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ABSTRACT
The fractal formalism in combination with linear image analysis enables statistically
significant description and classification of ‘‘irregular’’ (in terms of Euclidean geometry)
shapes, such as, outlines of in vitro flattened cells. We developed an optimal model for
classifying bivalve Spisula sachalinensis and Callista brevisiphonata immune cells, based
on evaluating their linear and non-linear morphological features: size characteristics
(area, perimeter), various parameters of cell bounding circle, convex hull, cell sym-
metry, roundness, and a number of fractal dimensions and lacunarities evaluating the
spatial complexity of cells. Proposed classification model is based on Ward’s clustering
method, loaded with highest multimodality index factors. This classification scheme
groups cells into three morphological types, which can be distinguished both visually
and by several linear and quasi-fractal parameters.

Subjects Bioinformatics, Cell Biology, Computational Biology, Marine Biology
Keywords Hemocytes, Morphometry, Bivalve, Fractal analysis, Cell morphology

INTRODUCTION
The quantitative characterization and classification of fibroblast-like cells with complex
irregular shapes is a challenge. Finding a solution to this will facilitate identification
of cell types at different differentiation stages and help investigate their morphogenetic
transformations, both in vivo and in vitro. Unlike cells with clearly recognizable and typified
structural elements (e.g., neurons (Pushchin & Karetin, 2009)), invertebrate immune
cells (bivalve hemocytes and echinoderm coelomocytes) do not have unambiguously
recognizable structural elements of the external morphology. There are many transitional
forms among filopodia, lamellipodia, and pseudopodia, and the boundary between the cell
body and the processes is not always clear. This complicates description and classification
of these cells using conventional structural parameters.

Parameters of quasi-fractal organization are used to describe ‘‘irregular’’ and chaotic (in
terms of the Euclidean geometry) biological patterns with the de facto standard (Dokukin
et al., 2015). This standard treats a natural pattern as a quasi-fractal that can be analyzed
with a number of fractal dimensions and spatial heterogeneity and lacunarity. In this
work, we applied a complex approach combining classical morphometric parameters with

How to cite this article Karetin YA, Kalitnik AA, Safonova AE, Cicinskas E. 2019. Description and classification of bivalve mollusks
hemocytes: a computational approach. PeerJ 7:e7056 http://doi.org/10.7717/peerj.7056

https://peerj.com
mailto:cicinskas@gmail.com
https://peerj.com/academic-boards/editors/
https://peerj.com/academic-boards/editors/
http://dx.doi.org/10.7717/peerj.7056
http://creativecommons.org/licenses/by/4.0/
http://creativecommons.org/licenses/by/4.0/
http://doi.org/10.7717/peerj.7056


quasi-fractal ones for comparative classification of hemocytes and coelomocytes of bivalve
mollusks and echinoderms, which enabled identification of morphotypes of adhered
immune cells, which are characteristic of each animal species.

MATERIAL AND METHODS
The study was performed on 458 hemocytes of the bivalve mollusk Spisula sachalinensis
(Bivalvia, Mactridae) (Schrenck, 1862) and 628 hemocytes of the bivalve mollusk Callista
brevisiphonata (Bivalvia, Veneridae) (Carpenter, 1865). The animals were collected in the
Vostok Bay (Peter the Great Bay, Sea of Japan). Cells were collected as previously described
(Karetin, 2016; Karetin & Pushchin, 2017). Briefly, hemolymph was collected from the
cardiac sac onto coverglass and incubated at room temperature for 1 h. Afterwards cells
were fixed in a 4% formalin solution and stained with hematoxylin-eosin. Photographs of
flattened cells were taken with Zeiss Axiovert 200M Apotome microscope, then they were
sketched by hand and converted into a one-bit format for further analysis.

