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ABSTRACT
The genome-scale metabolic model of a lipid-overproducing strain of Mucor circinel-
loides WJ11 was developed. The model (iNI1159) contained 1,159 genes, 648 EC
numbers, 1,537 metabolites, and 1,355 metabolic reactions, which were localized in
different compartments of the cell. Using flux balance analysis (FBA), the iNI1159
model was validated by predicting the specific growth rate. The metabolic traits inves-
tigated by phenotypic phase plane analysis (PhPP) showed a relationship between the
nutrient uptake rate, cell growth, and the triacylglycerol production rate, demonstrating
the strength of the model. A putative set of metabolic reactions affecting the lipid-
accumulation process was identified when the metabolic flux distributions under
nitrogen-limited conditions were altered by performing fast flux variability analysis
(fastFVA) and relative flux change. Comparative analysis of the metabolic models of
the lipid-overproducing strain WJ11 (iNI1159) and the reference strain CBS277.49
(iWV1213) using both fastFVA and coordinate hit-and-run with rounding (CHRR)
showed that the flux distributions between these twomodels were significantly different.
Notably, a higher flux distribution through lipid metabolisms such as lanosterol,
zymosterol, glycerolipid and fatty acids biosynthesis in iNI1159 was observed, leading
to an increased lipid production when compared to iWV1213. In contrast, iWV1213
exhibited a higher flux distribution across carbohydrate and amino acid metabolisms
and thus generated a high flux for biomass production. This study demonstrated that
iNI1159 is an effective predictive tool for the pathway engineering of oleaginous strains
for the production of diversified oleochemicals with industrial relevance.
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INTRODUCTION
Due to the world population growth and the industrial revolution, the value addition of
agricultural materials and residues has been attributed to the sustainable production of
biobased products. The prices of petroleum-derived products have gradually increased,
and concern about the depletion of crude oil reservoirs has stimulated the use of alternative
sources to replace the fossil-based products (Zinoviev et al., 2010; Williams et al., 2009;
Dellomonaco, Fava & Gonzalez, 2010). In particular, the dedicated biobased oleochemicals
and functional lipids with industrial applications (Salimon, Salih & Yousif, 2012; Vanhercke
et al., 2013; Hatti-Kaul et al., 2007) are of a great interest. Oleaginous microorganisms
are currently of interest as cell chassis for pathway manipulation because they exhibit
phenotypes with advantages in the cultivation process and lipid production. Indeed, the
particular microbes have been used in several industrial sectors, including feed, food, and
biofuels (Thevenieau & Nicaud, 2013; Mata, Martins & Caetano, 2010). Of these, Mucor
circinelloides is a well-known oleaginous fungus that accumulates lipids at high levels,
particularly under certain culture conditions (Xia et al., 2011). The main storage forms in
M. circinelloides are lipid bodies (LBs) or lipid particles (LPs), in which triacylglycerol
(TAGLY) is predominant. Moreover, M. circinelloides is capable of synthesizing the
nutritionally important polyunsaturated fatty acid (PUFA), γ-linolenic acid (GLA, C18:3
n-6; cis 6, 9, 12-octadecatrienoic acid), which has beneficial effects on human and animal
health (Zurier, 1998).

The genome-scale metabolic model (GEM) is one of the computational tools used to
predict metabolic behaviors and it is usually employed in systems biology in conjunction
with other modern technologies, such as gene editing and synthetic biology (Thiele &
Palsson, 2010). Of the oleaginous strains, the GEM of the yeast Yarrowia lipolytica was
reconstructed, aiming to enhance the production of biodiesels and other valuable products
(Pan & Hua, 2012). In oleaginous fungi, the reconstruction of the GEM of Mortierella
alpina was implemented to investigate the metabolic characteristics for enhancing the
production of lipids rich in arachidonic acid (Ye et al., 2015). Furthermore, Vongsangnak
et al. (2016) also demonstrated the empowering of GEM for dissecting the growth behavior
ofM. circinelloides strain CBS 277.49 on various nutrient sources through the comparative
analysis of the three GEMs of M. circinelloides (iWV1213), M. alpina (iCY1106) (Ye et al.,
2015) and Y. lipolytica (iYL619_PCP) (Pan & Hua, 2012).

