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ABSTRACT

Community similarity is often assessed through similarities in species occurrences
and abundances (i.e., compositional similarity) or through the distribution of species
interactions (i.e., interaction similarity). Unfortunately, the joint empirical evaluation
of both is still a challenge. Here, we analyze community similarity in ecological systems
in order to evaluate the extent to which indices based exclusively on species composition
differ from those that incorporate species interactions. Borrowing tools from graph
theory, we compared the classic Jaccard index with the graph edit distance (GED), a
metric that allowed us to combine species composition and interactions. We found
that similarity measures computed using only taxonomic composition could differ
strongly from those that include composition and interactions. We conclude that
new indices that incorporate community features beyond composition will be more
robust for assessing similitude between natural systems than those purely based on
species occurrences. Our results have therefore important conceptual and practical
consequences for the analysis of ecological communities.

Subjects Biodiversity, Ecology
Keywords Community similarity, Graph edit distance (GED), Ecological communities

INTRODUCTION

Characterizing the degree of similarity between ecological communities has been one of
the central topics in ecology (Devictor et al., 2010; Morlon, Kefi & Martinez, 2014; Petchey
& Gaston, 2006). In most studies, ecological similarity has mainly been evaluated by
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comparing species compositions, quantifying the spatial turnover of species through
cluster membership of communities and by examining the position and distance between
communities in reduced species-ordination spaces (Jaillard et al., 2018; Olden et al., 2004).
In this vein, B-diversity portrays the variation in species composition among spatially
or temporally separated communities (Anderson, Ellingsen ¢ McArdle, 2006; Whittaker,
1972; Whittaker, 1960), and thus reflects two different phenomena, spatial species turnover
and nestedness of assemblages (Baselga, 2012; Baselga, 2010). -diversity can be easily
measured from species presence-absence data (Koleff, Gaston & Lennon, 2003; Wilson

& Shmida, 1984) or abundances (Barwell, Isaac ¢ Kunin, 2015), and both approaches
include some widely studied indices such as Euclidean distances, Bray-Curtis, and Jaccard
(Anderson, Ellingsen ¢» McArdle, 2006). Despite the widespread use of 3-diversity and other
indices to characterize communities, the quantification of similarity among ecological
communities, beyond species compositions remains a challenge.

In an analogous way, when ecological communities are represented by interaction
networks, the similarity between spatially or temporally separated communities has been
evaluated on the basis of the average number of shared nodes (species) and the degree of
node overlapping (i.e., node overlapping index; Strona ¢ Veech, 2015; Strona et al., 2018;
Zhang et al., 2016). These measures assume that a high compositional similarity implies
a high similarity in species interactions (i.e., a high “interaction similarity”). On the
other hand, it has been described that species composition can be a driver of interaction
turnover in mutualistic networks (Bezemer et al., 2010; Trojelsgaard et al., 2015), but there
is also evidence based on traditional methods (f-diversity) that shows a complete lack
of correlation between composition similarity and interaction similarity (Poisot et al.,
2012). Therefore, the relationship between composition and interaction similarity remains
unclear.

Graph theory provides us with conceptual and practical tools that allow us to integrate
the composition and interaction measurements of similarities of systems (Ibragimov et al.,
2013; Riesen, 2015). These similarity measures include global metrics based on isomorphic
relations or on graph transformations (Bunke ¢ Allermann, 1983; Dehmer, 20105 Emmert-
Streib, Dehmer & Shi, 2016; Solé-Ribalta, Serratosa ¢ Sanfeliu, 2012). Similarity measures
based on isomorphic relationships, quantify the exact match of nodes and links between
two graphs, i.e., the “exact graph matching”. Graph transformation, on the other hand,
uses the concept of error-tolerant graph matching to calculate a measure of similarity based
on the minimum cost (i.e., a unit of dissimilarity) of transforming one graph into another
(Dehmer, 20105 Riesen, 2015). A widely used graph transformation method is the graph
edit distance (GED), in which each transformation has a cost, so that a greater number of
changes mirrors higher dissimilarity between the analyzed networks (Bunke ¢ Allermann,
1983; Emmert-Streib, Dehmer ¢ Shi, 2016). In biological sciences, GED has been used to
compare protein-protein interaction (PPI) networks in human, yeast, and fruit fly, allowing
researchers to infer the biological function of proteins and genes (Ibragimov et al., 2013;
Neyshabur et al., 2013). By means of applying these tools to ecological data we can obtain
indices that include both species composition and species interactions, providing a more
complete view of community similarity.
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In this study we apply conceptual tools borrowed from graph analysis to quantify
community similarity, taking into account both species composition and species
interactions. In addition, we compare the inferences obtained from this approach with
those obtained using the classical compositional approach in order to evaluate the degree to
which interaction similarity can be inferred from compositional similarity. These analyses
were applied to an extensive consumer-resource interaction network.

MATERIALS AND METHODS

Biological data

We analyzed a dataset (https://www.nceas.ucsb.edu/interactionweb/html/thomps_towns.
html) of consumer-resource interactions obtained from the National Center for Ecological
Analysis and Synthesis (NCEAS). The dataset includes 16 communities (Akatore A,
Berwick, Blackrock, Broad, Canton, Catlins, DempSp, German, Kyeburn, Narrowdale,
NorthCol, Powder, Stony, SuttonSp, and Venlaw), covering ca. 200 km of the Taieri River
tributaries in Otago, New Zealand. These sites include pine forest, broadleaf forest, pasture
grassland, and tussock grassland with recorded taxonomic identities of aquatic insects,
algae, and fish species and their trophic interactions (Jaarsma et al., 1998; Thompson ¢
Townsend, 2005; Thompson & Townsend, 2003; Thompson & Townsend, 2000; Thompson &
Townsend, 1999). The size of these networks varies from 48 to 113 taxonomic identities
and from 110 to 832 consumer-resource interactions. We assign an identification code to
taxonomic identities to facilitate comparison among different networks. We made some
modifications to the network dataset prior to the analyses (see Data S1), checking scientific
names and correcting typographical errors. Finally, similarity measures were calculated for
paired combinations of sites in Taieri River (120 paired comparisons for each scenario).

