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Food safety has become a major issue , with serious environmental pollution resulting from

losses of nitrogen (N) fertilizers. Transformation of agricultural waste (e.g., straw) into

biochar to amend soil has been suggested as a globally applicable green method of field

management. However, due to high variability in the quality of biochar, its application has

varying effects on N loss and crop productivity. In this study, we examined the effects of

pyrolysis temperature on the quality and applicability of straw-derived biochar used for

paddy soil amendment in an area of japonica rice production in North China. Pot

experiments were performed to determine nitrous oxide (N2O) emissions and 15N recovery

using a 15N tracer across the rice growing season. Biochar was prepared at two pyrolysis

temperatures (400 and 700oC) and applied at three rates (0, 0.7, and 2.1%, w/w), with or

without N fertilization (0, 168, and 210 kg N ha–1). The results showed that biochar

significantly decreased soil bulk density, while increasing soil porosity, irrespective of

pyrolysis temperature and N level. Low-(B400) and high-temperature (B700) biochar

treatment reduced the N loss rate by up to 66.42 and 68.90%, respectively, following co-

application of 2.1% biochar and 168 kg ha−1 N fertilizer. Compared with the non-biochar

control, 2.1% biochar plus 210 kg ha−1 N fertilizer significantly decreased N fertilizer-

induced N2O emission factor under both B400 and B700. Overall, B700 treatment reduced

rice biomass and yield compared with B400. In conclusion, irrespective of pyrolysis

temperature, biochar had multiple effects on fertilizer N recovery in the rice-soil system,

and N2O emissions, rice biomass and yield in the paddy field; however, these effects were

dependent on N fertilizer level, biochar application rate, and their interactions.
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24 ABSTRACT

25 Food safety has become a major issue, with serious environmental pollution resulting from losses 

26 of nitrogen (N) fertilizers. Transformation of agricultural waste (e.g., straw) into biochar to 

27 amend soil has been suggested as a globally applicable green method of field management. 

28 However, due to high variability in the quality of biochar, its application has varying effects on 

29 N loss and crop productivity. In this study, we examined the effects of pyrolysis temperature on 

30 the quality and applicability of straw-derived biochar used for paddy soil amendment in an area 

31 of japonica rice production in North China. Pot experiments were performed to determine nitrous 

32 oxide (N2O) emissions and 15N recovery using a 15N tracer across the rice growing season. 

33 Biochar was prepared at two pyrolysis temperatures (400 and 700oC) and applied at three rates (0, 

34 0.7, and 2.1%, w/w), with or without N fertilization (0, 168, and 210 kg N ha–1). The results 

35 showed that biochar significantly decreased soil bulk density, while increasing soil porosity, 

36 irrespective of pyrolysis temperature and N level. Low-(B400) and high-temperature (B700) 

37 biochar treatment reduced the N loss rate by up to 66.42 and 68.90%, respectively, following co-

38 application of 2.1% biochar and 168 kg ha−1 N fertilizer. Compared with the non-biochar control, 

39 2.1% biochar plus 210 kg ha−1 N fertilizer significantly decreased N fertilizer-induced N2O 

40 emission factor under both B400 and B700. Overall, B700 treatment reduced rice biomass and 

41 yield compared with B400. In conclusion, irrespective of pyrolysis temperature, biochar had 

42 multiple effects on fertilizer N recovery in the rice-soil system, and N2O emissions, rice biomass 

43 and yield in the paddy field; however, these effects were dependent on N fertilizer level, biochar 

44 application rate, and their interactions.

45 Keywords Pyrolysis temperature, Straw-derived biochar, Nitrogen immobilization, 15N labeling, 

46 Recovery efficiency, Nitrous oxide emissions

47

48 INTRODUCTION

49 Food safety has become a shared global concern. With the rapidly growing population, which is 

50 predicted to reach 9.8 billion by the year 2050, there is huge demand for more food (King et al. 
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51 2017). Rice is the major staple in Asia, where per capita consumption is expected to increase 

52 from 84.9 kg in 2012 to 86.8 kg in 2024 (OECD/FAO, 2015). To increase the production of 

53 grains, fertilizer nitrogen (N) application has increased. The global average N use efficiency is 

54 59%; however, in China, the average is below 40%, indicating that nearly 40-50% of N input is 

55 lost (Liu et al., 2010;M Vitousek et al., 2009). N losses exert pressure on the ecological 

56 environment, causing water pollution and soil acidification (Gruber & Galloway, 2008). 

57 However, meeting the demands for increased food production while minimizing adverse 

58 environmental impacts through improved N recovery remains a challenge (Fixen & West, 2002). 

59 Innovation and technologies aimed at understanding the recovery of fertilizer N in paddy 

60 systems is therefore required to provide data for higher N use efficiency (Zhang et al., 2012).

61 The application of biochar is considered an effective way of mitigating the negative impacts 

62 of agricultural production, improving nutrient uptake and conditioning reactive N in agricultural 

63 systems (Sun et al., 2017; Woolf et al., 2010). Biochar is a solid carbon-rich product obtained via 

64 the pyrolysis conversion of biomass in an oxygen-limited environment (Initiative, 2012; 

65 Lehmann & Joseph, 2009). Biochar, as a method of soil amendment, can increase the fertility 

66 and quality of barren soil by improving soil physico-chemical properties, mainly due to its large 

67 surface area, elevated pH, higher ash content, total surface charge, and high porosity (Biederman 

68 & Harpole, 2013). Biochar has therefore received increasing attention due to its contribution to 

69 agricultural practices (Gale et al., 2016) and effect on soil carbon (C) storage (Nguyen et al., 

70 2016) and N conversion (Clough et al., 2013; Riaz et al., 2017). For example, Thangarajan et al. 