Among the oleaginous strains, M. circinelloides strain WJ11 has been identified as a
promising strain for the overproduction of lipid-derived products based on its ability
to accumulate lipids up to 36% of its dry cell weight (DCW) under nitrogen-deficiency
conditions, which is higher than that has been reported in the reference strain CBS
277.49 (15% lipid of DCW) (Tang et al., 2017). As a consequence, the cellular metabolic
mechanisms governing the oleaginicity of this particular strain have been addressed
through several approaches, such as multilevel omics analysis (Tang et al., 2016; Tang et
al., 2015a; Tang et al., 2015b; Tang et al., 2017). Recently, the constructed genome-scale
metabolic network ofM. circinelloidesWJ11 was employed to explain its metabolic routes,
focusing on lipid metabolism and carotenoid biosynthesis (Vongsangnak et al., 2018).
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To gain a more precise scaffold for the predictive analysis of the metabolic control
involved in the oleaginicity of the WJ11 strain, a functional GEM of M. circinelloides
WJ11 was developed in this work. Briefly, the metabolic network of M. circinelloides WJ11
(Vongsangnak et al., 2018) was initially used as a scaffold for improving gene annotation
through metabolic reconstruction. For metabolic modeling and analysis, flux balance
analysis (FBA), phenotype phase plane analysis (PhPP), fast flux variability analysis
(fastFVA), and uniform sampling with coordinate hit-and-run with rounding (CHRR)
were afterwards executed for observing cellular phenotypes of M. circinelloides WJ11.
Finally, a comparison of the models between the lipid-overproducing strain WJ11 and the
reference strain CBS277.49 ofM. circinelloides was performed. This work demonstrated the
efficiency and reliability of the GEM in describing growth behavior and specific metabolic
traits of lipid overproduction in the M. circinelloides strain WJ11, which is applicable in
pathway manipulation for cell optimization relevant to desired products with industrial
applications.

MATERIALS & METHODS
GEM development of the M. circinelloides strain WJ11
A draft metabolic network of M. circinelloides WJ11 (Vongsangnak et al., 2018) was
basically used for GEM development of this strain. Initially, the improved annotation
of genes and relevant enzyme functions was performed using M. circinelloides WJ11
protein sequence homology searches for reconstructing GEM. Here, various protein
and pathway databases including KEGG via BlastKOALA (Kanehisa, Sato & Morishima,
2016), EnzDP (Nguyen et al., 2015), UniProt (http://www.uniprot.org), eggNOG (Jensen
et al., 2008), and JGI (genome.jgi-psf.org/Mucci2/Mucci2.home.html) were used for
annotation of genes and protein functions. Concerning the expanding GEM development
of M. circinelloides WJ11, compartmentalization information of all possible reactions
was afterwards determined by a subcellular localization prediction tool, such as CELLO
(Yu et al., 2006). The metabolite names and reversibility of metabolic reactions were
then curated according to KEGG databases (http://www.genome.jp/kegg/pathway.html).
Moreover, transport and exchange reactions were then added or deleted through network
connectivity. Subsequently, GEM was converted to the form of the stoichiometric model
ofM. circinelloidesWJ11. The biomass composition reaction ofM. circinelloidesWJ11 used
in the model was calculated from different sources of biochemical literature and genome
database. The contents of nucleotides, lipids, proteins and carbohydrates were adopted
from the published research of the M. circinelloides strain WJ11 (Zhao et al., 2015). The
compositions of amino acids and DNA were directly taken from the protein and DNA
sequence information of M. circinelloides WJ11, respectively (Tang et al., 2015a). The
compositions of lipids, carbohydrates and RNA were adopted from the published model
of M. circinelloides reference strain CBS277.49 (iWV1213) (Vongsangnak et al., 2016). For
energetic parameters, ATP requirements for nongrowth associated purposes (mATP) and
synthesis of biomass from macromolecules (KATP) and the operational P/O ratio were
considered. These parameters could not be determined independently, but if one of the
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parameters is known the others can be estimated from experimental data. The operational
P/O ratio was assumed to be 1.5 (Nielsen, 1996), the maintenance ATP (mATP) was
estimated to be 1.9 mmol gDW−1 and the ATP requirement for biomass formation (KATP)
was estimated by fitting model simulations with experimental data obtained at a specific
growth rate of 0.1671 h−1 (Zhao et al., 2015) with glucose as the carbon source. The value
of KATP was hereby estimated to be 153 mmol ATP gDW−1.

Model simulation and validation using FBA
FBA is a mathematical approach that is widely used for studying and identifying flux
distribution through a metabolic network to generate an optimal flux towards the objective
function (Orth, Thiele & Palsson, 2010). According to the steady-state assumption, the
constraint-based flux simulation was performed using FBA and a linear programming
solver provided by the COBRA toolbox version 3 (Heirendt et al., 2017) running through
MATLAB (The Mathworks Inc., Natick, MA, USA) under the Systems Biology Markup
Language (SBML). To calculate the optimal flux distribution under maximized cell growth,
the biomass formation reaction was constructed and set as the objective function for model
simulation under aerobic growth condition for a given substrate, such as glucose as a
carbon source. For model validation, two independent experimental datasets were used
(Zhao et al., 2015; Tang et al., 2016). The simulations were run by constraining the glucose
uptake rate while leaving the uptake rates of nitrogen, oxygen and water unconstrained.
Simulated growths were then compared with subsequent experiments.

