacts
of an individual caller algorithm (i.e., read alignments errors). The whole fusion gene
detection pipeline is schematically visualized in the Fig. 3.

Validation of gene fusions by overlap with genomic arrays
Finally, to estimate TP and FP rates of the individual callers and themeta-caller, coordinates
of fusions detected in RNA-Seq data were compared with the coordinates of genomic
breakpoints detected by the genomic arrays. The interval of ± 100 kb around the
breakpoints was applied in order to adjust to the array resolution and to the fact that
the breakpoints can be located in introns, whereas fusions in RNA-Seq data appear
in exon-exon boundaries. All potentially TP fusions identified by this approach were
inspected visually in the array results.
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Figure 3 Pipeline design for fusion gene identification. Schematic overview of RNA-Seq fusion gene
identification pipeline summarizes all steps of the procedure. Comparison with results of the genomic ar-
rays is an optional manual step, independent on the pipeline, which can serve as a secondary confirmation
of the results.

Full-size DOI: 10.7717/peerj.7071/fig-3

Implementation of analytical algorithms
Algorithms and procedures of our novel solution were implemented in the R programming
language. The meta-caller and the tool for differential expression are both freely available
at GitHub (https://github.com/Hynst/WTS_cSVs_analysis), where the source codes are
accessible for download. No installation is needed, as all dependencies (i.e., R packages and
libraries) are installed automatically to the R environment.

Hynst et al. (2019), PeerJ, DOI 10.7717/peerj.7071 7/16

https://peerj.com
https://doi.org/10.7717/peerj.7071/fig-3
https://github.com/Hynst/WTS_cSVs_analysis
http://dx.doi.org/10.7717/peerj.7071


Table 1 Differentially expressed genes identified by PComp in RNA-Seq data and transcriptomic array analyses. For RNA-Seq data pairwise
comparison (PComp) analysis was applied to identify deregulated genes. Numbers in parentheses represent deregulated genes including also unan-
notated transcripts.

Sample RNA-Seq Expression Analysis (PComp) GeneChip Human Transcriptome Array 2.0 Method overlap

up down total up down total up down total

T1 1,534 552 2,086 707 (956) 399 (909) 1,106 351 29 380
T2 539 66 605 253 (660) 83 (191) 336 54 1 55
T3 314 82 396 124 (293) 92 (188) 216 22 3 25
T4 1,768 657 2,425 482 (882) 154 (197) 636 207 66 273
T5 1,572 355 1,927 567 (1,268) 77 (127) 644 78 21 99
T6 1,346 258 1,604 644 (1,405) 134 (178) 778 178 38 216
T7 1,865 245 2,110 423 (804) 186 (439) 609 164 15 179
T8 1,855 419 2,274 1,446 (2,173) 428 (821) 1,874 682 55 737
T9 544 96 640 124 (384) 92 (110) 216 27 3 30
T10 968 165 1,133 213 (418) 50 (89) 263 45 5 50
TOTAL 12,305 2,895 15,200 4,983 1,695 6,678 1,808 236 2,044

RESULTS
PComp performance in differential gene expression analysis
We used PComp approach to identify differentially expressed genes on the level of
individual samples. We followed a linear regressionmodel and estimated a linear regression
line with 99.9% confidence bands (1−p= 0.999, i.e., p= 0.001) for each pair of samples.
All genes lying outside the confidence bands were suggested as potentially differentially
expressed candidates. We repeated this procedure for each sample pair combination and
obtained nine sets of potential candidates per sample. Genes occurring in all nine sets were
considered as differentially expressed for a given sample. By applying one sample t -test we
assessed the differential expression of a given gene in a given sample according to the rest
of the samples. We considered all gene candidates in particular sample with a p< 0.001
by one sample t -test to be differentially expressed. Using this approach, we found 15,200
differentially expressed genes in total (Table 1).

We inspected the results from RNA-Seq obtained using the PComp method and
compared them to the results of transcriptomic arrays analyzed by one-way ANOVA.
In the ten CLL samples tested, we identified 12,492 deregulated transcripts (including
also unannotated ones) using transcriptomics arrays and extracted only annotated gene
transcripts which resulted in 6,678 deregulated genes. We created an overlap between
PComp and transcriptomic array results and found 1,808 significantly upregulated and 236
significantly downregulated gene candidates (Table 1). We also studied whether the results
were concordant between the methods in terms of assigning genes as up-/downregulated
and observed good concordance of themethods ranging 97.44–100% for individual samples
(Table S1).

Similarly, in RNA-Seq data we identified 14,803 deregulated genes using limma.
When we overlapped array data with limma results we found 1168 upregulated and
414 downregulated genes (Table S2). We compared the overlap rate of transcriptomic
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Figure 4 Comparison of PComp vs. limma statistical analysis of RNA-Seq data overlapped with results
of the transcriptomic arrays. Graphical representation of upregulated (blue) and downregulated (white)
genes as identified by PComp and limma after overlapping the data with transcriptomic array outputs.
PComp was capable of identifying higher number of differentially expressed genes concordant with tran-
scriptomic arrays.