71 (2018) revealed 23 and 43% reductions in gaseous N emissions, respectively, from organic and 

72 inorganic N sources when biochar was applied to Andisol soil. Moreover, Cayuela et al. (2014) 

73 reported a decrease in soil N2O emissions of 49±5% after biochar application under field 

74 conditions based on a meta-analysis involving pasture soil, hydroagric stagnic anthrosol, and 

75 loamy soil. Biochar was also found to mitigate greenhouse gas emissions at high N levels and 

76 promote nutrient uptake without fertilizer N supplementation (Sun et al., 2017), while aged 
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77 biochar increased N use efficiency by reducing leaching or gaseous N losses in sandy soil (Mia 

78 et al., 2017).

79 The biochar effects depend on a number of factors, such as its characteristics and 

80 application rate (Cayuela et al., 2014; Li et al., 2019; Oladele et al., 2019; Restuccia et al., 

81 2019). Temperature and pyrolysis conditions affect the characteristics of biochar, having an 

82 indirect impact on soil properties, and therefore, crop growth (Ahmad et al., 2012; Angın, 2013; 

83 Hagner et al., 2016; Keiluweit et al., 2010; Purakayastha et al., 2015). For example, Zhou et al. 

84 (2017) showed that low-temperature biochar (250–350oC) had a more positive effect on soil N 

85 than high-temperature biochar because of the more stable aromatic structure and higher hydrogen 

86 (H) and oxygen (O) contents. However, when prepared at a low temperature (300oC), birch 

87 biochar had a negative effect on the germination and biomass of lettuce, unlike higher-

88 temperature (375 and 475oC) samples (Hagner et al., 2016). The pyrolysis temperature of 

89 biochar therefore seems to play a significant role in nutrient uptake by crops. However, little is 

90 known about effect of different pyrolysis temperatures and biochar application rates on urea-N 

91 fixation and N2O emissions in paddy systems.

92 In this study, a pot experiment study was carried out, with two different pyrolysis 

93 temperatures and three biochar application rates. Three levels of stable isotope 15N-traced 

94 fertilizer were then used to monitor N immobilization in a rice-soil system and N uptake by rice 

95 plants, to examine the following hypotheses: (i) pyrolysis temperature indirectly affects soil N 

96 retention for plant uptake and rice yield by affecting the quality of biochar; and (ii) higher-

97 temperature biochar has a larger suppressive effect on soil N2O emissions compared with biochar 

98 produced at a lower temperature.

99 MATERIALS AND METHODS

100 Biochar production and characterization

101 Maize straw was collected from Shenyang Agricultural University (Shenyang, Liaoning 

102 Province, China). After oven-drying (85°C, 24 hours) then cooling, the straw was cut into small 

103 pieces (˂ 2 mm) and stored in sealed plastic bags. The straw samples were then transferred to a 
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104 rectangular porcelain container (150 × 100 × 50 mm) and placed in a muffle furnace for 

105 pyrolysis at a heating rate of 15oC min–1. Temperature was first raised to 200oC and then to a 

106 final temperature of 400 or 700oC, maintained for 1 h then cooled to room temperature. To 

107 minimize the oxygen content in the reaction, the container was filled with straw and tightly 

108 sealed. The biochar was then stored at room temperature until analysis and experimentation. 

109 Basic properties of straw-derived biochar samples obtained at each different temperature are 

110 shown in Table 1. Each sample was analyzed in triplicate.

111 Site description

112 Paddy soil was collected (ca. 0–20 cm surface layer) from an experimental field (41°50ʹ N, 

113 123°24ʹ E) managed by the Rice Institute of Shenyang Agricultural University (Shenyang, 

114 Liaoning Province, China). The soil was classified as silt loam according to the United States 

115 Department of Agriculture (USDA) soil taxonomy. The basic properties of the soil prior to the 

116 experiment were as follows: initial pH = 6.8 (1:2.5, water/soil, w/v) (HANNA HI2221, Italy), 

117 bulk density = 1.46 g cm−3, total N = 1.87 g kg−1, and total C = 15.39 g kg−1. The site 

118 experiences a typical semi-humid temperate continental monsoon climate, with a mean annual 

119 temperature and precipitation of 8.3°C and 500 mm, respectively, and 183 frost-free days. The 

120 accumulated temperature (>10°C) is 3300–3400°C. Annual precipitation is concentrated, and the 

121 annual air temperature differs (Sui et al., 2016). Air temperature and precipitation data were 

122 recorded during the rice growing season (June to October 2016, Fig. 1).

123 Experimental design

124 The experiment followed a 2 × 3 × 3 factorial completely randomized design. There were two 

125 pyrolysis temperatures (400 and 700oC; B400 and B700, respectively), three biochar application 

126 rates (0, 0.7, and 2.1%, w/w; C0, C0.7, and C2.1, respectively), and three N fertilizer levels (0, 

127 168, and 210 kg N ha−1; N0, N168, and N210, respectively), with three replications each (n = 54). 

128 Each treatment set included three PVC pots (30 cm diameter × 25 cm height), giving a total of 

129 162 pots. A total of 14 kg of soil (air-dried, 2-mm sieved) was packed into each pot at a depth of 

130 20 cm.
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131 The rice (Oryza sativa L.) japonica variety ‘Shennong 265’ was cultivated in 2016. Two 

132 seedlings at the three-leaf stage were transplanted from the nursery bed to each pot on 29 May 

133 2016. In the experiment, 36% total urea was applied before transplanting (15N-labeled urea as 

134 base fertilizer), with 24% at the active tillering stage (unlabeled urea as tillering fertilizer) and 40% 

135 at the ear primordial stage (unlabeled urea as panicle fertilizer). The 15N-labeled urea (10.18 

136 atom% 15N abundance) was provided by Shanghai Research Institute of Chemical Industry 

137 (Shanghai, China). In addition, all treatments received the same amounts of phosphorus (615 kg 

138 P2O5 ha−1 as triple super phosphate) and potassium (200 kg K2O ha−1 as potassium chloride) as 

139 base fertilizers. The soil remained flooded to a depth of 5 cm except for aeration at the top-

140 tillering stage to control effective tillering. Pots were kept outdoors. To reduce the effects of 

141 precipitation, a mobile steel-framed plastic canopy (800 cm long × 300 cm wide × 200 cm high) 

142 was used.

