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ABSTRACT
Background. Although pathogenic Gram-negative bacteria lack their own ubiquitina-
tion machinery, they have evolved or acquired virulence effectors that can manipulate
the host ubiquitination process through structural and/or functional mimicry of host
machinery. Many such effectors have been identified in a wide variety of bacterial
pathogens that share little sequence similarity amongst themselves or with eukaryotic
ubiquitin E3 ligases.
Methods. To allow identification of novel bacterial E3 ubiquitin ligase effectors from
protein sequences we have developed a machine learning approach, the SVM-based
Identification and Evaluation of Virulence Effector Ubiquitin ligases (SIEVE-Ub).
We extend the string kernel approach used previously to sequence classification by
introducing reduced amino acid (RED) alphabet encoding for protein sequences.
Results. We found that 14mer peptides with amino acids represented as simply either
hydrophobic or hydrophilic provided the best models for discrimination of E3 ligases
from other effector proteins with a receiver-operator characteristic area under the
curve (AUC) of 0.90. When considering a subset of E3 ubiquitin ligase effectors that
do not fall into known sequence based families we found that the AUC was 0.82,
demonstrating the effectiveness of our method at identifying novel functional family
members. Feature selection was used to identify a parsimonious set of 10 RED peptides
that provided good discrimination, and these peptides were found to be located in
functionally important regions of the proteins involved in E2 and host target protein
binding. Our general approach enables construction of models based on other effector
functions. We used SIEVE-Ub to predict nine potential novel E3 ligases from a large set
of bacterial genomes. SIEVE-Ub is available for download at https://doi.org/10.6084/
m9.figshare.7766984.v1 or https://github.com/biodataganache/SIEVE-Ub for the most
current version.
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INTRODUCTION
Assignment of functional annotations for newly sequenced proteomes is accomplished
largely through transference of annotations from existing proteins using sequence
similarity. Many protein families exist that have shared sequence similarity and functional
annotation and new members can be identified through established models such as hidden
Markov models (HMMs). However, there are many other groups of proteins that have
closely related functions but diverse sequences. These groups can be described withmultiple
models that capture different regions of sequence space butmay includemembers that don’t
have sequence similarity with other members detectable by traditional sequence methods.

Standard methods for developing sequence-based models such as HMMs rely on
sequence alignment of family members as a first step. Models are then constructed
using sequence signatures at specific locations established from those alignments. If
sequence alignment is not possible or results in poorly aligned sequences, robust models
for functionally related proteins may not exist. In these cases machine learning methods
can be used to group proteins with similar function together based on sequence-derived
features that do not require alignment. Suchmethods generally rely on general properties or
biases (distributions of different amino acids across the entire protein, e.g.) or generating
suites of short subsequences from the entire protein in a position agnostic approach.
Such applications have developed models for problematic protein functions such as
multidrug antibiotic resistance transporters (McDermott et al., 2015) by us, and DNA
binding proteins (Qu et al., 2017), calmodulin-binding proteins (Abbasi et al., 2017) and to
identify subcellular localization (Tung et al., 2017), immunogenic regions of proteins
(Kuksa et al., 2015), and kinase specificity (Wang et al., 2017), by others. Our group
previously developed a machine learning model to identify substrates of the bacterial type
III secretion system, and this and similar models have been successful at identifying novel
family members (Arnold et al., 2009; Samudrala, Heffron & McDermott, 2009; McDermott
et al., 2011; Niemann et al., 2011; Hovis et al., 2013).