Characterizing metabolic phenotypes of the WJ11 strain
To characterize metabolic phenotypes of the WJ11 strain, phenotype phase plane analysis
(PhPP) and fast flux variability analysis (fastFVA) were used. PhPP is a useful way to
extend the study of genotype-phenotype relationships based on FBA (Bell & Palsson, 2005).
This approach was used to explore sensitivity analysis describing metabolic phenotypes
characteristics as a function of dual variables (Edwards, Ramakrishna & Palsson, 2002). In
this study, PhPPwas used to observe the growth and lipid production behaviors of thisWJ11
strain as a function of glucose and nitrogen uptake rates. Briefly, two simulation conditions
using the PhPP analysis were performed. The first simulation aimed to characterize the
growth behavior by setting the boundaries of nitrogen (i.e., NH3) and glucose uptake rates
in a range of 0 to 10 mmol gDW−1 h−1 and iteratively calculating the specific growth rates.
In contrast, the second simulation aimed to characterize the lipid production behavior by
constraining the specific growth rate and setting the boundaries of nitrogen (i.e., NH3)
and glucose uptake rates in a range of 0 to 10 mmol gDW−1 h−1 and iteratively calculating
the specific TAGLY production rates. In addition, fastFVA (Gudmundsson & Thiele, 2010)
was employed to determine the flux distribution of the WJ11 metabolic network at varying
nitrogen uptake rates (2–10 mmol gDW−1 h−1). At every specified nitrogen uptake rate,
the flux distribution was determined as follows. First, FBA was applied to simulate the
optimal flux distribution for lipid production by constraining the glucose uptake rate and
growth rate at 10 mmol gDW−1 h −1 and0.1671 h−1, respectively, and setting the specific
TAGLY production rate as the objective function. Second, a function namely, fastFVA
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(Gudmundsson & Thiele, 2010), which is available in the COBRA Toolbox (Heirendt et al.,
2017), was employed to calculate the possible range of fluxes for all individual reactions
within the network by fixing all exchange reactions with the values obtained from FBA and
then maximizing and minimizing the flux of each individual reaction. Subsequently, the
relative flux change for all metabolic reactions with respect to the alteration in the TAGLY
production rate was determined to identify metabolic reactions, which might be involved
in lipid accumulation under nitrogen-depleted conditions. The relative flux change of a
given reaction was simply calculated from the slope of a graph of the maximum flux of such
a reaction in relation to the maximum flux of TAGLY production under various nitrogen
uptake rates.

Comparative GEM analysis of the lipid-overproducing and reference
strains
A comparison between themodels of the lipid-overproducing strainWJ11 and the reference
strain CBS277.49 of M. circinelloides was performed. Here, the GEM of the reference
strain CBS 277.49 in the form of SBML was retrieved from the previous publication by
Vongsangnak et al. (2016). After that the flux distributions at optimal growth conditions
of these two models were compared using fastFVA (Gudmundsson & Thiele, 2010) and
CHRR (Haraldsdóttir et al., 2017) algorithms. The fastFVA yielded the minimum and/or
maximum possible ranges of the fluxes whereas CHRR is a uniform sampling algorithm
that provided an unbiased set of flux distributions. CHRR was also readily available in
the COBRA Toolbox (Heirendt et al., 2017). Briefly, FBA was first applied to each model
to calculate the optimal flux solution by setting biomass growth as the objective function.
The glucose uptake rate was constrained (2.518 mmol gDW−1 h−1) (Zhao et al., 2015),
while the uptake rates of nitrogen, oxygen and water were unconstrained. The next step
was to fix all exchange reactions using the values obtained from FBA and then determine
flux distributions using either fastFVA or CHRR. For fastFVA, once feasible range of flux
distribution of each strain was obtained, the Jaccard index (Real & Vargas, 1996) was used
to compare the reaction flux range between both lipid-overproducing and reference strains.
The Jaccard index of an individual reaction was the ratio between the intersection and
the union of the flux range in the two models. A Jaccard index of 1 indicates that both
models have identical possible flux ranges, while a Jaccard index of 0 indicates that both
models have completely different possible flux ranges. A Jaccard index value between 0 and
1 indicates an overlapping flux range. For CHRR, the sampling parameter values were set
as 50,000 for nskips and 1,000 for nsamples for both models. The statistical T -test was used
to compare the flux distributions between the lipid-overproducing and reference strains.

RESULTS
Characteristics of the GEM of the M. circinelloides WJ11 strain
As shown in Table 1, the developed GEM of the M. circinelloides WJ11 strain (iNI1159)
was achieved. It consisted of 1,159 genes (10.6% of total genes in M. circinelloides WJ11
genome), 648 EC numbers, 1,537 metabolites and 1,355 metabolic reactions, which were
distributed into five compartments of the cell, namely, the mitochondria, extracellular
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Table 1 Metabolic characteristics of the lipid-overproducing and reference strains ofM. circinelloides.

Characteristics Reference strain Lipid-overproducing
strain

Lipid-overproducing
strain

CBS277.49 model WJ11 network WJ11model
(This study)

Name iWV1213a iWV1122b iNI1159
Genes 1,213 1,122 1,159
EC numbers 626 640 648
Metabolites 1,413 1,278 1,537
Total metabolic reactions 1,326 1,229 1,355
Biomass formation reaction 1 – 1
Specific growth rate (h−1) 0.1190 (0.1192)c – 0.1671 (0.1670)c

0.172 (0.1889)e – 0.1188 (0.1088)d

Notes.
For WJ11 model (iNI1159), the number of metabolites were counted in each compartment. Besides,
the added/updated genes, EC numbers, and metabolic reactions in iNI1159 can be seen in File S1.
The data in blanket are in vivo data.