143 At maturity (14 October, 2016), all plants were harvested and separated into grains and 

144 straw then oven-dried to a constant weight at 70°C for 48 h and weighted to determine total yield. 

145 Grain moisture was determined using a hand-held moisture tester after drying (John Deere, 

146 Moline, IL, USA), and grain yield was estimated with a 14.5% moisture content.

147
15N analysis

148 Dry plant samples (grain and straw) were ground and sieved (0.15 mm) to analyze total N and 

149
15N content (% in atoms) by isotope ratio mass spectrometry. 15N analyses were performed using 

150 elementar ISO prime 100 (Isoprime Ltd., Germany). Stable nuclides and the natural abundance 

151 differ from the atom% excess of the element. The background value (atom %) was subtracted 

152 from the experimental value to give the atom% excess. The natural 15N abundances of the plants 

153 and soil were estimated by averaging the values of all experimental treatments, respectively. 

154 Plant N uptake, N use efficiency, and the percentage of plant N derived from urea fertilizer were 

155 calculated using the following equations:

156 Plant N content = Total N concentration in dry biomass × weight of dry biomass     ⑴

157                                      ⑵Ndff =
𝐴𝑓% ‒ 𝐴𝑐𝑓%𝐴𝑢% ‒ 𝐴𝑐𝑓% × 𝑇𝑁 (𝑝𝑙𝑎𝑛𝑡 𝑜𝑟 𝑠𝑜𝑖𝑙)
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158 Ndfs = TN - Ndff                                                       ⑶

159 where Ndff is the N in the plant or soil derived from 15N-labeled urea fertilizer (mg pot–1) 

160 and Ndfs is the N in the plant derived from the soil (mg pot–1), TN is the total N content in the 

161 plant or soil (mg pot–1), and Au, Acf, and Af are the 15N abundance in the 15N-labeled urea 

162 fertilizer (10.18 atom%), natural 15N abundance in the plant or soil, and total 15N abundance in 

163 the plant or soil, respectively.

164 The recovery of 15N-labeled urea in the plant tissue or percentage retained in the soil was 

165 derived at the harvest stage using the following equation (Bronson et al., 2000):

166                                  ⑷REN (%) =
𝑁𝑑𝑓𝑓𝐹 × 100

167 where F is the amount of 15N-labeled urea applied (mg pot–1).

168 Soil analyses

169 Three soil samples were obtained using a hand-operated core sampler (inner diameter = 3.5 cm, 

170 20 cm deep) from each pot after harvest (October 2016). Soil samples were sealed in plastic bags 

171 and maintained on ice in an insulated box then transported to the laboratory where they were 

172 stored at -20°C until use. Each sample was divided into two parts, one for analysis of soil water 

173 content and another for soil physical and chemical analyses. Soil water content was determined 

174 after oven-drying ca. 5 g soil samples at 105oC for 48 h. For analysis of other soil properties, 

175 samples were ground using a Wiley millto and passed through a 2 mm sieve to remove root 

176 detritus prior to analysis. Subsamples were further passed through a 0.15 mm sieve for 

177 determination of total N using an Elementar Variomax CNS Analyzer (German Elementar 

178 Company, 2003). Soil inorganic N (NH4
+-N) was extracted with 2.0 M KCl solution, filtered by 

179 Whatman No. 1 filter paper, and quantitated with a Continuous Flow-injection Analyzer AA3 

180 (German SEAL Company, 2011). Bulk density was determined using a cylinder (100 cm³) with 

181 additional samples collected at a 0–10 cm soil depth. Soil porosity was calculated as follows: soil 

182 porosity (%) = (1 – bulk density / specific gravity of soil) × 100.

183 Gas sampling and analysis 

184 N2O emission fluxes were measured across the rice growing season (June to October) using 

185 static opaque chambers (Wang et al., 2011). The size of the chambers (32 cm diameter × 70/120 
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186 cm height) was adapted to rice growth. The chambers were also wrapped in aluminum foil to 

187 reduce internal temperature changes, and equipped with circulating fans to ensure complete gas 

188 mixing during gas sampling. During the growing season, gas fluxes were measured 

189 approximately every two weeks then once more after each fertilization or water control practice. 

190 This measurement frequency was adjusted to capture the period of most active N loss in more 

191 detail.

192 Chambers were placed on stainless steel pedestals during the period of each flux 

193 measurement. The edge of the stainless steel pedestals had a groove filled with water to seal the 

194 gas chamber during gas collection. Gas samples were collected using a 50 mL air-tight syringe 

195 (Singla & Inubushi, 2014) at 15-min intervals (0, 15, 30 and 45 min) after the chambers were 

196 closed. N2O flux measurements were conducted between 8 and 10 a.m. (Zou et al., 2005). N2O 

197 concentrations were analyzed using a gas chromatograph (Agilent 7890A, Agilent Technologies, 

198 Santa Clara, CA, USA) and hourly emissions of N2O were determined from the slope of the 

199 mixing ratio change with four sequential samples. Quality checks were applied and N2O flux 

200 measurements were discarded if the r2 of the linear regression of the fluxes was < 0.90. 

201 Cumulative emissions of N2O during the growing season were calculated using trapezoidal 

202 integration to interpolate fluxes between successive sampling days (Millar et al., 2018).