8 quasi-fractal parameters (prefactor lacunarity (LCFD PreLac), prefactor lacunarity
heterogeneity or translational invariance (outLCFD PreLac), mean mass fractal dimension
(MMFD), mean mass dimension of images contour (outMMFD); mean local connected
fractal dimension of contour images of cells (outMeanLCFD); mean local fractal images
contour dimension (outMeanLFD); mean dimensions of images contour (outMeanD),
lacunarity L (LF )) and 9 linear parameters (cell perimeter (Per), circularity (Circ), hull’s
circularity (Hull’sCirc), Roundness (Round), hull’s center of mass radii Min/Max ratio
(M/MHull’sCM), ratio ofMin/Max distance to circle’s center (M/MRadCirc)), aspect ratio
(AR), Max half division (1/2half) and inner/outer bounding circle ratio (in50/out50) out
of 39 linear and non-linear parameters were chosen for final analysis. They were calculated
using FracLac 2.5 plug-in for ImageJ 1.41 and Photoshop SC3. Full lists of parameters their
explanation and computation can be viewed at Supplemental Information 1. All parameters
were normalized by subtracting the mean and dividing the result by the standard deviation
to equalize their contribution to the classification as cluster variables.

STATISTICA 12.0 and NCSS 2007 software packages were used for statistical analysis.
Correlation among parameterswasmeasured using the Pearson’s linear correlation analysis.
Highly correlated parameters, presumably describing close morphological properties, were
excluded from the analysis. When choosing from two highly correlated parameters, the
preference was given to a parameter with a higher multimodality index showing whether
the distribution of parameter values wasmono-, bi-, or multimodal (Schweitzer & Renehan,
1997). Cell were classified using hierarchical cluster analysis with the Ward’s clustering
algorithm and the Euclidean distance as a measure of dissimilarity. The dimension of
multiparametric space was reduced using the factor analysis. A variance analysis was used
to verify the cluster structure.

RESULTS
Table 1 provides a description of all the measured variables. We used Pearson’s linear
correlation analysis to exclude highly correlated parameters from analysis. 31–34 cell
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Table 1 Measured linear and quasi-fractal parameters.

Spisula sachalinensis Callista brevisiphonata

Variable Mean SE Variable Mean SE

Area 258175,9 ±111077,8 Area 240782,8 ±5314,675
Per 4823,5 ±2496,7 Per 5792,4 ±117,301
Circ. 0,139 ±0,0839 Circ 0,090 ±0,0028
Hull’sCirc 0,829 ±0,0759 Hull’s Circ 0,812 ±0,0030
Round 0,636 ±0,1551 Round 0,646 ±0,0066
M/MHull’sCM 1,674 ±0,3627 M/M Hull’sCM 1,697 ±0,0151
M/MRadCirc 1,608 ±0,5666 M/M Rad Circ 1,713 ±0,0241
1/2 half 2,312 ±2,7958 1/2 half 7,068 ±0,3938
in 50/out 50 0,951 ±0,7683 in 50/out 50 1,811 ±0,0514
AR 1,692 ±0,5326 AR 1,686 ±0,0231
LCFD PreLac 0,456 ±0,3212 LCFD PreLac 7,502 ±0,2034
outLCFD PreLac 0,059 ±0,0176 outLCFD PreLac 0,043 ±0,0006
MMFD −1,984 ±0,0043 MMFD −1,975 ±0,0004
outMMFD −1,038 ±0,0111 out MMFD −1,027 ±0,0003
outMeanLCFD 1,033 ±0,0098 out Mean LCFD 1,023 ±0,0003
outMeanLFD 1,080 ±0,0237 out Mean LFD 1,102 ±0,0011
outMeanD 1,177 ±0,0617 out Mean D 1,186 ±0,0018
LF 0,815 ±0,2648 LF 1,167 ±0,0133

Table 2 Weakly correlated parameters ranked by the multimodality index.

Spisula sachalinensis Callista brevisiphonata

Selected parameters Multimodality index Selected parameters Multimodality index

LCFD PreLac 0,705279674 AR 0,649614849
1/2 half 0,690093836 M/Mrad Circ 0,621260648
Per 0,649817151 Circ 0,612524578
M/MradCirc 0,582812559 in 50/out 50 0,576105304
in 50/out 50 0,571990685 Per 0,575294522
AR 0,533511041 1/2 half 0,503101471
M/Mhull’sCM 0,496496281 MMFD 0,463013064
Hull’sCirc 0,460160702 out Mean LCFD 0,40903434
MMFD 0,379435841 LCFD PreLac 0,370674562
outLCFD PreLac 0,370878375 – –
outMeanLFD 0,342725457 – –

parameters for each species had a significantly high (p< 0.05000) correlation with one
or more other parameters. For further analysis of the cell morphology of both species,
we selected weakly correlated (r < 0.7) or uncorrelated parameters with the highest
multimodality index (Table 2).