aiWV1213 model was taken from Vongsangnak et al. (2016).
biWV1122 network was taken from Vongsangnak et al. (2018).
cIn vivo data were taken from Zhao et al. (2015).
dIn vivo data were taken from Tang et al. (2016).
eIn vivo data of specific growth rate for validation iWV1213 fromWynn et al. (2001).

space, cytoplasm, plasma membrane and peroxisome. It was observed that iNI1159 had a
higher number of genes and EC numbers than iWV1122 due to improved gene annotation
(Table 1). Noticeably, most of improved annotated genes identified in iNI1159 had
similar EC numbers as existed in iWV1122, which caused a few of increased EC numbers
(Table 1). The gene-protein-reaction (GPR) details of iNI1159 are provided in the File
S1. Once compared with iWV1213, observably, iNI1159 contained 105 unique metabolic
reactions distributed into carbohydrates (22 reactions), energy (18 reactions), amino acids
(24 reactions), nucleotides (six reactions), lipids (13 reactions), cofactors (16 reactions),
and terpenoids and polyketides (six reactions)metabolisms (File S2). Apart from the unique
metabolic reactions, biomass and protein formations in iNI1159 were also constructed
(File S3). Considering on protein formation equation, the content of amino acids, based
on the amino acid sequence data of strain WJ11, had altered stoichiometric coefficients, as
shown in Table 2. For metabolic connectivity, the transport and exchange reactions (122
reactions) were curated and added into the iNI1159 model. These transport and exchange
reactions were based on the environmental sources and the product formation of the
WJ11 strain. A comparative summary of the GEMs between the lipid-overproducing strain
WJ11 (iNI1159) and reference strain CBS 277.49 (iWV1213) of M. circinelloides is shown
in Table 1. The summarized biomass composition reaction of iNI1159 model is shown in
Table 2. The full details of biomass composition can be seen in File S3. The SBML model
of iNI1159 is also available in File S4.

Growth simulation and validation of iNI1159
Using FBA through the MATLAB environment (see ‘Materials & Methods’), the specific
growth rates of iNI1159 on a glucose-containing medium were predicted. When the
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Table 2 List of biomass composition and exchange reactions in iNI1159 model.

Biomass formation 153 ATP[c]+ 0.44 UDPGE[c]+ 0.1676 GDPFUC[c]+
0.0643 MAN[c]+ 0.0018 GLYNIN[c]+ 0.0026 CHIT[c]
+ 0.0001 CHITO[c]+ 2.7618 Protein[c]+ 0.1564 RNA[c]
+ 0.0891 DNA[c]+ 0.3317 Lipid[c] ->153 ADP[c]+ 153
PI[c]+ BIOMASS[c]

Protein formation 5.168 ATP[c]+ 0.0626 GLU[c]+ 0.0591 ASP[c]+ 0.0719
ALA[c]+ 0.0509 GLY[c]+ 0.0493 GLN[c]+ 0.0494
ASN[c]+ 0.0476 ARG[c]+ 0.0493 PRO[c]+ 0.0128
CYS[c]+ 0.0834 SER[c]+ 0.0623 THR[c]+ 0.0255 HIS[c]
+ 0.0579 ILE[c]+ 0.033 VAL[c]+ 0.0881 LEU[c]+
0.033 TYR[c]+ 0.0624 LYS[c]+ 0.0249 MET[c]+ 0.0111
TRP[c]+ 0.0389 PHE[c] ->5.168 ADP[c]+ 5.168 PI[c]+
Protein[c]

Lipid formation 0.11785 ERGOSE[c]+ 0.725 TAGLY[c]+ 0.01955
DAGLY[c]+ 0.03188 PC[c]+ 0.00684 PA[c]+ 0.04264
PE[c]+ 0.00302 PS[c]+ 0.05227 FFA[c]+ 0.00093
PINS[c] ->Lipid[c]

TAGLY exchange TAGLY[c] <=>TAGLY[e]

glucose uptake rates were fixed at 2.518 (Zhao et al., 2015) and 1.807 (Tang et al., 2016)
mmol gDW−1 h−1 and the other environmental conditions, e.g., oxygen and nitrogen
uptake rates were unconstrained, the results showed that the specific growth rates were
consistent with the experimental data, in which the deviation values were 0.05% and 9.19%,
respectively as shown in Table 1 (see File S5). These results suggest that themodel is efficient
for further analysis using the PhPP, fastFVA and CHRR approaches. The effects of nitrogen
and glucose uptake rates on the cell growth and lipid production rates of M. circinelloides
WJ11 were then investigated by PhPP analysis. As shown in Fig. 1A, the glucose uptake rate,
rather than the nitrogen uptake rate, affected the biomass production rate. Although the
nitrogen uptake rate was important for the biomass production rate, a low biomass growth
rate was obtained under conditions with a high nitrogen uptake rate. In other words, this
result suggested that the growth rate was linearly dependent on the glucose uptake rate
when the nitrogen source was in excess. However, a progressive increase in the glucose
uptake could not enhance the biomass growth rate if the nitrogen was limited. These results
further indicated that the ratio of carbon and nitrogen contents might contribute to the
growth rate. In addition, the results of the PhPP analysis indicated the effect of nitrogen
and glucose uptake rates on the lipid production of WJ11 as shown in Fig. 1B. When the
TAGLY production rate was set as the objective function and the biomass growth rate was
fixed at 0.1671 h−1, the TAGLY production rate was directly proportional to the glucose
uptake rate, but inversely proportional to the nitrogen uptake rate. This means that high
glucose and low nitrogen conditions resulted in enhanced lipid accumulation as previously
described (Tang et al., 2016). This suggests that the lipid production rate was induced by an
increase in the glucose uptake rate and a decrease in the nitrogen uptake rate, which is the
cultivation condition for triggering the lipid accumulation in oleaginous strains (Botham
& Ratledge, 1979; Ratledge & Wynn, 2002; Ratledge, 2004).
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Figure 1 PhPP plots of metabolic phenotypic behaviors ofM. circinelloides strainWJ11 using iNI1159
model. (A) Effect of glucose and nitrogen uptake rates on specific growth rate. (B) Effect of glucose and
nitrogen uptake rates on specific TAGLY production rate.