A versatile method for creation of subsequences for use in such models is the kmer
approach, also known as string kernels. This method has been used in sequence analysis to
identify distant homologs (Leslie, Eskin & Noble, 2002; Leslie et al., 2004), nucleotide-based
functional features (Li & Jiang, 2005), and structural folds (Wang et al., 2017), and to
predict antibody epitopes (Sher, Zhi & Zhang, 2017). A current limitation of this approach
is computational. Since the alphabet used by amino acids is normally 20, the space of
possible sequences of length k expands exponentially with k, rendering even short kmers of
length 6 unwieldly since this requires representation of 206 (64 million) possible features.
Additionally, as kmers increase in length they become less common resulting in feature
sets that are more distinct for each protein, and thus less likely to reveal underlying
relationships. This problem can be addressed using mismatch kernels (Leslie et al., 2004)
and similar approaches, but remains a computational and pragmatic barrier. Here we
report the use of a kmer-based approach with the novel inclusion of a step which first
reduces the alphabet used for representation to address these issues. We are able to explore
much longer kmers, albeit with reduced information content, that can be used to represent
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general patterns in amino acid properties such as charge and hydrophobicity. We apply
this approach to identification of novel ubiquitin E3 ligases in pathogenic bacteria.

Ubiquitination is an abundant protein post-translation modification (PTM) in
eukaryotic cells that controls many key pathways, including protein turnover and
innate immune signaling (Bhoj & Chen, 2009; Kravtsova-Ivantsiv & Ciechanover, 2012).
Ubiquitination is a dynamic and reversible PTM produced by the coordinated action
of three enzymes: E1 ubiquitin activating enzyme, E2 ubiquitin conjugating enzyme,
and E3 ubiquitin ligase. The removal of ubiquitin units from proteins is catalyzed
by deubiquitinating enzymes (Komander, Clague & Urbe, 2009; Metzger, Hristova &
Weissman, 2012). Eukaryotic E3 ligases are mainly classified into two groups, HECT
and RING, with different structural features and catalytic mechanisms. The first group is
characterized by its HECT (homolog of E6-associated protein C-terminus) domain and
during catalysis forms an intermediate that receives ubiquitin from the E2 conjugating
enzyme before transferring to substrates (Metzger, Hristova & Weissman, 2012). The second
type is characterized by the presence of a RING (Really Interesting New Gene) finger
domain, which consists of a series of histidine and cysteine residues that coordinate binding
to zinc ions. The RING-type E3 ligases do not form a ubiquitin-linked intermediate, but
promote the direct ubiquitin transfer from the E2 to the targeted substrate (Metzger,
Hristova & Weissman, 2012).

Although bacteria lack complete ubiquitination machinery, some pathogenic bacteria
have evolved or acquired virulence effectors that can be introduced in to host cells via
secretion systems and manipulate the process of ubiquitination through structural and/or
functional mimicry (Rytkonen & Holden, 2007; Hicks & Galan, 2010). Although bacterial
proteins that mimic the E1 and E2 enzymes have not been identified, a number of bacterial
and viral E3 ligases have been shown to be enzymatically active and to be important for
virulence (Rytkonen & Holden, 2007; Hicks & Galan, 2010). These E3 ligases expand the
number of sequence families from eukaryotic ubiquitin ligases (Catic et al., 2007; Cui et al.,
2010), with several displaying structural mimicry, i.e., similar structure and function arising
from dissimilar sequence (Hicks & Galan, 2010). E. coli expresses a class of effector proteins
named NleG-like proteins, after the first characterized member of this class, that contain
U-boxes, a domain similar to RING but lacking the coordination with zinc ions, and
were shown to be enzymatically active E3 ligases (Wu et al., 2010). Some Gram-negative
bacteria have members of a class of E3 ligases named Novel E3 Ligases (NEL, not to be
confused with NleG) that despite having a conserved cysteine residue at the catalytic
site has little similarity to HECT domains (Singer et al., 2008). Members of NELs include
virulence factors, such as Shigella IpaH and Salmonella SspH1, SspH2 and SlrP (Rohde et
al., 2007; Singer et al., 2008; Bernal-Bayard & Ramos-Morales, 2009; Quezada et al., 2009;
Levin et al., 2010).