Graph edit distance (GED): concept and application

We used the graph edit distance (GED) as a metric that includes both compositional and
interaction similarities. GED is a widely used graph transformation method in which each
transformation (edition) necessary to pass from one network to another has a cost, so that
a greater number of changes implies a higher cost, and this mirrors higher dissimilarity
between the compared communities (Bunke, 1983; Emmert-Streib, Dehmer ¢ Shi, 2016).
This feature of GED represents an advantage over the composition similarity analysis,
because it allows the inclusion of interaction similarity in the metrics and to assign different
degrees of importance to species or interactions in the network through differential costs
for each type of edition (Bunke ¢~ Allermann, 1983; Emmert-Streib, Dehmer ¢ Shi, 2016).
Despite the fact that our study only deals with trophic interactions, GED could be applied
to networks containing different kinds of links, including other ecological interactions like
facilitation, competition, and parasitism.

Let us consider two networks represented by the graphs g; = (Vy, E;) and g, = (V,
E,), where V is a set of nodes, E a set of links (u, v), where u € V is the source node and v
€ V the target node of a directed link (Dehmer, 2010; Riesen, 2015). The idea behind GED
includes transforming one graph into another using edit operations (e;) such as deletions,
substitutions, and insertions of nodes and links (Bunke ¢~ Allermann, 1983; Dehmer, 2010
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Emmert-Streib, Dehmer ¢ Shi, 20165 Riesen, 2015). A given transformation is represented
by an edit path (1), which is a set of edit operations that transform g; to g,. The set of
all possible X is called v (g;, g2) (Riesen, 2015). Assuming each edit operation e; has an

associated cost c(e;), we can assign a relative cost to the kth edit path Ax:

Ca) =) clei).Vei € A

With this information we can define GED as the edit path with the minimum cost (Dehmer,
20105 Ibragimov et al., 2013),

GED = min[C(Ag)], VA € Y (g1,92).

The application of GED to the study of trophic networks allows us to evaluate differences
in species compositions and those due to the absence of interactions despite species
co-occurrences.

Cost operations

Given the nature of food webs, we considered that the lowest cost was that of deleting
or adding an interaction, followed by deleting or adding a species, and finally the most
costly edition was that of flipping an interaction, this is a change to the hierarchy of the
consumer-resource interactions (Table 1, scenarios 30, 35, 36). We considered 49 scenarios
of editing costs (8,820 paired comparisons of our networks), which differed from each
other in the relative magnitude of the costs of each edition operation c(e;), as shown on
Table 1. We include two cost scenarios of flipping an interaction (0.25 and 0.75) represent
two contrasting scenarios (low and high cost), and 5 levels of costs for deleting/adding an
interaction or node. Also, eight scenarios were included specifically to assess how much
GED changed by minimizing the importance of trophic interactions (reducing the costs to
deleting or adding interactions, Table 1).

GEDs were calculated using the software Cytoscape (Shanmnon et al., 2003) with the
GEDEVO plugin (Ibragimov et al., 2013), which implements an evolutionary algorithm for
GED calculation. Due to GEDEVO implementing a evolutionary algorithm for estimating
GED, there is no straightforward rule for stopping the iterative process. In this case we
used 1,000 iterations without improvements as termination criterion for the minimization
of GED. In the case of GEDEVO, GED scores ranged from 0 to 1, where 0 represented
maximum similarity and 1 represented perfect dissimilarity. According to Malek (2015),
the method implemented in GEDEVO is that the GED of a given edit path is the result of
the sum of the GED estimated for each node. The GED forming each node is transformed
into a score based on the highest possible GED for a single node in the whole network.

Compositional similarity and comparison with GED scores

In order to compare the GED results with those from a traditional compositional approach,
we first computed the Jaccard index from the presence/absence species data of each network.
Jaccard dissimilarity index was computed as (a+b)/(a+ b+ c), where a is the number
of species only present in the first network, b is the number of species only present in the
second network, and ¢ is the number of species shared between both networks.
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Table 1 Scenarios of editing costs, AMI values of relationship between the similitude in species composition (1-Jaccard) and similarity of inter-
actions (1-GED).

Scenarios Flipping an interaction Deleting or adding Deleting or adding AMI(1_GED, 1 -Jaccard)
a species an interaction

1 1 1 1 0.032
2 0.25 0 0.25 0.134
3 0.25 0 0.5 0.071
4 0.25 0 0.75 0.064
5 0.25 0 1 0.078
6 0.25 0.25 0 0.047
7 0.25 0.25 0.25 0.074
8 0.25 0.25 0.5 0.062
9 0.25 0.25 0.75 0.073
10 0.25 0.25 1 0.065
11 0.25 0.5 0 0.039
12 0.25 0.5 0.25 0.051
13 0.25 0.5 0.5 0.035
14 0.25 0.5 0.75 0.05
15 0.25 0.5 1 0.062
16 0.25 0.75 0 0.029
17 0.25 0.75 0.25 0.047
18 0.25 0.75 0.5 0.05
19 0.25 0.75 0.75 0.037
20 0.25 0.75 1 0.05
21 0.25 1 0 0.029
22 0.25 1 0.25 0.054
23 0.25 1 0.5 0.055
24 0.25 1 0.75 0.035
25 0.25 1 1 0.041
26 0.75 0 0.25 0.084
27 0.75 0 0.5 0.051
28 0.75 0 0.75 0.024
29 0.75 0 1 0.024
30 0.75 0.25 0 0.018
31 0.75 0.25 0.25 0.074
32 0.75 0.25 0.5 0.058
33 0.75 0.25 0.75 0.044
34 0.75 0.25 1 0.031
35 0.75 0.5 0 0.014
36 0.75 0.5 0.25 0.06
37 0.75 0.5 0.5 0.05
38 0.75 0.5 0.75 0.027
39 0.75 0.5 1 0.037
40 0.75 0.75 0 0.03

(continued on next page)
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Table 1 (continued)

Scenarios Flipping an interaction Deleting or adding Deleting or adding AMI(1_GED, 1-Jaccard)
a species an interaction

41 0.75 0.75 0.25 0.047
42 0.75 0.75 0.5 0.068
43 0.75 0.75 0.75 0.039
44 0.75 0.75 1 0.068
45 0.75 1 0 0.036
46 0.75 1 0.25 0.026
47 0.75 1 0.5 0.062
48 0.75 1 0.75 0.056
49 0.75 1 1 0.04

In our results, the GED and Jaccard scores were expressed in terms of similarity (i.e.,
1-GED and 1-Jaccard, respectively). We used the Adjusted Mutual Information metric
(AMI) to assess the amount of information shared between GED and Jaccard.