Full-size DOI: 10.7717/peerj.7015/fig-1

Major metabolic reactions associated with lipid accumulation under
nitrogen-limited conditions
To identify major metabolic reactions possibly responsible for increased lipid production
behavior under nitrogen-limited conditions, fastFVA followed by relative flux change
analysis was applied (see ‘Materials & Methods’). Table 3 shows that the top 20 metabolic
reactions with high values of relative flux change in the metabolism of carbohydrates,
lipids and certain amino acids. The values of relative flux change for all metabolic reactions
of iNI1159 when nitrogen-limited conditions are given in File S6. For carbohydrate
metabolism, most of the metabolic reactions were in the glycolysis pathway, such as
pyruvate oxidation catalyzed by the pyruvate dehydrogenase complex (EC: 1.2.4.1:
2.3.1.12: 1.8.1.4), and the conversion reaction catalyzed by phosphoglycerate kinase to
yield D-glyceraldehyde 3-phosphate (EC: 2.7.2.3). Moreover, the flux of a metabolic
reaction in the pentose phosphate pathway, which was catalyzed by ribulose-phosphate
3-epimerase (EC: 5.1.3.1) for conversion of intermediate substance from D-ribulose
5-phosphate to D-xylulose 5-phosphate, was also altered. For lipid metabolism, it was
found that some reactions responsible for fatty acyl supply were markedly influent, which
included the reaction catalyzed by acetyl-CoA carboxylase (EC: 6.4.1.2) for converting
acetyl-CoA to malonyl-CoA, the oxidation reaction of acetoacetyl-CoA to yield acetyl-CoA
catalyzed by acetoacetyl-CoA thiolase (EC: 2.3.1.9), and the reaction in biosynthesis of
lanosterol to produce acetyl-CoA catalyzed by hydroxymethylglutaryl CoA synthase (EC:
2.3.3.10). Moreover, the reaction in nitrogen metabolism to convert carbon dioxide into
carbonic acid catalyzed by carbonic anhydrase (EC: 4.2.1.1) was observed. Interestingly, it
was detected that some amino acid reactions with relative flux change were the reaction
catalyzed by threonine dehydratase to pyruvate and ammonia (EC: 4.3.1.19), the reaction
catalyzed by cystathionine beta-synthase (EC: 4.2.1.22) to produce L-cystathionine, the
reaction catalyzed by cystathionine beta-lyase (EC: 4.4.1.8) to generate pyruvate and
ammonia, the reaction catalyzed by alanine aminotransferase to yield alanine (EC: 2.6.1.2),
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Table 3 List of top 20 metabolic reactions with high flux change in relation to the lipid production identified in iNI1159 model.