One of the main cluster analysis problems is the so-called ‘‘curse of dimension’’, which
means that the quality of clustering decays rapidly as themodel dimensionality (the number
of parameters) increases (Gordon, 1999; Xu &Wunsch, 2008).
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To further reduce the number of parameters, we used two approaches: selection of
uncorrelated parameters with a multimodality index above a given threshold and the
factor analysis; in this case, both factors and parameters loading the factors were used
for classification. Among parameters loading each factor, parameters with the maximum
multimodality index were also selected (Pushchin & Karetin, 2014).

Factors of the factor analysis were chosen using the Varimax method of orthogonal
rotation of the main factor axes. The Varimax method maximizes the spread of load
squares for each factor, which increases large values of factor loads and decreases small
values of factor loads.

In C. brevisiphonata and S. sachalinensis, we identified 5 and 4 factors, respectively,
which were significantly loaded with at least one parameter (Tables 3 and 4). The first
factor in both species was loaded with fractal dimensions and lacunarities of different
types and, in general, reflected quasi-fractal characteristics of cell morphology. The second
factor was loaded with parameters reflecting size characteristics of the cell, such as the
area, perimeter, and sizes of the cell bounding circle and convex hull. The third factor
was loaded with parameters describing the roundness and elongation of the cell and its
convex hull (Round, AR, Hull’sCirc). The fourth factor in both species was loaded with
parameters associated with the local fractal dimension and mass dimension of contour
cell images: (outMeanLCFD, outMeanLFD, outLCFD PreLac, and outMMFD). Therefore,
loads of most parameters in both species were similarly distributed over four factors
determining the main characteristics of cell morphology. In addition, the fifth factor in
C. brevisiphonata included quasi-fractal parameters of contour images; in S. sachalinensis,
these parameters were combined with quasi-fractal parameters of silhouette images in
the first factor. However, Explained Variation eigenvalues of the fourth factor in C.
brevisiphonata dropped below 3; apart from this factor, Explained Variation values in both
species decreased below 3 only in factors lacking any parameter significantly loading the
factors. To formally and uniformly limit the number of used parameters, only factors with
an Explained Variation value above 3 and significantly loaded with at least one parameter
were used in the cluster analysis. In each species, these requirements were met by four
factors that were used as 4 parameters for clustering. In addition, as parameters chosen for
the cluster analysis, we used parameters with the maximum multimodality index, which
loaded each factor (C. brevisiphonata: AR, Per, MMFD, outMeanD; S. sachalinensis: AR,
Per, LF, outLCFD PreLac).

We chose the Ward’s clustering algorithm and the Euclidean distance as an intercluster
difference. This clustering technique provided the best results in classification of neurons
(Pushchin & Karetin, 2009) and invertebrate immune cells (Karetin & Pushchin, 2015).
The number of tested clusters did not exceed the number of cell types normally present
in the immune system of invertebrates (Dyrynda, Pipe & Ratcliffe, 1997; Chang, Tseng &
Chou, 2005; Ladhar-Chaabouni & Hamza-Chaffai, 2016). Also, we tested cluster sets with
the intercluster communication distance that visually significantly exceeded the distances
between subsequent bifurcations of cluster divisions.

Differences between clusters were estimated using discriminant analysis techniques,
including the Mahalanobis intercluster distance estimation (Mahalanobis, 1936) and F-test
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Table 3 Factor analysis of the morphological parameters of Callista brevisiphonata.Marked loadings
are >.70,0000.

Variable Factor loadings (Varimax raw) extraction: principal axis factoring

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Area 0,898344 0,081324 0,017790 0,040363 0,145123
Circ −0,245306 −0,011567 −0,853883 −0,173950 0,103754
AR −0,024839 −0,177094 0,027887 0,053657 -0,691950
Hull’sCirc 0,248542 0,523053 −0,060343 −0,124967 0,558290
M/MHull’sCM −0,097370 −0,889826 −0,078575 −0,012798 −0,266480
M/M RadCirc −0,095711 −0,765280 0,007187 0,024369 −0,220561
outMeanD 0,437328 0,117268 0,734259 −0,000113 0,018558
Var in Count 0,828276 0,221451 0,183255 0,200946 0,153856
LCFD PreLac 0,323227 −0,027924 0,284534 0,086889 −0,022068
MeanMassFD −0,431402 −0,072897 0,634385 0,096541 −0,192108
outMeanLCFD −0,122948 0,016813 −0,092966 −0,985520 0,043433
outMeanLFD 0,163686 0,015080 0,627006 0,054636 0,173220
outMeanMassFD 0,111875 −0,008582 0,064887 0,987433 −0,051194
1/2half 0,718833 −0,043749 0,159371 0,200869 −0,148511
in50/out50 −0,390528 −0,099130 0,233359 0,089379 0,170615
Area out 0,760254 0,054657 0,513314 0,188803 −0,046116
Round out 0,059278 0,386290 −0,067658 −0,078121 0,850117
Expl.Var 3,421268 1,922556 2,550114 2,147736 1,813877
Prp.Totl 0,201251 0,113092 0,150007 0,126337 0,106699