Sequence family models have been developed as part of the popular Pfam database that
can identify newmembers of the classes described above, but fail to identify E3 ligases that do
not fall into these families. This lack of sequence similarity makes it difficult to characterize
new ubiquitin ligase mimics in bacteria or viruses. While experimental techniques are
essential to definitively characterize a protein’s function, they are time-consuming and
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expensive, making them unrealistic for genome-wide screening of effectors. Computational
techniques are a better choice for identifying the putative function of uncharacterized
proteins, which can later be verified by experimental assays. Since most protein structures
have not been solved experimentally, computational techniques for identifying the function
of uncharacterized protein rely upon the similarity of its amino acid sequence to that of a
protein with a known function.

Here we present a novel method for alignment-free classification of proteins using kmers
built from reduced amino acid alphabets. That is, physicochemical properties or other
grouping strategies are used to group amino acids into sets that are then used to represent
kmer feature sets. These feature sets are then used as input to an SVM using a family-wise
cross-validation strategy and a classifying model is derived. Surprisingly, we found that an
amino acid alphabet that represents residues as either generally hydrophobic or generally
hydrophilic performed the best as features for classification yielding a classification receiver-
operator characteristic (ROC) area under the curve (AUC) performance of 0.90, where an
AUC of 0.5 corresponds to random chance and AUC of 1.0 is perfect classification of all
positive and negative examples. Feature selection identified several regions of similarity
across disparate families of E3 ubiquitin ligases. We predict a number of novel E3 ubiquitin
ligases from a large set of genomes with this novel approach.

MATERIALS & METHODS
Dataset
We identified a set of 164 confirmed bacterial or viral E3 ubiquitin ligase effectors from
the UniProt database by searching for ‘E3 ligase’ in manually annotated bacterial and viral
sequences and manually checking the results for accuracy (Bairoch et al., 2005). Negative
examples were 235 other bacterial effectors identified from literature (Lee, Mazmanian
& Schneewind, 2001; Stebbins & Galan, 2001; Bairoch et al., 2005; Burstein et al., 2009;
Quezada et al., 2009; Samudrala, Heffron & McDermott, 2009; Spallek, Robatzek & Gohre,
2009; Buchko et al., 2010; Collins & Brown, 2010;Hicks & Galan, 2010; Price & Kwaik, 2010;
Komander, Clague & Urbe, 2009; Wu et al., 2010; Dean, 2011; Lin et al., 2011; McDermott
et al., 2011; Anderson & Frank, 2012; Deslandes & Rivas, 2012; Xin et al., 2012). Though
somewhat limited in size, this set of E3 ubiquitin ligase virulence effectors represents the
state of current knowledge, and we have had success with similar approaches applied
to smaller datasets previously (Samudrala, Heffron & McDermott, 2009; McDermott et al.,
2015). We include details on the dataset as Supplemental Data.

To provide predictions for relevant bacterial pathogens we downloaded a set of 171
genomes that are listed as human pathogens and are representative reference genomes from
PATRIC (Wattam et al., 2017). This set comprises 480,562 protein sequences excluding all
of the proteins used in the training set above. A list of the genomes included in this study
is provided in Supplemental Data.

Features
Every protein sequence used for either learning or prediction is encoded by counting
occurrences of peptides of varying length in the sequence in a manner similar to the
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Table 1 Reduced amino acid (RED) encodings.

Name Groups Notes Reference

NAT
(Natural)

ACDEFGHIKLMNPQRSTVWY No encoding

RED1
(Hydrophobicity)

SFTNKYEQCWPHDR
AGILMV

Hydrophilic
Hydrophobic

Arnold et al. (2009)

RED2
(Physiochemical)

AGILMV
PH
FE
NQST
DE
KR
CY

Hydrophobic
Hydrophilic
Aromatic
Polar
Acidic
Basic
Ionizable

Arnold et al. (2009)

RED3
(Solvent accessibility)

CILMVFWY
AGHST
PDEKNQR

Low
Medium
High

Bacardit et al. (2009)

RED4
(Hydrophobicity and charge)

SFTNYQCWPH
AGILMV
KEDR

Hydrophobic
Hydrophilic
Charged

This study

RED5
(Hydrophobicity and structure)

SFTNKYEQCWHDR
AILMV
PG

Hydrophilic
Hydrophobic
Structural

This study

previously described string kernel (Leslie, Eskin & Noble, 2002). The possible number of
peptides greater than 4 amino acids long is very large (204 = 160,000 peptides). We wanted
to extend this approach to identify sequence patterns based on groupings of amino acids
based on physiochemical or other properties. We therefore also encoded sequences to
reduce the sequence space using one of several encodings (Table 1). Features were then
generated for a range of different peptide lengths (3 to 20) and peptides that were observed
in fewer than 10 examples were removed from consideration.