EC number Metabolic reaction Subsystem Relative
flux
change

4.1.1.1 PYR[c] ->CO2[c]+ ACAL[c] Pyruvate metabolism 21.08
1.2.4.1: 2.3.1.12: 1.8.1.4 NAD[m]+ PYR[m]+ COA[m] ->NADH[m]+

ACCOA[m]+ CO2[m]
Glycolysis 21.08

6.4.1.2 ATP[c]+HCO3[c]+ ACCOA[c] ->ADP[c]+ PI[c]+
MALCOA[c]

Fatty acid biosynthesis 20.16

2.7.1.40 ADP[c]+ PEP[c] ->ATP[c]+ PYR[c] Glycolysis 15.56
1.2.1.12 T3P1[c]+ PI[c]+ NAD[c] <=>13PDG[c]+ NADH[c] Glycolysis 15.56
2.7.2.3 ADP[c]+ 13PDG[c] <=>ATP[c]+ 3PG[c] Glycolysis 15.56
5.4.2.1 3PG[c] <=>2PG[c] Glycolysis 15.56
4.2.1.11 2PG[c] <=>PEP[c]+H2O[c] Glycolysis 15.56
4.2.1.1 CO2[c]+H2O[c] ->HCO3[c]+H_PO[c] Nitrogen metabolism 14.64
2.3.3.10 COA[c]+H3MCOA[c] <=>ACCOA[c]+ AACCOA[c] Biosynthesis of lanosterol 14.34
2.3.1.9 COA[c]+ AACCOA[c] <=>2 ACCOA[c] Fatty acid oxidation 14.34
4.3.1.19 SER[c] <=>PYR[c]+ NH3[c] Glycine, serine and threonine metabolism 11.04
4.2.1.22 SER[m]+HCYS[m] ->LLCT[m] Glycine, serine and threonine metabolism 11.04
4.4.1.8 H2O[m]+ LLCT[m] ->PYR[m]+ NH3[m]+HCYS[m] Methionine metabolism 11.04
4.1.2.13 FDP[c] <=>T3P2[c]+ T3P1[c] Glycolysis 11.04
2.6.1.2 PYR[c]+ GLU[c] <=>AKG[c]+ ALA[c] Alanine/aspartate and asparagine metabolism 11.04
5.1.3.1 RL5P[c] <=>XUL5P[c] Pentose phosphate pathway 11.04
2.7.1.11 ATP[c]+ F6P[c] ->ADP[c]+ FDP[c] Glycolysis 11.04
4.3.1.17 SER[c] ->PYR[c]+ NH3[c] Cysteine metabolism 11.04
5.3.1.1 T3P2[c] <=>T3P1[c] Glycolysis 10.04

and the reaction responsible for converting L-serine to pyruvate and ammonia that is
catalyzed by L-serine dehydratase (EC: 4.3.1.17).

Comparative analysis between iNI1159 and iWV1213 for guiding key
metabolic routes involved in lipid accumulation
Because of the colinear evolution between the genomes of the lipid-overproducing and
reference strains (Tang et al., 2015a), iNI1159 and iWV1213 undoubtedly shared almost
common metabolic reactions in their metabolic networks as shown in Fig. 2. Interestingly,
it was observed that the numbers of reactions in carbohydrate, amino acid and cofactor
metabolisms between iNI1159 and iWV1213 were different. To gain a better understanding
of the metabolic behaviors between the WJ11 and reference CBS277.49 models, the flux
distributions in both models were determined and compared based on fastFVA and CHRR.
Upon setting the glucose uptake rate to 2.518 mmol gDW −1h−1 and biomass growth as the
objective function, FBAwas performed and showed that the specific growth rates of iNI1159
and iWV1213 were 0.1671 h −1(see Table 1) and 0.2593 h−1 (see File S5), respectively.
All solutions of the exchange reactions obtained from FBA were then fixed to perform
either fastFVA or CHRR for determining flux distributions. The possible range of solutions
obtained from fastFVA is shown in File S7. The fastFVA solutions were then divided
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Figure 2 Comparison of metabolic reactions distribution between the GEMs of lipid-overproducing
strainWJ11 (iNI1159) and reference strain CBS277.49 (iWV1213). Number of metabolic reactions dis-
tributing across different metabolic categories (i.e., carbohydrate, amino acid, lipid, cofactor, glycan, en-
ergy and nucleotide metabolisms).

Full-size DOI: 10.7717/peerj.7015/fig-2

Figure 3 Three different categories and distributions of always-active reactions, sometimes-active
reactions and never-active reactions between twoM. circinelloides strains identified by fastFVA. (A)
Lipid-overproducing strain WJ11 (iNI1159) and (B) reference strain CBS277.49 (iWV1213).

Full-size DOI: 10.7717/peerj.7015/fig-3

into three categories, including ‘‘always-active reactions’’, ‘‘sometimes-active reactions’’,
and ‘‘never-active reactions’’. The reactions that had the minimum and maximum flux
of nonzero values with the same sign were referred to as ‘‘always-active reactions’’.
The reactions with the minimum and maximum flux values spanning zero were called
‘‘sometimes-active reactions’’. The ‘‘never-active reactions’’ were the reactions with both
the minimum and maximum fluxes equal to zero. As a result, Fig. 3 shows that iNI1159
contained 252 always-active reactions (19% of total reactions), 152 sometimes-active
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reactions (11% of total reactions), and 951 never-active reactions (70% of total reactions).
For iWV1213, 240 always-active reactions (18% of total reactions), 175 sometimes- active
reactions (13% of total reactions), and 912 never-active reactions (69% of total reactions)
were observed. Detailed information is provided in File S8 and File S9. As expected, most
common always-active reactions shared between iNI1159 and iWV1213 were the reactions
catalyzed by hexokinase (EC: 2.7.1.1) through pyruvate kinase (EC: 2.7.1.40), and some
reactions in pentose phosphate pathway catalyzed by ribulose-phosphate 3-epimerase (EC:
5.1.3.1) through phosphogluconate dehydrogenase (EC: 1.1.1.44). The most common
sometimes-active reactions were involved in the tricarboxylic acid cycle. However, the
metabolic fluxes between these two strains were different, particularly in lipid metabolism,
including a set of reactions catalyzed by the enzymes involved in glycerophospholipid
and glycerolipid metabolism, such as lysophosphatidic acid acyltransferase (EC: 2.3.1.51),
phosphatidate phosphatase (EC: 3.1.3.4), and the enzymes involved fatty acids biosynthesis
(acetyl-CoA carboxylase (EC: 6.4.1.2), fatty-acyl-CoA synthase (EC: 2.3.1.86), and fatty acid
elongase (EC: 2.3.1.199), as shown in Fig. 4. As a result, the iNI1159 had the unique always-
active reactions in lipid metabolism, whereas iWV1213 had the unique sometimes-active
reactions in lipid metabolism (File S10). Moreover, it was found that the flux distributions
over the central metabolic pathways between iNI1159 and iWV1213 are different indicated
by dotted arrows (Jaccard index = 0) as shown in Fig. 5. Besides, the average flux values
obtained from CHRR are shown, i.e., top figures representing fluxes of iNI1159 and
bottom figures representing fluxes of iWV1213 (Fig. 5). The fluxes between the two strains
were found to be significantly different according to the Student’s t -test (File S11). It
was noted that iNI1159 possessed higher metabolic fluxes in lipid metabolism, such as
lanosterol, zymosterol, glycerolipid and fatty acids biosynthesis than iWV1213. In contrast,
the iWV1213 showed higher flux distribution in the metabolism of carbohydrates (i.e.,
pentose phosphate pathway) and amino acids (arginine, cysteine, glycine and threonine
metabolism), which were relevant to cell growth or biomass production. The detailed
information of Jaccard index, average fluxes and their standard deviations as well as
statistical differences (p-value) for the entire networks of the two models are provided in
File S11.