for equality of variances. In our case, theMahalanobis distance defines the distance between
obtained clusters in a multidimensional space of variables. The F-test, or the Fisher’s test, is
used to compare the variances of two normally distributed populations. When more than
two populations are compared, the F-test is calculated as the inter-sample variance of the
all cluster centroids is compared with the combined in all clusters intra-sampling variance.

The use of factors as parameters gave a spread in the mean Mahalanobis distances for
solutions with a different number of cell clusters of both species, ranging between 2 and
7, as many cell types are usually selected in immune cells of invertebrate species close to
the studied ones; the same approach yielded F values lying between 113 and 140. Testing
of 4 parameters with the highest multimodality value, without using factor analysis, gave
a spread in the mean Mahalanobis distances of 9–19, with the Fisher statistics values
occurring between 155 and 196. For cells of both species, the use of parameters loading
factors gave the Mahalanobis distances between 11 and 17 and F values between 177 and
218. According to the results of F statistics, the best solution for both species was a 3-cluster
structure constructed on the basis of 4 parameters loading factors: 218.17 for cells of C.
brevisiphonata and 216.98 for cells of S. sachalinensis (Fig. 1, Table 5). The Mahalanobis
distances for these cluster solutions also were among the highest ones (Table 6).

Based on the Lambda quotient values, the contribution of all four parameters to the
classification of S. sachalinensis and C. brevisiphonata cells was high, without dominance or
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Table 4 Factor analysis of the morphological parameters of Spisula sachalinensis.Marked loadings are
>.70,0000.

Variable Factor loadings (Varimax raw) extraction: principal axis factoring

Factor 1 Factor 2 Factor 3 Factor 4 Factor 5

Area −0,40982 0,769811 0,274500 0,078471 0,102884
Circ. −0,83180 −0,263856 0,053532 −0,222871 −0,047215
AR 0,03529 0,024757 −0,824474 −0,050441 −0,037324
Round out −0,06194 −0,002724 0,904602 0,043889 0,014734
Var in Count −0,09494 0,812251 0,386541 0,040463 −0,167519
Hull’sCirc −0,18412 0,138136 0,763370 0,152132 0,191975
M/MHull’sCM −0,07944 −0,189913 −0,453385 −0,130423 0,071628
M/M RadCirc 0,20104 −0,156081 −0,429464 −0,094532 0,010053
outMeanD 0,77702 0,258795 0,211161 0,248320 0,329420
LCFD PreLac 0,04799 0,048295 −0,008780 0,294671 0,179491
MMFD −0,13560 −0,672211 0,097037 0,178344 0,608486
outMeanLCFD −0,16340 −0,250238 0,079762 0,883067 0,109141
outMeanLFD 0,58175 −0,014001 0,089297 0,393662 0,170759
outMMFD 0,14229 0,247899 −0,077718 −0,900644 −0,101673
Per 0,50941 0,716218 0,219273 0,020457 0,274903
in50/out50 −0,25912 0,057885 0,090105 0,030264 −0,111232
1/2 half −0,00923 0,101447 −0,132909 −0,000644 −0,091831
Expl.Var 10,54201 8,113110 3,938550 3,558619 2,149974
Prp.Totl 0,28492 0,219273 0,106447 0,096179 0,058107

Figure 1 Hierarchical cluster analysis of hemocytes from C. brevisiphonata and S. sachalinensis, which
is based on parameters with the highest multimodality index, loading each of four factors of the factor
analysis. Clustering algorithm: the Ward’s method, a measure of the intercluster difference: the Euclidean
distance, a 3-cluster solution.