Full-size DOI: 10.7717/peerj.7071/fig-4

array with PComp and limma data, respectively, in terms of up-/downregulated genes.
Both methods performed differently, we observed 14.7% and 28.9% upregulated genes,
and 8.2% and 4.1% downregulated genes using PComp and limma, respectively. Finally,
we observed larger overlap between transcriptomic array and PComp approach (Fig. 4),
where 2044 deregulated genes were identified in total (compared to 1,585 identified by
limma).

Meta-caller approach efficiency of fusion gene identification
In RNA-Seq data, we pre-filtered results of the individual pieces of software in the first
meta-caller step to create a fusion gene subset with high confidence. No explicit pre-filtering
of lowly expressed fusions was done in order to allow for the capture of lowly expressed
fusion genes (i.e., the number of reads spanning fusion junction≥1). In the next step of the
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meta-caller, results obtained by ≥2 callers were combined into a consensus call. Following
these steps, our pipeline was capable of identifying 40 fusion genes which were potentially
TP with high confidence across the ten samples (Table S3). Further, we used breakpoint
coordinates generated using genomic arrays and compared them with those identified
by RNA-Seq to test TP rates of our pipeline. Only fusions where at least one fusion gene
partner was located in a genomic breakpoint were considered as potentially TP. Genomic
array data corresponded to RNA-Seq breakpoints in 19 of the 40 cases. These uniquely
expressed TP fusions were identified in eight of the ten CLL patients with 1 to 7 fusions
per patient.

Considering candidates that were not supported by genomic arrays (21 of 40 features),
potential fusions ZMYM5-PSPC1, HACL1-COLQ, MFSD7-ATP5I, and CYTIP-ERMN,
occurring recurrently in six, three, three and two instances, respectively, were considered FP
because they represented neighboring genes (read-through). Similarly, YWHAZ-ZNF706,
LINCPINT-MKLN1, andNFATC3-PLA2G15 were also considered FP due to their adjacent
localization in the genome, although not observed recurrently. Altogether, 17 of 21 fusions
were considered FP. The remaining four fusions were not confirmed by the independent
method; in all of them, at least one fusion partner appeared recurrently in the data,
however, with a different partner. All of the four fusions could still represent TP resulting
from balanced translocations or inversions that were not detectable by genomic arrays.

To assess the ability of the meta-caller to increase TP rate, we inspected overlap between
individual callers and genomic arrays (Table 2). The meta-caller was superior to a single
caller approach with the overall 47.5% TP rate, while JAFFA, FusionCatcher, and EricScript
showed 9.4%, 8.2%, and 0.5% TP rate, respectively. Still individual callers identified TP
fusions (as designated based on the overlap with genomic array results) which were missed
by the meta-caller because they were supported only by one caller. Altogether 29 TP fusions
were detected by all callers and meta-caller with the highest number of 22 TP fusions by
FusionCatcher (Table S4). FusionCatcher and the meta-caller did not show any FP when
overlapped with genomic arrays. Detailed results of this comparison are depicted in Table 3.
Taking overall TP rates of the callers into account, the meta-caller appears as an efficient
tool for fusion gene detection.

DISCUSSION
Several mechanisms of the influence of cSVs on cancer development have been suggested.
NGS techniques provide an opportunity to unravel them by focusing on changes occurring
at both the DNA and the RNA level. However, there still is a need for designing efficient
pipelines and algorithms for consequent bioinformatic analyses. In this article, we introduce
our approach for RNA-Seq data analysis in cases with cSVs. We tested the proposed
workflow on a set of ten CLL patients with chromothripsis to validate the efficiency of our
method.

Although cSVs reminiscent of chromothripsis likely share a common mechanism of
origin across cSV cases, they appear in various genomic loci and, consequently, they lead to
diverse expression profiles which makes it very difficult to select an appropriate biological
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Table 2 True positive rate of fusion genes identified using the individual pieces of software and the meta-caller.

Sample EricScript JAFFA FusionCatcher meta-caller

fusions
overall

TP TP rate
(%)

fusions
overall

TP TP rate
(%)

fusions
overall

TP TP rate
(%)

fusions
overall

TP TP rate
(%)

T1 207 3 1.45 37 5 13.51 48 4 8.33 9 3 33.33
T2 275 0 0 22 1 4.55 19 2 10.53 2 1 50.00
T3 180 0 0 13 0 0 18 0 0 1 0 0
T4 188 1 0.53 20 0 0 7 1 14.29 2 1 50.00
T5 211 2 0.95 8 2 25.00 10 1 10.00 3 2 66.67
T6 165 0 0 16 1 6.25 14 1 7.14 1 1 100.00
T7 182 0 0 15 3 20.00 31 4 12.90 6 3 50.00
T8 133 0 0 12 0 0 39 1 2.56 1 0 0
T9 336 0 0 30 1 3.33 29 1 3.45 4 1 25.00
T10 189 4 2.12 29 6 20.69 53 7 13.21 11 7 63.64
TOTAL 2,066 10 0.48 202 19 9.41 268 22 8.21 40 19 47.50