Mutual Information (MI) is a measure from information theory and based on entropy
estimations. MI quantifies the mutual dependence between the variables or, in other words,
how much information about one variable is possible to obtain by knowing the second
variable. MI can theoretically range from 0 to co. So, to standardize the values and make
them comparable we used the method from Vinh, Epps ¢ Bailey (2010). In this case AMI
is:

AMIy0 =1(U,V)—E{I(U,V)}/max{HU),H(V)}—=E{I(U,V)}

where, U and V are two datasets, I (U, V') represents mutual information, E {I (U,V)}
the expected mutual information, and finally H (U, V') joint entropy, thus:

I(U,V)= ZZp(u,v)logp(u,v)/p(u)p(v),

ueUveV

HU,V)=— Z Z p(u,v)logp(u,v),where the entropy of a random variable is defined by :
ucUveV

H(U)=-Y p(wlogp(u)or
H(V)==) p)logp(v),

with probability functions p (1) and p (v).

The advantage of AMI is that it allows us to quantify linear and non-linear relationship
between variables. AMI scores ranged from 0 to 1, where 0 represented perfect independence
(no information is shared between indices) and 1 means both variables contain exactly the
same information (Vinh, Epps ¢ Bailey, 2010). Jaccard index and AMI calculations were
performed in the R environment (R Development Core Team, 2016, Data S2). Jaccard index
values were calculated using vegan package for R (Oksanen et al., 2013) and AMI values
were calculated using the function discretize from the R package infotheo (Meyer, 2014).

We used the same approach to compare dissimilarity of interactions (Bwy) and
the dissimilarity of interactions due to species turnover (Bsr) as there are defined in
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Table2 Scenarios of editing cost, AMI values of relationship between the dissimilarity of interactions (Bwy), dissimilarity of interactions due
to species turnover (Bsr) and similarity of interactions (1-GED).

Scenarios Flipping an interaction Deleting or adding Deleting or adding AMI (1-GED. Bgy) AMI (1-GED. Byy)
a species an interaction

1 1 1 1 ~0 0.017
2 0.25 0 0.25 0.014 0.156
3 0.25 0 0.5 0.025 0.099
4 0.25 0 0.75 0.027 0.083
5 0.25 0 1 0.007 0.066
6 0.25 0.25 0 0.001 0.034
7 0.25 0.25 0.25 0.002 0.059
8 0.25 0.25 0.5 0.029 0.102
9 0.25 0.25 0.75 0.019 0.086
10 0.25 0.25 1 0.023 0.071
11 0.25 0.5 0 ~0 0.025
12 0.25 0.5 0.25 ~0 0.025
13 0.25 0.5 0.5 0.004 0.013
14 0.25 0.5 0.75 0.002 0.056
15 0.25 0.5 1 0.024 0.05
16 0.25 0.75 0 ~0 0.018
17 0.25 0.75 0.25 ~0 0.019
18 0.25 0.75 0.5 ~0 0.020
19 0.25 0.75 0.75 ~0 0.021
20 0.25 0.75 1 0.015 0.049
21 0.25 1 0 0.002 0.021
22 0.25 1 0.25 ~0 0.014
23 0.25 1 0.5 ~0 0.017
24 0.25 1 0.75 ~0 0.009
25 0.25 1 1 ~0 0.03
26 0.75 0 0.25 ~0 0.088
27 0.75 0 0.5 0.006 0.045
28 0.75 0 0.75 0.007 0.032
29 0.75 0 1 0.01 0.009
30 0.75 0.25 0 0.005 0.015
31 0.75 0.25 0.25 0.015 0.068
32 0.75 0.25 0.5 0.009 0.04
33 0.75 0.25 0.75 ~0 0.025
34 0.75 0.25 1 0.007 0.037
35 0.75 0.5 0 ~0 0.019
36 0.75 0.5 0.25 ~0 0.055
37 0.75 0.5 0.5 0.006 0.035
38 0.75 0.5 0.75 ~0 0.015
39 0.75 0.5 1 ~0 0.023
40 0.75 0.75 0 0.011 0.029

(continued on next page)
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Table 2 (continued)

Scenarios Flipping an interaction Deleting or adding Deleting or adding AMI (1-GED. Bgr) AMI (1-GED. Byy)
a species an interaction
41 0.75 0.75 0.25 0.015 0.031
42 0.75 0.75 0.5 ~0 0.038
43 0.75 0.75 0.75 ~0 0.022
44 0.75 0.75 1 ~0 0.037
45 0.75 1 0 ~0 0.024
46 0.75 1 0.25 ~0 0.011
47 0.75 1 0.50 ~0 0.032
48 0.75 1 0.75 0.006 0.036
49 0.75 1 1 ~0 0.008

Poisot et al. (2012) with the estimated GED values in the 49 scenarios (Table 2). Bwy and
Bgrvalues were calculated using betalink package for R (Poisot et al., 2012). Finally, we used
the AMI to compared the amount of information shared between GED and By, and
between GED and Bgr. The objective of this comparison is to evaluate the relationship of
GED with another recent methodological approach to the problem, and also to evaluate the
relationship of GED under different cost scenarios with the result obtained by partitioning
network similarity into species and interaction 3-diversity as is proposed by Canard (2011)
and Poisot et al. (2012).