Full-size DOI: 10.7717/peerj.7056/fig-1
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Table 5 F -test values for the difference in the cluster variance of the optimal cluster solution (Fig. 1).

C. brevisiphonata; F-values; df = 4,622
G_1:1 G_2:2 G_3:3

G_1:1 p= 0,00 p= 0,00
G_2:2 219.9391 p= 0,00
G_3:3 232.1484 202.4672

Average F-test value for all clusters 218.17
S. sachalinensis; F-values; df = 4,451

G_1:1 G_2:2 G_3:3
G_1:1 p= 0,00 p= 0,00
G_2:2 232.5024 p= 0,00
G_3:3 277.5630 140.8834

Average F-test value for all clusters 216,98

Table 6 SquaredMahalanobis distances between clusters of the optimal cluster solution (Fig. 1).

C. brevisiphonata
G_1:1 G_2:2 G_3:3

G_1:1 0.00000 15.13759 12.74839
G_2:2 15.13759 0.00000 7.16835
G_3:3 12.74839 7.16835 0.00000

Average Mahalanobis distances between clusters 11,7
S. sachalinensis

G_1:1 G_2:2 G_3:3
G_1:1 0.00000 19.66674 23.90871
G_2:2 19.66674 0.00000 5.75293
G_3:3 23.90871 5.75293 0.00000

Average Mahalanobis distances between clusters 16,43

exclusion of any of the parameters (Table 7); in C. brevisiphonata, the AR parameter had a
somewhat more significant contribution (Table 7).

DISCUSSION
Three morphological types of hemocytes from C. brevisiphonata identified using 3 clusters
of the selected cluster solution differ in several parameters of the linear and nonlinear
morphology. Type 1 includes cells which are characterized by values of the lacunarity (LF)
and mean fractal dimension of contour images (outMeanD) significantly higher than those
of types 2 and 3 describing cells with a complex structure of boundaries, most unevenly
filling the space. Cells of this type are visually characterized by an elongated shape with an
average number of long processes. Type 2 is represented by cells with the highest outLCFD
PreLac value as well as medium, but significantly different from other types in outMeanD
and perimeter values (Fig. 2). Cells of this type are characterized by a less elongated shape
and a larger number of smaller processes. The third type includes cells with the simplest
microsculpture of boundaries characterized by the minimum outMeanD value and the
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Table 7 The Tukey-Kramer multiple-comparison test for the difference in mean values of selected pa-
rameters of three morphological hemocyte types from S. sachalinensis and C. brevisiphonata, which are
identified based on the optimal cluster solution.

C. brevisiphonata
Parameters Wilks’s lambda Partial-Lambda F-remove-(3,621) p-value
MMFD 0.163939 0.692703 91.8292 0.000000
Per 0.142717 0.795709 53.1454 0.000000
outMeanD 0.145625 0.779820 58.4460 0.000000
AR 0.280243 0.405223 303.8301 0.000000

S. sachalinensis
Parameters Wilks’s lambda Partial-Lambda F-remove-(2,451) p-value
LF 0.177949 0.746466 76.5902 0.000000
Per 0.174506 0.761195 70.7449 0.000000
AR 0.171701 0.773631 65.9827 0.000000
outLCFD PreLac 0.234937 0.565398 173.3339 0.000000

largest AR value which are characteristic of cells with an almost round shape. Cells of this
type are characterized by the most ‘‘regular’’ symmetrical shape with a low number of
relatively small processes (Fig. 3).

The cluster model for classification of hemocytes from S. sachalinensis, using parameters
of four factors, also includes three cell types (Fig. 4). The first type includes cells with the
highest outMeanD, LF, and perimeter values among the identified types. This characterizes
cells of complex morphology with a high number of large and small processes. Cells of
the second type, like the second type cells from C. brevisiphonata, have the highest LCFD
PreLac value for contour images, and an average, but significantly different outMeanD
value. These cells have a visually simpler ‘‘average’’ shape with a smaller number of small
processes. Type 3 includes cells with a smaller, compared to other types, area of spreading
(Area), the highest AR value, and a low outMeanD value (Fig. 5). Visually, these cells have
the simplest microsculpture of boundaries with the minimum number of processes, but
the general shape of these cells is diverse and asymmetric. Usually, cells of this type have
an elongated, sometimes slightly round shape, which is typical of moving cells.