Features for each protein are generated by considering all peptides of length k in a
sequence, encoding these (optionally) using the chosen encoding scheme, then counting
the occurrences of the encoded peptide.

Data partitioning
To remove bias created by having multiple examples with very similar features (i.e., closely
related effectors from different organisms) we first partitioned the examples to identify
clusters of related effectors. In order to achieve this partitioning, we clustered the sequences
based on NCBI BLASTP similarity results. Parameters of BLASTP were set to their default
values. Using a lower E value threshold (for example, E = 0) groups sequences more
tightly and thus results in clusters that are likely to be more similar to another cluster
and thus represent a generous division of families for the classification task using our
cross-validation approach (see below). Conversely, higher E value thresholds (for example,
E = 0.01) yield broader, more general clusters that are less likely to be similar to any other
clusters, and thus represent a conservative division of families for our classification task.
We used a more conservative threshold (E 0.01) to group the set of 407 proteins into 176
clusters of loosely related protein sequences. We examine the effect of varying the BLAST
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Table 2 Cross-validation toy example.

Protein
sequence

Sequence
family

Class

A 1 positive
B 1 positive
C 2 positive
D 2 positive
E 3 negative
F 3 negative
G 4 negative
H 4 negative

E-value threshold on the size of the generated protein families (Fig. S1). We next compared
this approach to a more sophisticated approach for determining orthologous groups of
proteins OrthoMCL, and found only minor differences with our approach resulting in
joining three of our previous clusters (each containing a single protein each) in to one. We
then used this final set of 174 clusters for our analyses.

Cross validation
Cross validation (CV) is widely used to test the performance of a classification scheme on
a given dataset. The entire dataset is partitioned into several non-overlapping folds. These
folds are used as test sets. The corresponding training set for a particular fold consists of
the remainder of the dataset. Each iteration of cross validation involves using a training set
to generate a model and testing that model on the corresponding test set. This process is
repeated until every fold has been tested.

The experimental setup of our study uses a variant of CV called Family-Wise Cross
Validation (FWCV) to judge the performance of our classifier. FWCV places all the
samples belonging to a particular cluster (see above) in a single test set, while the classifier
is trained using the remaining data. This prevents model overfitting by reducing the trivial
similarities between testing and training sets (i.e., those similarities based on traditional
sequence similarity).

We use the following example to explain this process. In Table 2 protein sequences have
been assigned a sequence family based on sequence similarity using traditional methods
(like OrthoMCL). A FWCV run would select, for example, sequence families 1 and 4 to
train on for a single fold. This would mean that sequences A, B, G, and H would be in the
training set and sequences C, D, E, and F would be set aside for testing. A model would be
trained on A, B, G, and H then applied to C, D, E, and F to assess performance. A good
performance (as assessed by AUC) would mean that the information in sequences A and B
from sequence family 1 could be used to predict the class of sequences C and D in sequence
family 2. The process is then repeated for a number of folds (not useful for this limited
example, but very useful in a real dataset), and the performance of the individual folds
averaged to get an overall assessment of model performance.
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Classification
The Support Vector Machine (SVM) determines the optimally separating hyperplane
between two sets of points in high-dimensional feature space each belonging to a different
class (Noble, 2006). We utilized the radial kernel from the e1071 R library (version 1.6-8;
Meyer et al., 2017) in our implementation.

The area under the curve (AUC) and receiver-operator characteristic curve (ROC)
calculation was performed using the R library pROC (version 1.10.0; Robin et al., 2011).