RESULTS

The interaction similarity scores based on the GED ranged from 0.099 to 0.99 for the
Taieri River networks. On the other hand, compositional similarity (Jaccard) ranged from
0.08 to 0.67. The highest values of GED were found when the interactions had zero cost
(Fig. 1A). We found lower values of GED when the adding/deleting nodes had zero cost
and adding/deleting interactions had a low cost (Figs. 1C and 1D, Table 1). A general
pattern in the relationship between Jaccard and GED can be observed in Fig. S1. Through
almost all scenarios, at low levels of the Jaccard index (<0.2), estimated GED values tend
to be highly variable, but at moderate-high values (>0.2) the relationship turns asymptotic
(Figs. 1C and 1D, Fig. S1). Due to this relationship, AMI values were low, regardless of the
scenario. Estimated values were far from 1, with a maximum of 0.134 for scenario 2 and
minimum of 0.014 for scenario 35 (Fig. 2, Table 1). The interpretation of these markedly
low AMI values irrespective of the scenario means both metrics seem to be unrelated and
do not share significant amounts of information (see Fig. 2). In practical terms, network
similarity (nodes and links) cannot be inferred or predicted from similitude at the species
level.

We also found a weak relationship between Bst/Bwn and GED across all scenarios
(Fig. 3, Table 2). Despite of this, AMI values were consistently higher for the relationship
between Bwy andGED (AMI from 0.008 to 0.156) than between Bst and GED (AMI from
~0 to 0.029). The maximum AMI value was observed when the cost of adding/deleting
nodes was lower than adding/deleting links (Table 2).
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Figure 1 Relationship between the similitude in species composition (1-Jaccard) and similarity of in-
teractions (1-GED) in grassland systems. (A) Flipping: 0.75, Add or delete nodes: 1, Add or delete links:
0, (B) Flipping: 0.75, Add or delete nodes: 0.75, Add or delete links: 0.25, (C) Flipping: 0.75, Add or delete
nodes: 0.25, Add or delete links: 0.75, (D) Flipping: 0.25, Add or delete nodes: 0, Add or delete links:1.

AMI values are included in each plot. Each point represents a pairwise comparison between food webs.
Full-size Gal DOI: 10.7717/peerj.7013/fig-1
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0.25, (B) Flipping 0.75.
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Figure 3 Relationship among the dissimilarity of interactions due to species turnover (Bsr), dissimi-
larity of interactions (Bwy) and Graph Edit Distance (1-GED) in grassland systems. (A) Flipping: 0.75,
Add or delete nodes: 1, Add or delete links: 0,25, (B) Flipping: 0.75, Add or delete nodes: 1, Add or delete
links: 0.50, (C) Flipping: 0.75, Add or delete nodes: 0.25, Add or delete links: 0.25, (D) Flipping: 0.75, Add
or delete nodes: 0.25, Add or delete links: 1.

Full-size &l DOI: 10.7717/peerj.7013/fig-3
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DISCUSSION

We found a weak relationship between community similarities measured using the Jaccard
and GED indices; the AMI values were far from those expected for both metrics equally
describing the communities. Similar results have been described by other studies in which
differences between similarity metrics (composition similarity—interaction similarity)
has been explained by phenomena such as changes in phenology (Edwards ¢~ Richardson,
2004), trophic interactions mediated by the presence of a third species, and changes in
abundance, behavior, or physiology (Burkle, Marlin ¢~ Knight, 2013; Poisot et al., 2012).
Undoubtedly, these phenomena confer variation to communities in different ways, and
thus affect the occurrence of both species and trophic interactions. In the same vein,
changes in climatic conditions can decouple the synchrony of ecological processes, such
as predator—prey interactions (Harrington, Woiwod ¢ Sparks, 1999; Thackeray et al., 2010).
This implies that short-term changes in species’ seasonal phenology could result in the
loss of some predator—prey interactions, thus impacting interaction similarities. Likewise,
mechanisms such as changes in species abundances and predator behavior can jointly affect
the trophic similarity of communities (Abrams, 1982; Arditi & Ginzburg, 2012). Examples
of these mechanisms include changes in abundances that affect predator—prey encounter
probabilities (Poisot, Stouffer & Gravel, 2015), and prey behavioral changes causing prey to
be less vulnerable given high predator densities (Charnov, 1976; Skalski ¢ Gilliam, 2001).
Thus, all these pieces of evidence suggest that species co-occurrence is necessary but not
the only factor that influences the occurrence of ecological interactions (Lopez et al., 2017;
Poisot et al., 2012; Thompson & Townsend, 1999).

Canard (2011) and Poisot et al. (2012) developed a similar approach based on f3-
diversity measure of dissimilarity, traditionally used to assess community similarity.
When comparing these methods with the approach presented here, results showed that
both approaches do not seem to share information (as reflected in AMI values). This could
suggest that, because of their different origin, both approaches are not measuring exactly
the same dimension of community similarity. However, GED values were significantly
more related to Bwy than to Bgt despite the cost scenario. This is not surprising because,
as it is calculated, Bwn contains to Bgr, so this apparent pattern is just a consequence of
Bst being a subset of Bwy. In this context, we think that a valuable advantage of using
GED is the flexibility of assigning different degrees of importance to species or interactions
in the network through differential costs for each type of edition (Bunke & Allermann,
1983; Emmert-Streib, Dehmer ¢ Shi, 2016). This characteristic of GED allows researchers
to focus the analysis into the specific components of their interest.

On the other hand, GED is a measure of the similarity between pairwise networks that
incorporates both species composition and the structure of interactions, this implies that
GED includes compositional metrics. In this vein, two communities with high values of
Jaccard would be also similar in functionality (high GED or similar paths of energy flows)
if and only if the occurrence of the species is strongly related to the occurrence of the
interactions.
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Recently, other authors have proposed a different approach to integrate compositional
and “interactional” community similarities (Schmidt, Rodrigues & Von Mering, 2017).