group as a control. Unfortunately, the majority of conventional tools for differential gene
expression (Robinson, McCarthy & Smyth, 2010; Love, Huber & Anders, 2014) are designed
to distinguish two (or more) biological groups (i.e., treated vs. untreated), with each
of them bearing uniform expression profiles. To the best of our knowledge there is no
well-established tool for individual sample expression analysis. Thus, we developed PComp,
a statistical framework for RNA-Seq differential gene expression analysis, that allows us to
describe the impact of genomic changes through identification of exclusive features related
to an actual cSV pattern in a given case. We believe this is the first approach developed
and fully dedicated to address this challenge. A set of significantly deregulated genes,
according to the regression model and one sample t -test, is the output of the analysis.
PComp provides solid results comparable with transcriptomic array analysis and in our
comparison performed better than limma tool, which is used widely for RNA-Seq data
analysis. Although in our experimental setup we expected unique expression profiles for
individual samples of our sample set, it is possible to specify the number of samples that
can share expression similarities within the tool. We believe that the PComp approach is
versatile and applicable to various RNA-Seq experimental designs and biological questions
where a single sample expression profile is desired. Last but not least, the PComp tool is
freely available on GitHub and easy to use by the potential users on their own data.

Another common feature of cSV case is the formation of fusion genes originating
in chromosome shattering and consequent segment rejoining. Approximately 20% of
fusion genes are expressed (Boeva et al., 2013), which in theory leads to the assembly of de
novo proteins with aberrant structure and function. Aberrant protein products of fusion
genes can influence important biological processes through direct or indirect regulation
of expression of various genes which can eventually be reflected in the overall expression
profile. Effective screening for such events in various diagnoses could help with identifying
specific, potentially targetable disease markers (Holderfield et al., 2014).
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Table 3 Overlap between gene fusions identified by RNA-Seq and genomic breakpoints detected by
genomic arrays.Numbers of true positive (TP), false positive (FP) and false negative (FN) results evalu-
ated using the individual callers and the meta-caller in a set of total 29 fusion genes overlapping with ge-
nomic breakpoints.

Software Fusions identified
by overlap between
RNA-Seq and arrays

TP FP FN

EricScript 17 10 7 19
FusionCatcher 22 22 0 7
JAFFA 21 19 2 10
meta-caller 19 19 0 10

Current approaches for fusion gene identification have many limitations. Among them,
a high FP rate represents a significant obstacle, often hindering proper analysis (Boeva
et al., 2013). Apart from that, in cSV cases, one must also deal with fundamental structural
complexity. Thus, a need for the development of new software and tools to address these
challenges is obvious. In our test cohort, we tested four state-of-the-art tools for fusion
gene identification; from which we selected EricScript, JAFFA, and FusionCatcher based on
their performance. To increase the precision of fusion gene identification and to overcome
possible technical issues potentially resulting in FPs, we applied a method of consensus
fusion gene calling where we combined results filtered to confidence subsets from the
selected methods (Liu et al., 2016) in our in-house meta-caller. Consensus calling improves
the precision of results, increases overall TP rate and significantly saves time, which needs
to be dedicated to manual inspection of the results. In the consensus calling approach, a
low rate of FP results is the biggest advantage, on the other hand, some TPs can be lost due
to their detection by a single caller. Notwithstanding, there has not been a tool providing an
optimal solution for handling potential TPs and FPs and considering the overall TP rates
of the tested callers, our meta-caller appears as a good solution for fusion gene detection.

Our analytical procedure was able to detect 40 fusion genes from RNA-Seq data of the
ten CLL cases. We localized genomic breakpoints, compared the data with coordinates
assessed by genomic arrays and found high overlap between the methods. We have also
found cases where no TP fusions were identified; we hypothesize that in these cases fusion
genes were either not present, transcribed or were below the detection limit of RNA-Seq
experiment. We identified several FPs in our RNA-Seq results. The most common reason
for their detection was adjacent localization of the partners in the genome leading to their
coupled transcription. Some of them occurred in the dataset recurrently, which is highly
unlikely in cases with cSVs differing considerably among the samples. However, we have
also noted genes recurring in fusions but with different partners localized even on different
chromosomes. We did not consider these directly as FPs though they were not confirmed
by other methods, since genomic arrays may produce false negative results due to balanced
translocations or inversions.
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CONCLUSIONS
Complex structural variants, such as chromothripsis, have a significant impact on cellular
physiology and thus also dramatically influence the biological features of a cell. Advanced
experimental approaches, e.g., total RNA-Seq, has enabled the study of the causes and
consequences of chromosomal shattering in detail, however, the bioinformatic component
of the analysis still needs improvement. We developed bioinformatic pipelines for
differential gene expression analysis and fusion gene identification in RNA-Seq data.
We applied the pipelines to the set of CLL cases with chromothripsis and obtained results
highly consistent with other experimental approaches (transcriptomic and genomic arrays).
In our test dataset, the PComp tool outperformed well-established limma approach and
the meta-caller dramatically increased overall TP rate of fusion gene detection and allowed
for effective FP filtering. The general algorithm and the steps of our pipelines are broadly
applicable in many experimental setups.
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