DISCUSSION
GEM is an effective prediction tool by using constraint-based analysis integrated with
linear programming algorithm. In this work, the developed GEM ofM. circinelloidesWJ11
expanded the metabolic information in the lipid biosynthetic pathway by incorporating
the TAGLY production and exchange reaction (Table 2), which were a representative of
lipids accumulated in LPs. The iNI1159 model could predict the simulated growth rate
with low percent deviation (Table 1 and Fig. 1A). Interestingly, the lipid-accumulation
stage of oleaginous strains, which is generally triggered by the carbon-excess and nitrogen-
limited condition (Lamers et al., 2016), could be defined by the model (Fig. 1B). These
results suggested that the developed model could be used for investigating the metabolic
flux at particular conditions. As a consequence, the metabolic reactions affecting the
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Figure 4 Comparative metabolic routes highlights the always-active reactions and the sometimes-
active reactions between iNI1159 and iWV1213models. The full names of metabolites can be seen in
File S1.

Full-size DOI: 10.7717/peerj.7015/fig-4

lipid-accumulation process were identified by simulating the culture condition, in which
the carbon source was fixed, and the nitrogen source was a variable or in turn the C/N
ratios were varied. The top 20 metabolic reactions with high flux change in relation to
the lipid production flux were found in iNI1159 (Table 3) when simulating the culture
condition under the glucose uptake rate (2.518 mmol gDW−1 h−1) and nitrogen uptake
rate (2–10 mmol gDW−1 h−1) (see File S6). Of them, some metabolic reactions have
been previously identified as the most connected metabolites in the oleaginous strains,
Y. lipolytica and M. alpina, such as precursors (i.e., acetyl-CoA) in lipid biosynthesis and
current metabolites (i.e., ATP and NADPH) (Pan & Hua, 2012; Vongsangnak et al., 2013).
Particularly, the increased fluxes of some reactions in the central carbon metabolism of
iNI1159, such as glycolysis and pentose phosphate pathway might promote the supply of
acetyl-CoA and NADPH, which are basic precursors for the lipid biosynthesis similarly
to the previous findings in GEMs of the oleaginous yeast (Kerkhoven et al., 2016). These
results are also coincided with the previous report of proteomic study in this oleaginous
fungus, in whichmost enzymes in the glycolysis ofM. circinelloidesWJ11 were up-regulated
under nitrogen exhaustion (Tang et al., 2016). As a result of the uniform random sampling
analysis in iNI1159 (Fig. 5), the increased fluxes in acetyl-CoA generation ofWJ11 strain by
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Figure 5 Metabolic flux distributions in central metabolic networks ofM. circinelloides between lipid-
overproducing strainWJ11 (iNI1159) and reference strain CBS277.49 (iWV1213). Fluxes of iNI1159
(top) and iWV1213 (bottom) shown are average values (mmol gDW−1 h−1) obtained from uniform ran-
dom samplings. Dotted, dashed and solid arrows represent reactions with Jaccard index of 0, between 0
and 1, and 1, respectively. Reactions in red indicate higher flux flows in iNI1159; reactions in blue indicate
higher flux flows in iWV1213; a reaction in yellow indicates equal flux. The full names of metabolites can
be seen in File S1.

Full-size DOI: 10.7717/peerj.7015/fig-5

the catalytic functions of pyruvate dehydrogenase, citrate synthase, ATP:citrate lyase (ACL)
and acetyl-CoA synthetase were further linked to significant increases of the fluxes toward
the biosynthesis of lipids, particularly TAGLY, squalene (SQL) and steryl ester (ERGOSE
or SE). These findings could explain the high lipid accumulation in M. circinelloides strain
WJ11 by the fact that TAGLY and SE are main components of storage lipids in form of lipid
body (LB) or lipid particle (LP). Recently, the efficient strategy for rational improvement
of SQL production in Y. lipolytica by engineering the acetyl-CoA metabolism based on
genome-scale metabolic model has also been reported (Huang et al., 2018).