In this approach, species co-occurrences are used to infer biotic interactions, through
similarity-based network inference. This kind of inference includes constructing a network
from pairwise co-occurrences and/or mutual exclusion, and some metric is used to quantify
and determine the significance of the similarity of the pairwise distributions (Faust ¢ Raes,
20125 Schmidt, Rodrigues ¢ Von Mering, 2017). Despite the fact that these methods have
been successfully applied in microbial ecology, and their use has complemented the
information provided by standard analytical approaches (Barberdn et al., 2012; Cazelles
et al., 2016; Faust ¢ Raes, 2012; Freilich et al., 2018; Morales-Castilla et al., 2015; Schmidt,
Rodrigues & Von Mering, 2017), the utility of this method to analyze interactions at macro-
scales is questionable, mainly due to the independence between co-occurrence measures
and interactions (Akin ¢& Winemiller, 20065 Lopez et al., 2017; Poisot et al., 2012; Saavedra et
al., 2016; Thompson & Townsend, 1999). Some key restrictions of this theoretical framework
have been associated to its inability to exactly reproduce the interaction networks (Freilich
et al., 2018; Morales-Castilla et al., 2015), and that co-occurrences alone are not sufficient
to provide insight about the biotic interactions in these communities. As such, several
have noted the importance of directly collecting information of trophic interactions
when analyzing natural communities (Cazelles et al., 2016; Morales-Castilla et al., 2015).
This being said, collecting information about trophic interactions is expensive and time-
consuming, so in many cases the implementation of this kind of sampling is not possible.
Overall, given that metrics used to describe communities do not necessarily share significant
levels of information, researchers should clearly identify not only their research question,
but also the metrics (richness, composition, evenness, abundance, interactions) that best
describe the dimension of the community to be analyzed.

The method used in this study reveals the effect that trophic interactions have on
community similarity and highlights the constraints at analyzing community similarity
in one or a few ecological dimensions. Similarly, others have developed a new approach
to separate the effects of interactions in ecosystem functioning from those of species
composition (Jaillard et al., 2018). These authors have found that the effects of interactions
and composition are independent, but both contribute significantly to ecosystem
functioning. Thus, the direct interpretation of species interactions from co-occurrence
data remains controversial (Cazelles et al., 2016). In our case, and unlike microbial ecology
studies, it was not necessary to infer trophic interactions because they were directly
measured. Furthermore, here the AMI values confirmed that species co-occurrence and
interactions did not equally portray the similarity of the communities regardless of the
different cost scenarios assigned to the species and the structure of the interaction network.

The data analysis used in this study could be useful when interactions between species
should be inferred from co-occurrence data. In these cases, potential bias from assumed
relationships between composition and interactions could be avoided by attributing
different costs when calculating GED. For example, the impact of interaction similarities
on the whole similarity could be approximated by assigning different costs to link editions.
If the whole similarity is notoriously affected by link edition costs then co-occurrences
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and interactions are likely independent. Because the selection of a particular cost scenario
could be considered subjective, and so affect the global result of the analysis, we think that
following some simple criteria can reduce this subjectiveness. In our case and following the
point of view of an ecologist, the deletion of a node in a network can reflect the temporal
extinction of a species, and an addition reflects the opposite. The same can be applied to
links that represent interactions. We considered that deleting or adding links to a network
has a lower cost due to the high variability of the analyzed trophic interactions over time
(Lopez et al., 2017), and because the presence of an interaction depends hierarchically on
species composition (a given interaction occurs if and only if both interacting species
co-occur). The flipping of an interaction was attributed a higher cost, because this edition
changes the hierarchy of the consumer-resource interactions and the direction of energy
transfer within the network, which is an ecologically costly and rare phenomenon.

In the ecological literature some level of association between state variables like richness,
abundances, species composition, or biomass is usually assumed; however, many of these
variables does not show robust association patterns (Edwards ¢ Richardson, 2004; Poisot et
al., 20125 Pool et al., 2016). The poor association between the similarity indices shown in
this study reinforces the idea that each state variable represents a different dimension of
natural systems. Future studies could take advantages of methods like those used in this

study to ensure the robust assessment of the similitude of natural systems.

CONCLUSIONS

In summary, our results show: (a) a weak relationship between measures of similarity using
only the species composition and that those include composition and interactions, evidence
the need of adding structural relationships to the similarity measure and (b) GED can be
advantageous in the analysis of networks and ecological communities due to its flexibility
in assigning different cost schemes depending of the researcher interest. A more practical
consequence of our results is a cautionary note on community-level interpretation of
similarity. In the analysis of ecological communities, it is commonly assumed that different
sites, assemblages, or communities can be considered replicates. However, the question
that arises is how similar must communities be in terms of any state variable to represent
an adequate replicate of the system?

Finally, our results show that graph edit distance (GED) might be a valuable metric for
the analysis of ecological communities. The use of an integrated measure that allows us to
incorporate information of the composition and interaction structure of communities is
useful for effectively establishing whether two communities, rather than operational units,
could be considered as equivalent ecological systems. Our results further give warning about
the need to account for the particularities of the multiple state variables that represent
dimensions of ecological systems.

Lopez et al. (2019), PeerdJ, DOI 10.7717/peerj.7013 14/19


https://peerj.com
http://dx.doi.org/10.7717/peerj.7013

Peer

ACKNOWLEDGEMENTS

We thank the Interaction Web Database of National Center for Ecological Analysis and
Synthesis (https://www.nceas.ucsb.edu/interactionweb/) at the University of California,
Santa Barbara, USA.

ADDITIONAL INFORMATION AND DECLARATIONS

Funding

Financial support was provided by CONICYT Grant N° 21140959 (DNL), FONDECYT N°
1040425 (PAC), 1190529 (Nelson Valdivia), 1160370 (SAE) and to the Center of Applied
Ecology and Sustainability (CAPES) CONICYT PIA/BASAL FB0002 (SAE). Nelson Valdivia
was supported by FONDAP IDEAL grant N° 15150003. The funders had no role in study
design, data collection and analysis, decision to publish, or preparation of the manuscript.

Grant Disclosures

The following grant information was disclosed by the authors:

CONICYT: N° 21140959.

FONDECYT: N° 1040425, 1190529, 1160370.

Center of Applied Ecology and Sustainability (CAPES) CONICYT PIA/BASAL: FB0002.
FONDAP IDEAL: N° 15150003.

Competing Interests
The authors declare there are no competing interests.

Author Contributions

e Daniela N. Lopez analyzed the data, contributed reagents/materials/analysis tools,
prepared figures and/or tables, authored or reviewed drafts of the paper, approved the
final draft.

e Patricio A. Camus and Nelson Valdivia contributed reagents/materials/analysis tools,
authored or reviewed drafts of the paper, approved the final draft.

e Sergio A. Estay analyzed the data, contributed reagents/materials/analysis tools, authored
or reviewed drafts of the paper, approved the final draft.