Feature selection
Feature selection was accomplished using two complementary methods. The first is
the standard SVM Recursive Feature Extraction (SVM-RFE; algorithm as described in
(Guyon et al., 2002)). We can obtain an ordering of the features using the absolute value
of the entries of the SVM weight vector w. Each recursive feature elimination iteration
involves eliminating the set of features that have the smallest absolute weight wi until k
features remain. The smaller and smaller sets of features obtained at each step represent
predictive models that consider all the features together, but features selected vary due
to the cross-validation approach we are using. In the second approach we established a
simple metric to score individual features based on their representation in the positive
example families versus negative example families. This was accomplished by calculating
the score (S) for each feature (f) as the percentage of examples from each sequence cluster
(M) that contained f, then calculating difference between the mean percentages for the set
of positive families and negative families. Thus a positive score for a feature means that it
is disproportionately represented in the positive examples while accounting for differences
in the size of sequence families. Sets of individual predictive features were then used to
train a minimal model for prediction as described in results.

Implementation details and availability
Feature generation from sequences is performed using a standalone Python (version
3.6.3; (Foundation, 2018) script that uses the BioPython library (version 1.70; (Cock et al.,
2009)). Training and validation of models was performed in R (version 3.3.3 (R Core Team,
2017). The SVM-RFE algorithm used by SIEVE-Ub was implemented in R as described by
GIST-RFE (Guyon et al., 2002).

Code for the algorithm and datasets used to produce the results described in this paper
are available at https://doi.org/10.6084/m9.figshare.7766984.v1 and the current version of
SIEVEUb is available at https://github.com/biodataganache/SIEVE-Ub.

RESULTS
Known ubiquitin ligases fall into one of several sequence families, HECT, RING, and
NEL, each of which can be identified using existing hidden Markov models (HMMs) from
the Pfam database (PF00632, PF13639, PF14496). Additionally, sequence-based models
exist for AvrPtoB (PF09046) and BRE1 (PF08647), which represent distinct E3 ubiquitin
ligase families, and SopA (PF13981), which is a HECT-like domain. We analyzed the
assembled sequences using the Pfam database and identified members of all these families
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(Supplemental Data). We note that, not surprisingly, each of these Pfam families map to a
different sequence cluster identified by OrthoMCL, though NEL and RING are broken into
more than one sequence cluster each. The family with the most representation in our set
of positive examples is the NEL family with 102 members. Taken as a whole the nine Pfam
models achieve an accuracy of 95% and a precision of 98% for prediction of E3 ubiquitin
ligases from the background of other virulence effectors, with 14 known ubiquitin ligases
being missed. It is important to note that neither the orthology approach we took to
identify sequence clusters nor the individual Pfam models provided any predictive ability
across sequence families. Our goal is to develop a generalized, alignment-free approach
to predict members of this functional family capturing those not identifiable through a
sequence-based model such as those in Pfam, and providing the potential to identify novel
functional family members.

Dissimilar ubiquitin ligases can be detected using reduced amino acid
(RED) peptides
To provide feature sets that were specific enough to capture relationships between
functionally similar proteins, yet general enough to identify regions of similarity between
divergent sequences we adapted the kmer approach to represent protein sequences by a
series of all peptides of length k from that sequence. Our novel extension translates each
amino acid in the sequence to a smaller number of groups based on physicochemical
properties or other arbitrary grouping methods- a reduced amino acid (RED) alphabet.
Initially we chose three reduction mappings based on previously reported approaches:
hydrophobicity (RED0), standard physiochemical properties (RED1), and solvent acces-
sibility (RED2) (Arnold et al., 2009; Bacardit et al., 2009). The groups are listed in Table 1.