203 The N fertilizer-induced N2O emission factor was calculated by the difference in cumulative 

204 N2O-N emission during the rice growing season between treatments with or without N 

205 fertilization, divided by the fertilizer N applied (Eq. 5):

206      ⑸EF (%) =
 𝐶𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑁2𝑂 ‒ 𝑁 (𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑡𝑖𝑜𝑛) ‒ 𝑐𝑢𝑚𝑢𝑙𝑎𝑡𝑖𝑣𝑒 𝑁2𝑂 ‒ 𝑁 (𝑢𝑛𝑓𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑑 𝑐𝑜𝑛𝑡𝑟𝑜𝑙)𝐹𝑒𝑟𝑡𝑖𝑙𝑖𝑧𝑒𝑟 𝑁 𝑎𝑝𝑝𝑙𝑖𝑒𝑑 × 100

207 where EF is the N fertilizer-induced N2O emission factor.

208 Statistical analysis

209 Treatment effects were assessed by three-way analysis of variance (ANOVA) using SPSS 

210 Statistics 18.0 (IBM, Somers, NY, USA), and significance was expressed at P < 0.05. All data 

211 are expressed as the mean ± standard error (n = 3). Multiple comparisons of means were based 
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212 on Fisher's least significant difference (LSD) test at a 5% significance level unless stated 

213 otherwise.

214 RESULTS

215 Soil physical properties

216 A significant decrease in soil bulk density was observed with increasing biochar application, 

217 irrespective of pyrolysis temperature and N level. In contrast, biochar application led to an 

218 average increase in soil porosity of 12.19 and 10.37% across the two pyrolysis temperatures 

219 (B400 and B700, respectively) with and without N fertilization. Biochar had no significant 

220 effects on capillary porosity or air-filled porosity under all treatments (Table 2).

221 Under high-N treatment (N210), soil NH4
+-N decreased slightly with increasing biochar rate, 

222 irrespective of pyrolysis temperature. The lowest soil NH4
+-N concentration was observed at 

223 3.79 µg g–1 under B400 and 3.71 µg g–1 under B700 (Fig. 2).

224
15N recovery

225 A higher biochar rate resulted in lower N uptake from 15N-labeled urea in rice, irrespective of 

226 pyrolysis temperature and fertilizer level. Following N fertilization alone at 210 kg ha−1, N 

227 uptake from 15N-labeled urea reached 316.03 and 306.00 mg pot−1 under B400 and B700, 

228 respectively. Compared with the no-biochar treatment (C0), N uptake from 15N-labeled urea 

229 decreased by 55.03 and 44.03% under B400 and B700, respectively, at 2.1% biochar (C2.1). 

230 Similarly, N uptake from the soil also decreased with increasing biochar rate (Table 3).

231 The recovery rate of 15N-labeled urea in rice was 12.57 and 13.11% under B400 and B700, 

232 respectively, following co-application of 0.7% biochar and 168 kg ha−1 N fertilizer. With 

233 increasing biochar rate, the recovery rate of 15N-labeled urea in rice decreased significantly 

234 across the two pyrolysis temperatures, irrespective of N level (Table 3). Overall, 540.56 and 

235 500.77 mg pot−1 of 15N was recovered in the plant-soil system under B400 and B700, 

236 respectively, following co-application of 2.1% biochar and 168 kg ha−1 N fertilizer. 

237 Corresponding N recovery rates in the plant-soil system under these conditions were 33.58 and 

238 31.10%, ranking highest among all treatments (Table 4).
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239 A large proportion of 15N in the rice-soil system was presumably lost, and lowest 15N loss 

240 rates were found under B400 (66.42%) and B700 (68.90%) following co-application of 2.1% 

241 biochar and 168 kg ha−1 N fertilizer. Under B400 treatment, a smaller 15N loss rate was observed 

242 following N fertilization at 168 kg ha−1 compared with 210 kg ha−1, irrespective of biochar rate. 

243 Similar results were also observed under B700. Concerning biochar rate alone, a high application 

244 rate resulted in a lower N loss rate (71.82 and 72.94%) than a low application rate (78.00 and 

245 79.69%) under both B400 and B700. In the presence of 168 kg ha−1 N fertilizer, 2.1% biochar 

246 rate under B700 had a significant effect on the 15N content of the rice plants compared with non-

247 biochar treatment (P <0.05). Both B400 and B700 enhanced soil 15N retention at the 2.1% 

248 biochar rate, with a larger soil 15N value under B400 compared with B700 (Table 4).

249 N2O emissions

250 N2O emissions from the soil were significantly affected by pyrolysis temperature, biochar rate, N 

251 level, and their interactions (Table 5). N2O emissions fluxes initially peaked on day 2 then 

252 decreased on day 20 after transplanting, except under co-application of 2.1% biochar and 168 kg 

253 ha−1 N fertilizer. Under B400, co-application of 2.1% biochar and 210 kg ha−1 N fertilizer 

254 resulted in wide fluctuations in N2O emissions after water control and then a slight decrease after 

255 topdressing with N, while under B700 a sharp decrease was observed (Fig. 3). Cumulative N2O 

256 emissions ranged from 0.75 to 3.75 kg ha−1 and significantly decreased with increasing biochar 

257 rate, regardless of pyrolysis temperature and fertilizer level. The application of 2.1% biochar 

258 without N resulted in the least cumulative N2O emissions under both B400 and B700. 

259 Meanwhile, 2.1% biochar treatment caused a notable decrease in cumulative N2O emissions 

260 compared with 0.7% biochar treatment (P < 0.05; Fig. 4).

261 The N fertilizer-induced N2O emission factor, calculated as the percentage of total N 

262 supplied through urea, ranged from 0.09 to 0.77%. The lowest emission factor was obtained 

263 under B400 with 2.1% biochar plus 210 kg ha−1 N fertilizer, while the highest was observed 

264 under B700 with 0.7% biochar plus 168 kg ha−1 N fertilizer. The average emission factor under 
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265 high-biochar treatment (C2.1) was 0.14%, which was significantly lower than that under all other 

266 biochar treatments.