Data Availability
The following information was supplied regarding data availability:

The datasets are available in Dataset S1. The original data set is available at the Web
Database of the National Center for Ecological Analysis and Synthesis (NCEAS), at the
University of California, Santa Barbara, USA.

(https://www.nceas.ucsb.edu/interactionweb/html/thomps_towns.html).

Supplemental Information
Supplemental information for this article can be found online at http://dx.doi.org/10.7717/
peerj.7013#supplemental-information.

Lopez et al. (2019), PeerdJ, DOI 10.7717/peerj.7013 15/19


https://peerj.com
https://www.nceas.ucsb.edu/interactionweb/
http://dx.doi.org/10.7717/peerj.7013#supplemental-information
https://www.nceas.ucsb.edu/interactionweb/html/thomps_towns.html
http://dx.doi.org/10.7717/peerj.7013#supplemental-information
http://dx.doi.org/10.7717/peerj.7013#supplemental-information
http://dx.doi.org/10.7717/peerj.7013

Peer

REFERENCES

Abrams PA. 1982. Functional responses of optimal foragers. American Naturalist
120(3):382-390 DOI 10.1086/283996.

Akin S, Winemiller KO. 2006. Seasonal variation in food web composition and
structure in a temperate tidal estuary. Estuaries and Coasts 29(4):552-567
DOI 10.1007/BF02784282.

Anderson MJ, Ellingsen KE, McArdle BH. 2006. Multivariate dispersion as a measure of
beta diversity. Ecology Letters 9(6):683—693 DOI 10.1111/j.1461-0248.2006.00926.x.

Arditi R, Ginzburg LR. 2012. How species interact: altering the standard view on trophic
ecology. New York: Oxford University Press DOI 10.1086/669300.

Barberan A, Bates ST, Casamayor E, Fierer N. 2012. Using network analysis to explore
co-occurrence patterns in soil microbial communities. Multidisciplinary Journal of
Microbial Ecology 6(2):343-351 DOI 10.1038/ismej.2011.119.

Barwell L], Isaac NJB, Kunin WE. 2015. Measuring -diversity with species abundance
data. Journal of Animal Ecology 84(4):1112-1122 DOI 10.1111/1365-2656.12362.

Baselga A. 2010. Partitioning the turnover and nestedness components of beta diversity.
Global Ecology and Biogeography 19(1):134-143
DOI10.1111/j.1466-8238.2009.00490.x.

Baselga A. 2012. The relationship between species replacement, dissimilarity
derived from nestedness, and nestedness. Global Ecology and Biogeography
21(12):1223-1232 DOI 10.1111/j.1466-8238.2011.00756.x.

Bezemer TM, Fountain MT, Barea JM, Christensen S, Dekker SC, Duyts H, Van Hal
R, Harvey JA, Hedlund K, Maraun M. 2010. Divergent composition but similar
function of soil food webs of individual plants: plant species and community effects.
Ecology 91(10):3027-3036 DOI 10.1890/09-2198.1.

Bunke H. 1983. What is the distance between graphs. Bulletin of the European Association
for Theoretical Computer Science 20:35-39.

Bunke H, Allermann G. 1983. Inexact graph matching for structural pattern recognition.
Pattern Recognition Letters 1(4):245-253 DOI 10.1016/0167-8655(83)90033-8.

Burkle LA, Marlin JC, Knight TM. 2013. Plant—pollinator interactions over 120
years: loss of species, co-occurrence, and function. Science 339(6127):1611-1615
DOI10.1126/science.1232728.

Canard E. 2011. Espace et neutralite dans les reseaux d’ interactions ecologiques. PhD
thesis, Universite Montpellier.

Cazelles K, Aratijo MB, Mouquet N, Gravel D. 2016. A theory for species co-occurrence
in interaction networks. Theoretical Ecology 9(1):39—48
DOI 10.1007/s12080-015-0281-9.

Charnov EL. 1976. Optimal foraging, the marginal value theorem. Theoretical Population
Biology 9:129-136 DOI 10.1016/0040-5809(76)90040-X.

Dehmer M. 2010. Structural analysis of complex networks. New York: Springer Science &
Business Media DOI 10.1007/978-0-8176-4789-6.

Lopez et al. (2019), PeerJ, DOI 10.7717/peerj.7013 16/19


https://peerj.com
http://dx.doi.org/10.1086/283996
http://dx.doi.org/10.1007/BF02784282
http://dx.doi.org/10.1111/j.1461-0248.2006.00926.x
http://dx.doi.org/10.1086/669300
http://dx.doi.org/10.1038/ismej.2011.119
http://dx.doi.org/10.1111/1365-2656.12362
http://dx.doi.org/10.1111/j.1466-8238.2009.00490.x
http://dx.doi.org/10.1111/j.1466-8238.2011.00756.x
http://dx.doi.org/10.1890/09-2198.1
http://dx.doi.org/10.1016/0167-8655(83)90033-8
http://dx.doi.org/10.1126/science.1232728
http://dx.doi.org/10.1007/s12080-015-0281-9
http://dx.doi.org/10.1016/0040-5809(76)90040-X
http://dx.doi.org/10.1007/978-0-8176-4789-6
http://dx.doi.org/10.7717/peerj.7013

Peer

Devictor V, Mouillot D, Meynard C, Jiguet F, Thuiller W, Mouquet N. 2010. Spatial
mismatch and congruence between taxonomic, phylogenetic and functional
diversity: the need for integrative conservation strategies in a changing world. Ecology
Letters 13(8):1030-1040 DOT 10.1111/j.1461-0248.2010.01493.

Edwards M, Richardson AJ. 2004. Impact of climate change on marine pelagic phenol-
ogy and trophic mismatch. Nature 430(7002):881-884 DOI 10.1038/nature02808.

Emmert-Streib F, Dehmer M, Shi Y. 2016. Fifty years of graph matching, net-
work alignment and network comparison. Information Sciences 346:180-197
DOI 10.1016/.ins.2016.01.074.

Faust K, Raes J. 2012. Microbial interactions: from networks to models. Nature Reviews
Microbiology 10(8):538-550 DOT 10.1038/nrmicro2832.