According to the Tukey-Kramermultiple-comparison test for themean value difference,
the identified cell types significantly differed from each other both in most classifying
parameters (Table 8) and in several other parameters of the linear and quasi-fractal
morphology.

Therefore, although the best classification for cells of each of the studied species includes
different parameters and distinguishes species-specific types differing in various aspects
of morphology, the optimal classification structure of immune cells of both species uses
a common algorithm including a Ward’s hierarchical classification and using parameters
with the highest multimodality index, loading factors in the factor analysis.

A classification model with the best cluster structure combines both linear and quasi-
fractal parameters, thereby reflecting various aspects of the cell morphology. Due to loading
of various factors of the factor analysis with parameters describing similar morphological
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Figure 2 Average values and SE of the main parameters used for the description of cell types from
C. brevisiphonata.

Full-size DOI: 10.7717/peerj.7056/fig-2

aspects, the classification of cells of the studied species comprises simultaneously parameters
reflecting the cell asymmetry (AR), size characteristics (Per), and quasi-fractal parameters
describing the structural complexity of silhouette (MMFD) and contour (outMeanD) cell
images. In this case, among parameters representing each morphological aspect, we chose
a parameter with the maximally multimodal distribution over a sample, which indicates
heterogeneity of the sample in this parameter andmost clearly reveals the sample composite
structure that includes cells of different morphological types.

In biological terms, the main issue of the morphology of cells from various animal
species is what determines the difference in the morphology of flattened hemocytes from
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Figure 3 Silhouette images of cells from C. brevisiphonata.
Full-size DOI: 10.7717/peerj.7056/fig-3

different invertebrate species? The initial hypothesis suggests searching for an ecological
aspect of functional differences manifesting in the morphology of cells and leading to
the difference in cell shapes among separate species. However, we found no significant
ecological differences between the studied species. Both mollusk species live in overlapping
areas, and both species are filter feeders digging into the sea floor.

Regardless of whether environmental causes underlie the differences in shapes of
hemocytes and coelomocytes from different species, and whether the specific features
of their morphology are affected by natural selection, it is obvious that the difference
in cell shapes is genetically associated with certain differences in cell physiology: the
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Figure 4 Silhouette images of cells from S. sachalinensis.
Full-size DOI: 10.7717/peerj.7056/fig-4

general cytoskeleton structure, cell behavior (Pomp et al., 2018), etc. Therefore, it is logical
to consider cell shapes in terms of biological analysis of parameters that describe cell
shapes, which would answer the question: what kind of genetic and cytophysiological
species-specific features of the cell determine the value of a certain parameter. This will
make it possible to predict features of cell physiology based on detailed morphological
analysis.

CONCLUSIONS
The optimal classification that is based on the morphological features of immune cells
of the studied bivalve species uses a common universal algorithm that includes a Ward’s
hierarchical cluster analysis based on parameters with the highest multimodality index,
loading factors of the factor analysis. This cluster structure demonstrates the highest F
statistics values for intercluster variance differences.
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Figure 5 Average values and SE of the main parameters used for the description of cell types from
S. sachalinensis.

Full-size DOI: 10.7717/peerj.7056/fig-5

The identity of the optimal classification algorithm for cells of both species with very
close values of discriminant functions describing interspecies differences in the variances
of cell morphotypes in the selected classification model suggests a common morphological
structure of hemocytes, despite interspecific differences, both in numerical values of used
parameters and in the set of parameters selected for the classification. Therefore, the cell
classification algorithm may be recommended as an optimal method for morphological
classification of hemocytes adhered to a two-dimensional substrate.
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Table 8 Wilks’ Lambda for the optimal cluster solution.

S. sachalinensis C. brevisiphonata

Parameters Cell type Inter-type difference Parameters Cell type Inter-type difference

3 1 3 1, 2
2 1 1 3, 2LF
1 3, 2

MMFD

2 3, 1
3 2, 1 3 2
2 3, 1 1 2Per
1 3, 2

Per

2 3, 1
1 3 3 2, 1
2 3 2 3, 1AR
3 1, 2

AR

1 3, 2
3 2 1 2
1 2 3 2outLCFD PreLac
2 3, 1

Area

2 1, 3
3 2, 1 3 1, 2
2 3 1 3, 2Area
1 3

outMeanD

2 3, 1
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