267 Rice biomass and yield

268 The aboveground biomass (including straw and grain) of rice plants at harvest was significantly 

269 higher under high-N treatment alone compared with all other treatments (P < 0.05). Meanwhile, 

270 co-application of 2.1% biochar (B400) and a high N level decreased the aboveground biomass by 

271 21.58% compared with no-biochar treatment, whereas a low N level decreased the aboveground 

272 biomass by only 10.15%. Under B700, the rice biomass under high-N treatment alone was 

273 significantly higher than that under co-application of 2.1% biochar and 168 kg ha−1 N fertilizer. 

274 Moreover, under 2.1% biochar (B700), the high N level caused an increase in biomass of 19.07 g 

275 pot−1 compared with the low N level (Table 5).

276 Grain yield was markedly higher under 0.7% biochar treatment compared with 2.1% 

277 biochar treatment, but under a low pyrolysis temperature only. The average yield with 0.7% 

278 biochar was 62.64 and 62.37 g pot−1 under B400 and B700, respectively. Three-way ANOVA 

279 revealed the significant effects of biochar rate and N level on rice biomass and grain yield (Table 

280 5).

281 DISCUSSION 

282 Different preparation conditions can alter the characteristics of biochar (Angın, 2013), with 

283 certain types of higher value in terms of comprehensive utilization (considering energy 

284 consumption during the pyrolysis process). In this study, two biochar samples prepared at 

285 different pyrolysis temperatures (B400 or B700) from maize straw were used due to their 

286 availability and utilization potential. The biochar properties varied considerably depending on 

287 the pyrolysis temperature (Table 1), suggesting that biochar effects on soil physical properties, 

288 fertilizer N immobilization, and crop growth also differ.

289 Biochar application reduces N loss in the rice-soil system

290 Following biochar application, fertilizer N can be lost as NH4
+-N; however, the amount is very 

291 small compared with NO3
–-N, and therefore, the nitrate content in paddy soil is very low and 

292 barely detectable (Cheng et al., 2017) . In the present study, soil NH4
+-N concentrations were 
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293 low across treatments (3.71–6.07 µg g−1). Interestingly, the soil NH4
+-N concentration did not 

294 respond to increasing rates of biochar application alone (N0); however, a small decrease was 

295 observed with increasing biochar application following 210 kg ha−1 N fertilization (N210), 

296 irrespective of pyrolysis temperature (Fig. 2). Ding et al. (2010) previously observed a slight 

297 decrease in the cumulative loss of NH4
+-N in the 0–20 cm surface layer of sandy silt soil after 

298 bamboo charcoal application, which was attributed to the NH4
+-N sorption capacity of biochar. 

299 In our study, a lower soil NH4
+-N concentration was observed under high-temperature biochar 

300 treatment (B700) than low-temperature treatment (B400) with 0.7% biochar application only 

301 (Fig. 2). The difference in the NH4
+-N sorption ability of biochar is thought to be due to (1) 

302 differences in the ash content between biochar samples prepared at different temperatures; and (2) 

303 differences in the amount of certain functional groups on the biochar surface (Zheng et al., 2013). 

304 In addition, biochar tends to include anionic sites, which increase the ability of soil to adsorb and 

305 reserve NH4
+ ( Sohi et al., 2010).

306 Another pathway of N loss is gas emission (e.g., N2O), which is a major problem 

307 encountered in paddy fields (Team et al., 2014). Throughout the study period (i.e., the rice 

308 growing season), biochar treatment caused notable decreases in cumulative N2O emissions 

309 compared with non-biochar treatment (Fig. 4), confirming that biochar application to agriculture 

310 soil can efficiently mitigate N2O emissions (Dicke et al., 2015; Hagemann et al., 2017; Sun et al., 

311 2017). However, a recent study also found that corn straw-derived biochar application to alkaline 

312 clay soil has no effect on N2O emissions (Wu et al., 2018). Consensus has yet to be reached on 

313 how and why biochar reduces N2O emissions (Cayuela et al., 2014). In our study, N2O emissions 

314 were higher under B400 treatment than B700 treatment (Fig. 3), suggesting that the enhanced N 

315 immobilization and NH4
+ sorption ability of low-temperature (400oC) biochar increases N2O 

316 emissions (Clough et al., 2013). Cayuela et al. (2015) and Harter et al. (2016) suggested that 

317 lower N2O emissions following biochar application were due to microbial reduction of N2O to 

318 N2 via nosZ gene-containing microorganisms. In this study, we did not verify nosZ gene 

319 abundance throughout the N2O monitoring period. Further studies are therefore needed to 
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320 quantify the nosZ gene under different biochar treatments and thereby determine the 

321 microbiological mechanisms of N2O emission reduction.

322 As previously reported, biochar may affect the soil N content (Clough et al., 2013). 

323 However, our hypothesis that pyrolysis temperature indirectly affects soil N availability for plant 

324 uptake was not supported by the experimental results, with no differences in the recovery of 15N 

325 in rice plants between B400 and B700 treatment. Zhou et al. (2017) revealed that biochar 

326 prepared with mixed materials at different temperatures caused an increase in both residual soil 

327
15N and subsequent plant 15N uptake in an agricultural field in Canada (Zhou et al., 2017). These 

328 results suggest that biochar immobilizes soil nutrients onto its surface, thereby increasing soil 

329
15N concentrations at higher application rates through increased porosity and surface area 

330 (Atkinson et al., 2010; Liang et al., 2006).

331 The relationship between residual soil 15N and the pyrolysis temperature of biochar 

332 observed here might be explained by the fact that high-temperature biochar favors soil fungal 

333 and bacterial colonization, in turn enhancing gaseous N losses and decreasing N retention (Gul et 

334 al., 2015; Nguyen et al., 2016). Complementation experiments further suggested that applying a 

335 low rate of high-temperature biochar (>450oC) resulted in more correlations between microbial 

336 taxa, with a large number of microorganisms appearing to influence soil N retention (Nelissen et 

337 al., 2014). The higher residual soil 15N content observed under B400 treatment was therefore not 

338 simply the function of a single factor, and further analysis of long-term biochar application in the 

339 field is therefore required to determine the agricultural-environmental win-win benefits and 

340 improve crop yield. The effects of biochar on soil microbial biomass N content, microbial 

341 activity, and N fixation processes of key factors in various soils also need to be studied. 