Freilich MA, Wieters E, Broitman BR, Marquet PA, Navarrete SA. 2018. Species co-
occurrence networks: can they reveal trophic and non-trophic interactions in
ecological communities? Ecology 99(3):690-699 DOI 10.1002/ecy.2142.

Harrington R, Woiwod I, Sparks T. 1999. Climate change and trophic interactions.
Trends in Ecology ¢ Evolution 14(4):146—150 DOI 10.1016/50169-5347(99)01604-3.

Ibragimov R, Malek M, Guo J, Baumbach J. 2013. GEDEVO: an evolutionary graph
edit distance algorithm for biological network alignment. In: OASIcs-OpenAccess
Series in Informatics. Germany: Schloss Dagstuhl-Leibniz-Zentrum fuer Informatik
DOI 10.4230/0OASIcs.GCB.2013.68.

Jaarsma NG, De Boer SM, Townsend CR, Thompson RM, Edwards ED. 1998. Charac-
terising food-webs in two New Zealand streams. New Zealand Journal of Marine and
Freshwater Research 32(2):271-286 DOI 10.1080/00288330.1998.9516825.

Jaillard B, Richon C, Deleporte P, Loreau M, Violle C. 2018. An a posteriori species clus-
tering for quantifying the effects of species interactions on ecosystem functioning.
Methods in Ecology and Evolution 9(3):704-715 DOT 10.1111/2041-210X.12920.

Koleff P, Gaston KJ, Lennon JJ. 2003. Measuring beta diversity for presence—absence
data. Journal of Animal Ecology 72(3):367—382 DOI 10.1046/j.1365-2656.2003.00710.x.

Lopez DN, Camus PA, Valdivia N, Estay SA. 2017. High temporal variability in the
occurrence of consumer-resource interactions in ecological networks. Oikos
126(12):1699-1707 DOI 10.1111/01k.04285.

Malek M. 2015. CytoGEDEVO: A Cytoscape app for fast and interactive network
alignment. Master Thesis, Saarland University. Germany 82.

Meyer PE. 2014. Infotheo: Information-Theoretic Measures. R package version, 1(0).
Available at http:// CRAN.R-project.org/ package=infotheo.

Morales-Castilla I, Matias MG, Gravel D, Araijo MB. 2015. Inferring biotic
interactions from proxies. Trends in Ecology & Evolution 30(6):347—356
DOI 10.1016/j.tree.2015.03.014.

Morlon H, Kefi S, Martinez ND. 2014. Effects of trophic similarity on community
composition. Ecology Letters 17(12):1495-1506 DOI 10.1111/ele.12356.

Neyshabur B, Khadem A, Hashemifar S, Arab SS. 2013. NETAL: a new graph-based
method for global alignment of protein—protein interaction networks. Bioinformatics
29(13):1654—-1662 DOI 10.1093/bioinformatics/btt202.

Lopez et al. (2019), PeerJ, DOI 10.7717/peerj.7013 17119


https://peerj.com
http://dx.doi.org/10.1111/j.1461-0248.2010.01493
http://dx.doi.org/10.1038/nature02808
http://dx.doi.org/10.1016/j.ins.2016.01.074
http://dx.doi.org/10.1038/nrmicro2832
http://dx.doi.org/10.1002/ecy.2142
http://dx.doi.org/10.1016/S0169-5347(99)01604-3
http://dx.doi.org/10.4230/OASIcs.GCB.2013.68
http://dx.doi.org/10.1080/00288330.1998.9516825
http://dx.doi.org/10.1111/2041-210X.12920
http://dx.doi.org/10.1046/j.1365-2656.2003.00710.x
http://dx.doi.org/10.1111/oik.04285
http://CRAN.R-project.org/package=infotheo
http://dx.doi.org/10.1016/j.tree.2015.03.014
http://dx.doi.org/10.1111/ele.12356
http://dx.doi.org/10.1093/bioinformatics/btt202
http://dx.doi.org/10.7717/peerj.7013

Peer

Oksanen J, Blanchet FG, Michael F, Kindt R, Legendre P, McGlinn DP, Minchin
PR, O’hara RB, Simpson G, Solymos P, Stevens MH, Szoecs E, Wagner H. 2013.
Package ‘vegan’ Community ecology package. 2(9).

Olden JD, Poff NL, Douglas MR, Douglas ME, Fausch KD. 2004. Ecological and evo-
lutionary consequences of biotic homogenization. Trends in Ecology and Evolution
19(1):18-24 DOI 10.1016/j.tree.2003.09.010.

Petchey OL, Gaston K]J. 2006. Functional diversity: back to basics and looking forward.
Ecology Letters 9(6):741-758 DOI 10.1111/j.1461-0248.2006.00924.x.

Poisot T, Canard E, Mouillot D, Mouquet N, Gravel D, Jordan F. 2012. The dis-
similarity of species interaction networks. Ecology Letters 15(12):1353-1361
DOI 10.1111/ele.12002.

Poisot T, Stouffer DB, Gravel D. 2015. Beyond species: why ecological interaction
networks vary through space and time. Oikos 124(3):243-251
DOI 10.1111/0ik.01719.

Pool TK, Cucherousset J, Boulétreau S, Villéger S, Strecker AL, Grenouillet G.

2016. Increased taxonomic and functional similarity does not increase the
trophic similarity of communities. Global Ecology and Biogeography 25(1):46-54
DOI 10.1111/geb.12384.

R Development Core Team. 2016. R: A language and environment for statistical
computing. Vienna, Austria: R Foundation for Statistical Computing.

Riesen K. 2015. Structural pattern recognition with graph edit distance: approximation
algorithms and applications. Switzerland: Springer DOI 10.1007/978-3-319-27252-8.

Saavedra S, Rohr RP, Fortuna MA, Selva N, Bascompte J. 2016. Seasonal species inter-
actions minimize the impact of species turnover on the likelihood of community
persistence. Ecology 97(4):865-873 DOI 10.1890/15-1013.1.

Schmidt TSB, Rodrigues JEM, Von Mering C. 2017. A family of interaction-adjusted
indices of community similarity. Multidisciplinary Journal of Microbial Ecology
11(3):791-807 DOI 10.1890/15-1013.1.