The set of positive and negative examples for E3 ubiquitin ligases was encoded using
each of the REDs and the native sequence, and peptide kmers of various lengths were
counted for each. Peptides present in fewer than 10 examples were excluded from further
consideration. Each dataset was then split into independent training and testing sets
on a sequence cluster-wise basis (that is, clusters of similar sequences as determined by
OrthoMCL were kept together in the training or testing set), based on a conservative
cluster grouping (see methods). Cluster-wise splits and associated training and testing were
performed 100 times for each model and the score (SVM discriminant) for each example
averaged. Average scores were used to determine ROC AUC for each model and results are
presented in Table 3 and Fig. S1. We were concerned that the cross-validation procedure
might be affected by the large size of some of the sequence families (an NEL cluster has
close to 100 members) or by how the families were chosen during cross-validation. We
examined the first problem by reducing the size of the large families to a maximum value
and rerunning the analysis, finding that this did not affect the results. Similarly, choosing
different random seeds prior to cross-validation did not significantly affect results (see
Supplemental Data).

Surprisingly, the models using RED0, a simple division of amino acids into hydrophobic
and hydrophilic residues, performed the best for nearly all peptide lengths with amaximum
AUC of about 0.85. The maximum AUC observed occurs with RED0 and a peptide length
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Table 3 Best model performance.

Kmer length AUC

NAT 17 0.851
RED0 14 0.903
RED1 6 0.803
RED2 8 0.742
RED3 6 0.884
RED4 13 0.814

True Hydrophobic/

Hydrophilic Pattern

Random Hydrophobic/

Hydrophilic Patterns

0.
5

0.
6

0.
7

0.
8

0.
9

1.
0

A
U

C

Figure 1 Amino acid reduction based on physicochemical properties is important.Models were eval-
uated using the standard hydrophobic/hydrophilic reduction alphabet (RED0) and randomly divided
sets of amino acids (RND0) with a kmer length of 14. Performance was evaluated using 100 fold family-
wise cross validation and AUC. The plot shows that a division of amino acids into hydrophobic and hy-
drophilic residues outperforms a random division of amino acids.

Full-size DOI: 10.7717/peerj.7055/fig-1

of 14 (RED0-K14) and so we focused on characterization of this model for the remainder
of the article. Our results indicate that a simple encoding of amino acids can be used to
classify effectors with E3 ubiquitin ligase function from other effectors, and from other
non-effector proteins in general (see Prediction of novel E3 ubiquitin ligasemimics, below),
with good confidence.

We hypothesized that the performance of the RED0 is based on accurately representing
the pattern of hydrophobic and hydrophilic residues in kmers. To examine this hypothesis
we applied a family-wise cross-validation approach using ten alphabets where residues had
been randomly assigned to either the hydrophobic or hydrophilic groups preserving the
overall balance of hydrophobic to hydrophilic residues in the resulting random alphabet
(6:14; see Table 1). We compared the performance of these random binary REDs at a kmer
size of 14 with the true hydrophobic/hydrophilic RED0-K14 also run ten times to show
the variability in partitioning of training and testing sets inherent in our approach and
show the results in Fig. 1. In all cases the true RED0 outperforms the randomized REDs
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supporting our hypothesis though we note that there is a wide range of performances given
with random binary REDs. We believe this is due to some random assortments containing
reasonable divisions of residues between hydrophobic and hydrophilic residues because of
the very simple nature of this division.

SIEVE-Ub identifies biologically functional peptides
To identify a minimal set of features that are important for classification of E3 ubiquitin
ligases from other effectors we used recursive feature elimination, a standard machine
learning approach (Samudrala, Heffron & McDermott, 2009). Briefly, a model is trained on
all features using our family-wise cross-validation approach, then weights for each feature
are used to discard 50% of the features with the lowest impact on model performance. The
remaining features are then used in another model training round in which this process
is repeated until all the features have been eliminated. Using this approach we found that
performance of the model dropped off when the number of features was still quite large,
>2,000, and so does not identify a minimal set of features important for discrimination
of examples. The training performance results from the RFE on the RED0-K14 model are
shown in Fig. S2.