342 Consequently, the use of straw-derived biochar remains challenging, requiring an accurate 

343 pyrolysis temperature and application standards. Further research is therefore needed to support 

344 the universal use of straw-derived biochar in agriculture.

345 Biochar application decreases rice productivity in short-term pot experiments
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346 In the present study, the rice biomass response to biochar varied with pyrolysis temperature, 

347 application rate, and N fertilizer level, with biochar application worsening plant growth. 

348 Treatment with 2.1% biochar, regardless of N fertilizer level, resulted in a ca. 13.35% decrease 

349 in rice biomass under B400 compared with no-biochar treatment (Table 5). This could be 

350 attributable to (1) the high application rate of biochar, which increased soil pH and therefore 

351 resulted in a decrease in nutrient availability (Gonzaga et al., 2018); and (2) the large surface 

352 area of biochar, which immobilized inorganic N in soil. Our results are therefore contrary to 

353 those of Zhao et al. (2014), who suggested that rice straw biochar applied at 9 t ha−1 had a 

354 positive effect on rice/wheat growth. These growth improvements could be explained by an 

355 increase in soil C and bioavailable NH4
+-N and NO3

–-N levels after application of straw biochar 

356 (Sui et al., 2016; Schulz et al., 2013). Rajkovich (2010) found a small increase or no change in 

357 aboveground biomass following soil application with varying rates of feedstock biochar obtained 

358 at different pyrolysis temperatures, whereas Dao et al. (2013) observed a 3-fold increase in 

359 aboveground biomass after application of 80 t ha−1 biochar compared with the no-biochar control. 

360 Overall, therefore, the plant biomass response to biochar depends not only on the characteristics 

361 of the biochar, the application rate and crop species, but also on the experimental set-up and 

362 original soil conditions (Biederman & Harpole, 2013; Chan et al., 2008; Lehmann et al., 2003).

363 Crop biomass directly affects grain yield. The results obtained from our pot experiment 

364 suggest that co-application of biochar with N fertilizer could significantly decrease rice yield 

365 under B400, but not B700, compared with the no-biochar control (Table 5). These findings 

366 suggest that our low-temperature biochar has a larger surface area and lower porosity compared 

367 with high-temperature biochar, as explained by the adsorption of organic molecules by the 

368 biochar surface, affecting soil pH and reducing rice yield. Wheat-straw biochar (12 t ha−1) was 

369 previously found to have no significant effect on rice production in the first season (Xie et al., 

370 2013). However, Zhang et al. (2012) revealed that application of wheat straw biochar (20 t ha−1) 

371 resulted in a 10% increase in rice yield in the first cycle and more than 9.5% increase in the 

372 second cycle. Such sustainable yield-increasing effects of biochar were also found in other 
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373 experimental studies on crops. Together, these data suggest that pyrolysis temperature has only a 

374 small effect compared with biochar application rate on the short-term yield potential in paddy 

375 soil.

376 CONCLUSIONS 

377 This study confirms that application of biochar as an approach to recycle straw and reduce N loss 

378 in rice-soil systems requires thorough evaluation, both in terms of pyrolysis temperature and 

379 application rate. The results suggest that biochar application could enhance base fertilizer 15N 

380 retention in the soil over the rice growing season, while negatively affecting urea-N uptake and 

381 biomass production in the first year. Meanwhile, soil bulk density and rice yield decreased after 

382 application of both low-temperature and high-temperature biochar, although N2O emissions from 

383 the paddy soil were markedly reduced throughout the growing season. Moreover, the biochar 

384 effects were not proportional to pyrolysis temperature. The lowest N loss rate was obtained 

385 under low-temperature treatment with application of 168 kg ha−1 urea plus 2.1% biochar. In 

386 conclusion, the findings suggest that application of low-temperature biochar may be an effective 

387 strategy for mitigation of N losses in paddy fields in Northeast China.

388
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Table 1(on next page)

Properties of the two biochar samples produced by pyrolysis at temperatures of 400oC

(B400) and 700oC (B700).
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1 Table 1 Properties of the two biochar samples produced by pyrolysis at temperatures of 400oC (B400) and 

2 700oC (B700).

Biochar Total C

(g kg–1)

Total N

(g kg–1)

Surface area

(m2 g–1)

Ash content

(%)

Average pore size

(nm)

pH

(H2O)

C/N

B400 624.2±6.3 20.0±0.0 34.9±1.2 14.8±0.5 43.2±0.9 9.8±0.3 31.2±0.3

B700 665.5±7.6 16.4±0.7 12.1±0.7 19.3±0.4 77.7±1.0 10.4±0.4 40.6±1.2

3
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Table 2(on next page)

Basic physical properties of soil under different biochar treatments with or without

nitrogen fertilization.
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1 Table 2 Basic physical properties of soil under different biochar treatments with or without nitrogen fertilization.