Not surprisingly, all possible metabolic reactions in lipid metabolism, e.g., fatty acids
biosynthesis and fatty acid oxidation, were among the top 20 metabolic reactions with high
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flux change in relation to the lipid production rate. Not only the carbohydrate and lipid
metabolisms, but some reactions in amino acid metabolism appeared to contribute to lipid
overproduction under nitrogen depletion. Most of them were involved in pyruvate and
ammonia production (Table 3). Of them, some amino acid pathways might be targeted for
genetic engineering to improve the pyruvate production, which is an important precursor
for fatty acids biosynthesis. It has been reported that the redirecting carbon flux from
amino acids to lipids was found in Y. lipolytica during nitrogen limitation by integrative
analysis of multilevel omics data through the iYali4 GEM (Kerkhoven et al., 2016).

Regarding the fastFVA, somemetabolic reactions were differently displayed even though
iNI1159 was developed using iWV1213 as a draft network. The common always-active
reactions found in the glycolysis and pentose phosphate pathway of the two models
indicated a core metabolic route for generating acetyl-CoA and NADPH, which are key
precursors for fatty acids biosynthesis in common eukaryotic cells. It is noteworthy that
the sometimes-active reactions in tricarboxylic acid cycle also shared among these models,
which are similar to the previous findings (Kavšček et al., 2015; Vongsangnak et al., 2016).
Interestingly, fastFVA indicated that fluxes in some lipid metabolic reactions categorizing
either sometimes-active or always-active were different between these two models, such
as glycerophospholipid and glycerolipid metabolism, as well as fatty acids biosynthesis.
It could be implied that iNI1159 provided high lipid accumulation, whereas iWV1213
provided low lipid accumulation due to more sometimes-active in lipid metabolism
(Fig. 4). These findings recommend that sometimes-active reactions should be further
focused in more details due to these metabolic reactions may associate to both growth and
lipid accumulation phases.

When compared the flux distributions between the lipid-overproducing and reference
strains, both fastFVA and CHRR provided similar results. The Jaccard index based on
fastFVA as well as mean fluxes obtained from CHRR indicated that i NI1159 had higher
fluxes in the glycolysis and lipid metabolism while iWV1213 showed higher fluxes in
the pentose phosphate, carbohydrate and amino acid metabolisms (Fig. 5). The achieved
results can possibly be explained by the difference in stoichiometric coefficients of biomass
equations between these two models (Table 4). Comparatively, iWV1213 had higher
values of stoichiometric coefficients for protein leading to greater fluxes in amino acid
metabolism, whereas iNI1159 had higher values of stoichiometric coefficients for lipid
leading to greater fluxes in lipid metabolism. Notably, changes in the metabolic fluxes
across amino acid metabolism of these two models were clearly observed. For examples,
the metabolic fluxes of aspartate, glycine and cysteinemetabolisms of iWV1213 were higher
than those of iNI1159. Possibly, these might be alternative metabolic routes for leveraging
between biomass and lipid production.

Taken together, the developed model of iNI1159 in this study was supported by the
related experimental results, particularly in terms of physiological responses during lipid
accumulation stage, where low growth rate and high lipid production rate was observed
(Zhao et al., 2015; Tang et al., 2016). As a result, the iNI1159 model showed a tendency
to produce cellular lipid at high level, whereas iWV1213 displayed the high biomass
production (Fig. 5).
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Table 4 List of different stoichiometric coefficients of biomass compositions ofM. circinelloidesWJ11
(iNI1159) and CBS277.49 (iWV1213).

Biomass compositiona WJ11 (iNI1159) CBS277.49
(iWV1213)

Stoichiometric
coefficients

Protein 2.7618 3.2950
Nucleotide
- DNA 0.0891 0.0999
- RNA 0.1564 0.1831
Lipid 0.3317 0.1926
Carbohydrate
- Mannose 0.064 0.075
- Fucose 0.168 0.196
- Glucuronic acid 0.440 0.515

Notes.
aBiomass composition ofM. circinelloidesWJ11 and CBS 277.49 at balanced growth phase (Zhao et al., 2015).

CONCLUSIONS
The developed iNI1159 empowering the prediction of biomass and lipid production of
M. circinelloides WJ11 could be exploited to explain its metabolic phenotypes through
changes in metabolic flux distribution. The metabolic reactions in amino acid metabolisms
influencing the lipid-accumulation process in WJ11 were identified in the nitrogen-
limited conditions. The high relative flux change in carbohydrate, lipid, and amino
acids metabolisms identified in the lipid-overproducing WJ11 strain by fastFVA might
contribute to overflow of metabolic fluxes to lipid accumulation. Comparative metabolic
flux distributions using Jaccard index and uniform random sampling clearly demonstrated
distinct flux flows in the central metabolic pathways between the lipid-overproducing
strain WJ11 (iNI1159) and reference strain CBS277.49 (iWV1213), enabling analysis of
metabolic control involved in the oleaginicity. Thus, this iNI1159 model offers a promising
scaffold for metabolic engineering at precise targets to achieve an optimized strain for
industrial purpose.
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