Since RFE failed to identify a minimal set of predictive features we developed a simple
scoring metric to evaluate each feature independently to identify those features with
disproportionate representation in the positive example set, while accounting for differences
in sequence family sizes (see Methods). We applied this score across various kmer lengths
and REDs and show the results in Fig. 2. Similar to the results we obtained in performance
of models incorporating all features (Fig. S2), this approach shows that RED0 results in the
longest kmers that are specific to positive examples with lengths of 12–14. This also shows
that the naturally occurring amino acid sequence does not produce kmers specific to the
positive examples, highlighting the strength in using our RED approach.

We trained models using our family-wise cross-validation approach with the top most
predictive kmer features from RED0 with a kmer length of 14 for consistency with our
previous results, and found that themost predictivemodel performed quite well (AUC0.87)
with just ten features. The features from the minimal model are provided as Supplemental
Data along with their locations in each of the positive and negative examples in our analysis
set.

Though the E3 ligase examples used as our positive examples are diverse in terms
of sequence many do fall into the families of E3 ligases described in the Introduction;
HECT/U-box, RING, and NEL. We hypothesized that the most predictive kmers identified
in our analysis would map to the known E3 ligase domains in these proteins. We show in
Fig. 3 our scoringmetric across four examples from different E3 ligase families. Significantly
predictive peaks corresponding to highly predictive kmers can be found in each of the
known domains from theHECT-like, NEL, AvrPtoB, and recently identified RavN effectors
demonstrating that our approach is able to establish connections across disparate sequence
families. We note that, except in the case of AvrPtoB, the most predictive kmers map to
regions outside the known E3 ligase domains, indicating the presence of other signals that
might be important in prediction.
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Figure 2 Assessing the information content of reduced amino acid kmers for ubiquitin ligase predic-
tion. Family-normalized counts for kmer occurrence in positive and negative examples from the ubiqui-
tin ligase examples used in the study were calculated and a differential score derived where 1.0 signifies
kmers that are absolutely conserved in every example from the known ubiquitin ligase examples and not
present in the negative examples and 0 is neutral in terms of representation. The different amino acid en-
codings are shown in each panel with the length of the kmer used indicated on the X axis and the box and
whiskers representing the overall distribution of scores for all observed kmers. The red box indicates the
minimal 10 kmer model described in the text. This plot shows that the simple hydrophobic/hydrophilic
encoding (RED0) displays the greatest flexibility for the longest kmer lengths when predicting this class of
proteins.

Full-size DOI: 10.7717/peerj.7055/fig-2
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Figure 3 Discriminating peptides in E3 ligase domains.Differential scores were calculated for each po-
sition in the example E3 ligases shown that represent how unique the kmer at that location is across all
known ubiquitin ligase examples used in the study. Examples shown are (A) the HECT-like Salmonella
Typhimurium SopA, (B) the NEL family Salmonella Typhimurium SspH2, (C) the Pseudomonas syringae
AvrPtoB, and (D) the recently discovered Legionella pneumophila RavN. This score was normalized for
sequence families and a score of 1.0 represents a position that is completely conserved in the positive ex-
amples and not present in the negative examples. Kmers with scores of greater than 0.2 (dotted line) are
significantly predictive of the functional class. Known E3 ligase domains are indicated in the shaded boxes.
The RavN protein is a recently discovered E3 ubiquitin ligase with no sequence similarity with any existing
examples and was not included in our training set. Combined with the ability of SIEVEUb to accurately
predict ubiquitin ligase function these plots collectively indicate that some of the most predictive kmers
are present in the known domains, despite the family-wise cross-validation approach that was used to pre-
vent trivial sequence similarity inside families from impacting the results.

Full-size DOI: 10.7717/peerj.7055/fig-3

We also applied our model to the recently discovered E3 ubiquitin ligase effector RavN
from Legionella, which was not included in our training set (Lin et al., 2018). Our method
predicted RavN to be an E3 ubiquitin ligase with a probability of 85%, despite having
no detectable sequence similarity with other known E3 ligases. Though this is a limited
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Table 4 Proteins predicted to be similar to ubiquitin ligase mimic set. *annotation based on sequence comparison only.