Treatment
† Bulk density (g cm−3) Soil porosity (%) Capillary porosity (%) Air-filled porosity (%)

B400 B700 B400 B700 B400 B700 B400 B700

Mean Std. error SL Mean Std. error SL Mean Std. error SL Mean Std. error SL Mean Std. error SL Mean Std. error SL Mean Std. error SL Mean Std. error SL

C0 1.49 0.03 a 1.42 0.05 bc 43.83 1.17 b 46.23 2.03 c 34.73 1.24 a 34.33 0.68 ab 9.09 1.12 a 11.90 2.09 bcd

C0.7 1.42 0.07 ab 1.42 0.01 bcd 46.32 2.71 ab 46.58 0.34 bc 35.29 0.68 a 37.29 2.75 a 11.03 2.10 a 9.28 2.45 d

N0

C2.1 1.26 0.17 b 1.27 0.06 e 52.54 6.52 a 52.05 2.18 a 33.17 2.56 ab 34.98 0.22 ab 19.37 9.05 a 17.07 1.95 a

C0 1.40 0.10 ab 1.49 0.00 a 47.20 3.60 ab 43.62 0.15 d 29.43 2.56 b 30.10 1.53 c 17.77 6.07 a 13.51 1.58 bc

C0.7 1.38 0.02 ab 1.43 0.04 ab 48.09 0.71 ab 46.07 1.45 c 35.15 5.19 a 34.14 1.12 b 12.94 5.84 a 11.93 2.18 bcd

N210

C2.1 1.31 0.07 b 1.35 0.04 d 50.43 2.70 a 49.09 1.46 b 34.41 2.70 ab 35.30 0.13 ab 16.02 4.73 a 13.78 1.54 abc

C0 1.41 0.06 ab 1.43 0.03 ab 46.70 2.36 ab 45.96 1.22 c 32.94 0.69 ab 32.97 1.20 b 13.76 3.05 a 12.99 2.41 bc

C0.7 1.35 0.08 ab 1.38 0.05 bcd 48.95 3.04 ab 47.92 1.77 bc 32.68 2.78 ab 37.30 2.60 a 16.27 5.30 a 10.62 0.92 cd

N168

C2.1 1.28 0.03 b 1.36 0.06 cd 51.54 1.11 a 48.77 2.17 b 34.37 1.39 ab 33.97 1.20 b 17.17 2.48 a 14.80 3.36 ab

2
†
B400 and B700 represent biochar prepared by pyrolysis at temperatures of 400 and 700oC, respectively; C0, C0.7, and C2.1 represent biochar application rates of 0, 0.7%, and 2.1% (w/w), respectively; 

3 and N0, N210, and N168 represent urea-nitrogen fertilizer levels of 0, 168, and 210 kg N ha–1, respectively. SL = significant level. Lowercase letters within each column are significantly different at P < 

4 0.05.
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Table 3(on next page)

Nitrogen uptake from 15N-labeled urea in rice plants under different biochar treatments

at the harvest stage.
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1 Table 3 Nitrogen uptake from 15N-labeled urea in rice plants under different biochar treatments at the harvest stage.

Ndff (mg pot–1) Ndsf (mg pot–1) REN of 15N-labeled urea in rice (%)Temperature
†

Treatment
‡

Mean Std. error SL Mean Std. error SL Mean Std. error SL

C0 316.03 13.47 a 2054.31 53.95 a 15.80 0.67 a

C0.7 248.08 31.50 b 1749.50 129.86 ab 12.40 1.57 bc

N210

C2.1 142.13 42.86 de 1528.75 249.03 bc 7.11 2.14 d

C0 245.59 2.39 b 1636.33 98.99 bc 15.25 0.15 ab

C0.7 202.32 4.08 bc 1560.99 25.51 bc 12.57 0.25 bc

B400

N168

C2.1 113.63 18.83 e 1350.94 158.09 c 7.06 1.17 d

C0 306.00 25.56 a 2046.47 81.88 a 15.30 1.28 ab

C0.7 230.51 54.28 b 1765.17 109.24 ab 11.53 2.71 c

N210

C2.1 171.26 57.10 cd 1606.81 337.90 bc 8.56 2.86 d

C0 245.51 21.15 b 1820.15 135.12 ab 15.25 1.31 ab

C0.7 211.12 24.25 bc 1584.70 143.52 bc 13.11 1.51 abc

B700

N168

C2.1 109.21 21.22 e 1378.55 216.23 c 6.78 1.32 d

2
†
B400 and B700; 

‡
C0, C0.7, and C2.1; and N0, N210, and N168 are defined in Table 2 footnote. Ndff = N content in the plant or soil derived from the 15N-labeled urea, Ndfs = N content in the plant 

3 derived from the soil, and REN = recovery of 15N-labeled urea in the plant tissue. SL = Significant level (different lowercase letters in a column indicate significant difference at P <0.05).
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Table 4(on next page)

Recovery and loss of 15N-labeled urea in the rice-soil system under different biochar

treatments at the harvest stage.
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1 Table 4 Recovery and loss of 15N-labeled urea in the rice-soil system under different biochar treatments at the harvest stage.

Recovery of 15N in 

rice

(mg pot–1)

Residual soil 15N content

(mg pot–1)

Residual soil

15N rate 

(%)

Recovery of 15N in 

rice-soil system

(mg pot–1)

Recovery rate in rice-soil system

(%)

15N lost 

(mg pot–1)

15N loss rate 

(%) 

Temperature
†

Treatment
‡

Mean Std. error Mean Std. error Mean Std. error Mean Std. error Mean Std. error Mean Std. error Mean Std. error