Secretion potential

ID Genome
name

SIEVEUb
Score

III IV VI Gene
name

Description

APZ00_07775 Pannonibacter phragmitetus strain
31801

0.62 0 8 0 2-methylfumaryl-CoA hydratase

KKKWG1_2059 Kingella kingae strain KWG1 0.61 0 15 0 UPF0758 family protein
LV28_06870 Pandoraea pnomenusa strain

DSM-16536
0.60 17 0 0 Benzaldehyde dehydrogenase

AB185_15825 Klebsiella oxytoca strain CAV1374 0.58 0 5 0 N-acetyltransferase ElaA
PMI0843 Proteus mirabilisHI4320 0.57 6 4 1 Low-affinity putrescine importer

PlaP
NC_006155 Yersinia pseudotuberculosis IP

32953
0.53 63 8 2 hypothetical protein

LV28_00130 Pandoraea pnomenusa strain
DSM-16536

0.53 17 0 0 MBL-fold metallo-hydrolase su-
perfamily

APZ00_04010 Pannonibacter phragmitetus strain
31801

0.52 0 8 0 Soluble lytic murein transglyco-
sylase

APH_0317 Anaplasma phagocytophilumHZ 0.51 0 24 0 fabH 3-oxoacyl-[acyl-carrier-protein]
synthase

validation it demonstrates the power of our approach at identification of novel E3 ligase
effectors that have vastly divergent sequence.

Prediction of novel E3 ubiquitin ligase mimics
To predict novel E3 ubiquitin ligase mimics in a larger set of sequences we applied the
model described above (kmer 14 in RAA0, top 2000 most important features) to a set of
over 400,000 proteins from representative human pathogens obtained from the PATRIC
database (Wattam et al., 2017). We found only 67 proteins with positive SIEVEUb scores
greater than 0.5, indicating that potential ubiquitin ligases are not common as assessed by
our approach. We note that PATRIC annotations include E3 ubiquitin ligase functions,
and none are detected in the subset we’ve focused on. This indicates that the predictions
we’ve made are truly novel. We further filtered this list to include predictions that occurred
in bacteria containing type III, IV, or VI secretion systems. This yields a list (Table 4) of
predicted E3 ubiquitin ligases that are in organisms capable of delivering effector proteins
in to the eukaryotic host cell cytoplasm, though we note that such effectors could be
secreted via other mechanisms. Several of these predictions are annotated as enzymes,
which could be false positive predictions. However, many virulence effectors are known to
be multifunctional and annotation of functions is prone to error.

DISCUSSION
We note that the intent of our study was to develop a model that could identify E3
ubiquitin ligases based on protein sequence with reasonable accuracy and precision, which
we demonstrated clearly. As such, we did not fully explore the range of possible parameters
such as choice of SVM kernel, or other machine learning approaches that would work on
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our input features, to determine an optimalmodel. Our results show that we can usemodels
based on highly divergent sequences to robustly predict E3 ubiquitin ligase function in
bacterial and viral effectors. It is unclear how many E3 ubiquitin ligases that may exist but
have not yet been discovered, and this question will only be answered through experimental
validation of predictions made by our method, similar to the validation we have done for
the original SIEVE (Samudrala, Heffron & McDermott, 2009).

CONCLUSIONS
The general approach we describe, using peptides with reduced amino acid alphabets as
features for machine learning, could be easily applied to other problems of functional
classification given appropriate positive and negative example sets. We show that this
approach can be used to discriminate effectors with E3 ubiquitin ligase activity from
other effectors with good confidence and present a single model that is able to identify
E3 ubiquitin ligases from different sequence families. Importantly, development of this
model does not require sequence alignment of any kind. From this analysis we have
presented an example of this approach identifying functionally important regions with
dissimilar sequences, but similar structures. However, further work is necessary to explore
the possibility that this is amore general property of the approach. This is the first algorithm
dedicated to prediction of E3 ligase function in non-eukaryotic proteins.
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