B400 N210 C0 316.03 13.47 169.24 134.51 8.46 6.73 485.27 125.44 24.26 6.27 1514.73 125.44 75.74 6.27

C0.7 248.08 31.50 159.68 18.06 7.98 0.90 407.76 19.31 20.39 0.97 1592.24 19.31 79.61 0.97

C2.1 142.13 42.86 313.59 146.55 15.68 7.33 455.72 176.95 22.79 8.85 1544.28 176.95 77.21 8.85

N168 C0 245.59 2.39 78.19 27.59 4.86 1.71 323.78 27.74 20.11 1.72 1286.22 27.74 79.89 1.72

C0.7 202.32 4.08 177.97 29.45 11.05 1.83 380.30 33.09 23.62 2.06 1229.70 33.09 76.38 2.06

C2.1 113.63 18.83 426.93 268.08 26.52 16.65 540.56 249.26 33.58 15.48 1069.44 249.26 66.42 15.48

B700 N210 C0 306.00 25.56 246.63 37.83 12.33 1.89 552.63 15.52 27.63 0.78 1447.37 15.52 72.37 0.78

C0.7 230.51 54.28 213.57 74.53 10.68 3.73 444.08 41.30 22.20 2.06 1555.92 41.30 77.80 2.06

C2.1 171.26 57.10 288.98 23.15 14.45 1.16 460.24 66.52 23.01 3.33 1539.76 66.52 76.99 3.33

N168 C0 245.51 21.15 92.85 26.85 5.77 1.67 338.36 31.18 21.02 1.94 1271.64 31.18 78.98 1.94

C0.7 211.12 24.25 85.53 27.89 5.31 1.73 296.64 52.14 18.43 3.24 1313.36 52.14 81.57 3.24

C2.1 109.21 21.22 391.56 97.98 24.32 6.09 500.77 118.94 31.10 7.39 1109.23 118.94 68.90 7.39

2
†
B400 and B700; 

‡
C0, C0.7, and C2.1; and N0, N210, and N168 are defined in Table 2 footnote. 
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Table 5(on next page)

Biomass, grain yield, and N2O emission factor of rice for the treatment factors of biochar

applications, pyrolysis temperature, and fertilizer and their interaction.
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1 Table 5 Biomass, grain yield, and N2O emission factor of rice for the treatment factors of biochar applications, pyrolysis temperature, and fertilizer and 

2 their interaction.

Dry matter (g pot–1) Grain yield (g pot–1) N2O emission factor (%)Temperature
†

Treatment
‡

Mean Std. error SL Mean Std. error SL Mean Std. error SL

C0 48.64 2.93 c 19.72 0.86 d

C0.7 51.84 3.70 c 22.01 1.79 d

N0

C2.1 53.44 1.69 c 24.97 0.75 d

C0 202.94 8.42 a 98.62 2.57 a 0.0071 0.0008 a

C0.7 174.50 8.70 ab 86.80 5.47 abc 0.0027 0.0008 bc

N210

C2.1 159.15 34.24 b 80.34 11.22 bc 0.0009 0.0005 e

C0 168.49 9.07 b 85.91 4.25 abc 0.0075 0.0018 a

C0.7 159.71 9.23 b 79.10 6.65 bc 0.0012 0.0010 cde

B400

N168

C2.1 151.39 22.11 b 74.72 9.58 c 0.0010 0.0005 e

C0 53.35 7.27 c 21.50 4.14 d

C0.7 47.04 0.98 c 19.05 0.17 d

N0

C2.1 47.20 6.78 c 20.27 4.71 d

C0 202.73 12.54 a 97.02 5.32 a 0.0013 0.0003 cde

C0.7 174.02 1.07 ab 83.61 4.54 abc 0.0042 0.0012 b

N210

C2.1 173.23 42.64 ab 88.73 21.39 abc 0.0012 0.0002 de

C0 184.48 21.49 ab 91.01 12.07 ab 0.0033 0.0007 b

C0.7 171.12 7.47 ab 84.45 2.77 abc 0.0077 0.0013 a

B700

N168

C2.1 154.16 31.52 b 77.32 14.43 bc 0.0027 0.0005 bcd

Effect df F P F P F P

B 2 6.37 ˂0.01 4.57 0.02 52.91 ˂0.01

N 2 300.72 ˂0.01 359.58 ˂0.01 13.09 ˂0.01

T 1 0.76 0.39 0.28 0.60 0.01 0.93

B×N 4 1.86 0.14 1.85 0.14 0.13 0.88

B×T 2 0.09 0.92 0.11 0.90 89.01 ˂0.01
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N×T 2 0.55 0.58 0.64 0.53 22.26 ˂0.01

B×N×T 4 0.33 0.86 0.52 0.72 4.70 0.02

3
†
B400 and B700; 

‡
C0, C0.7, and C2.1; and N0, N210, and N168 are defined in Table 2 footnote. Significant level: Different lowercase letters in a column indicate significant difference (P <0.05). B = 

4 biochar application rate, N = nitrogen fertilizer level, and T = pyrolysis temperature.

5
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Figure 1(on next page)

Daily mean air temperature and precipitation in the study area during the rice growing

season (June to October 2016) .
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Figure captions 

 

Figure 1 Daily mean air temperature and precipitation in the study area during the rice growing season 

(June to October 2016). 
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Figure 2(on next page)

Effects of different biochar treatments with or without nitrogen fertilization on NH4
+-N

concentration in paddy soil.
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Figure captions 

 

Figure 2 Effects of different biochar treatments with or without nitrogen fertilization on NH4
+
-N 

concentration in paddy soil. B400 and B700 represent biochar prepared by pyrolysis at temperatures 

of 400 and 700
o
C, respectively; C0, C0.7, and C2.1 represent biochar application rates of 0, 0.7%, and 

2.1% (w/w), respectively; and N0, N210, and N168 represent urea-nitrogen fertilizer levels of 0, 168, 

and 210 kg N ha
–1

, respectively. 
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Figure 3(on next page)

Time series of daily N2O emissions from paddy soil under different biochar treatments

during the rice growing season.
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Figure captions 

 

Figure 3 Time series of daily N2O emissions from paddy soil in different biochar treatments 

during the rice growing season. B400 and B700; C0, C0.7, and C2.1; and N0, N210, and N168 are 

defined in Figure 2 caption. Solid arrows indicate water controlling, and dot arrows indicate nitrogen 

fertilization. Error bars represent the standard error. 
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Figure 4(on next page)

Cumulative N2O emissions from paddy soil under different biochar treatments during

the rice growing season.
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Figure captions 

 

Figure 4 Cumulative N2O emissions from paddy soil in different biochar treatments during the 

rice growing season. B400 and B700; C0, C0.7, and C2.1; and N0, N210, and N168 are defined in 

Figure 2 caption. 
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