Shannon P, Markiel A, Ozier O, Baliga NS, Wang JT, Ramage D, Amin N, Schwikowski
B, Ideker T. 2003. Cytoscape: a software environment for integrated models
of biomolecular interaction networks. Genome Research 13(11):2498-2504
DOI'10.1101/gr.1239303.

Skalski GT, Gilliam JF. 2001. Functional responses with predator interference:
viable alternatives to the holling type II model. Ecology 82(11):3083-3092
DOI10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2.

Solé-Ribalta A, Serratosa F, Sanfeliu A. 2012. On the graph edit distance cost: properties
and applications. International Journal of Pattern Recognition and Artificial Intelli-
gence 26(05):1260004 DOI 10.1142/5021800141260004X.

Strona G, Matthews TJ, Kortsch S, Veech JA. 2018. NOS: a software suite to compute
node overlap and segregation in ecological networks. Ecography 41(3):558—566
DOI'10.1111/ecog.03447.

Lopez et al. (2019), PeerJ, DOI 10.7717/peerj.7013 18/19


https://peerj.com
http://dx.doi.org/10.1016/j.tree.2003.09.010
http://dx.doi.org/10.1111/j.1461-0248.2006.00924.x
http://dx.doi.org/10.1111/ele.12002
http://dx.doi.org/10.1111/oik.01719
http://dx.doi.org/10.1111/geb.12384
http://dx.doi.org/10.1007/978-3-319-27252-8
http://dx.doi.org/10.1890/15-1013.1
http://dx.doi.org/10.1890/15-1013.1
http://dx.doi.org/10.1101/gr.1239303
http://dx.doi.org/10.1890/0012-9658(2001)082[3083:FRWPIV]2.0.CO;2
http://dx.doi.org/10.1142/S021800141260004X
http://dx.doi.org/10.1111/ecog.03447
http://dx.doi.org/10.7717/peerj.7013

Peer

Strona G, Veech JA. 2015. A new measure of ecological network structure based on
node overlap and segregation. Methods in Ecology and Evolution 6(8):907-915
DOI10.1111/2041-210X.12395.

Thackeray SJ, Sparks TH, Frederiksen M, Burthe S, Bacon PJ, Bell JR, Botham MS,
Brereton T, Bright PW, Carvalho L, Clutton-Brock TIM, Dawson A, Edwards M,
Elliott JM, Harrington R, Johns D, Jones I, Jones JT, Leech DI, Roy DB, Scott WA,
Smith M, Smithers RJ, Winfield I, Wanless S. 2010. Trophic level asynchrony in
rates of phenological change for marine, freshwater and terrestrial environments.
Global Change Biology 16(12):3304-3313 DOIT 10.1111/j.1365-2486.2010.02165.x.

Thompson RM, Townsend CR. 1999. The effect of seasonal variation on the community
structure and food-web attributes of two streams: implications for food-web science.
Oikos 87:75-88 DOI 10.2307/3546998.

Thompson RM, Townsend CR. 2000. Is resolution the solution? the effect of taxonomic
resolution of three stream food webs on the calculated properties. Freshwater Biology
44(3):413-422 DOI 10.1046/j.1365-2427.2000.00579.x.

Thompson RM, Townsend CR. 2003. Impacts on stream food webs of native
and exotic forest: an intercontinental comparison. Ecology 84(1):145-161
DOI10.1890/0012-9658(2003)084[0145:I0SFW0]2.0.CO;2.

Thompson RM, Townsend CR. 2005. Energy availability, spatial heterogeneity and
ecosystem size predict food-web structure in streams. Oikos 108(1):137-148
DOI10.1111/j.0030-1299.2005.11600.x.

Trojelsgaard K, Jordano P, Carstensen DW, Olesen JM. 2015. Geographical variation
in mutualistic networks: similarity, turnover and partner fidelity. Proceedings of the
Royal Society B: Biological Sciences 282(1802):1-9 DOIT 10.1098/rspb.2014.2925.

Vinh NX, Epps J, Bailey J. 2010. Information theoretic measures for clusterings com-
parison: variants, properties, normalization and correction for chance. Journal of
Machine Learning Research 11:2837-2854
DOI 10.1098/rspb.2014.2925/10.1145/1553374.1553511.

Whittaker RH. 1960. Vegetation of the Siskiyou mountains, Oregon and California.
Ecological Monographs 30(3):279-338 DOI 10.2307/1943563.

Whittaker RH. 1972. Evolution and measurement of species diversity. Taxon
21(2/3):213-251 DOT 10.2307/1218190.

Wilson MV, Shmida A. 1984. Measuring beta diversity with presence-absence data. The
Journal of Ecology 72(3):1055-1064 DOI 10.2307/2259551.

Zhang S, Liu H, Ning X, Zhang X, Xu Y, Liu P, Li X, Ren W, Van Mieghem P, Omic J,
Poulin R, Montoya JM, Sole RV, Lu X, Gray C, Brown LE, Ledger ME, Milner AM,
Mondragén RJ, Woodward G, Ma A, Lii L, Chen D, Ren XL, Zhang QM, Zhang YC,
Zhou T, Lo CM, Morand S, Galzin R, Estudio P, Arneberg P, Skorping A, Grenfell
B, Read AF. 2016. Vital nodes identification in complex networks. Physics Reports
650:1-63 DOI 10.1155/2014/407639.

Lopez et al. (2019), PeerdJ, DOI 10.7717/peerj.7013 19/19


https://peerj.com
http://dx.doi.org/10.1111/2041-210X.12395
http://dx.doi.org/10.1111/j.1365-2486.2010.02165.x
http://dx.doi.org/10.2307/3546998
http://dx.doi.org/10.1046/j.1365-2427.2000.00579.x
http://dx.doi.org/10.1890/0012-9658(2003)084[0145:IOSFWO]2.0.CO;2
http://dx.doi.org/10.1111/j.0030-1299.2005.11600.x
http://dx.doi.org/10.1098/rspb.2014.2925
http://dx.doi.org/10.1098/rspb.2014.2925/10.1145/1553374.1553511
http://dx.doi.org/10.2307/1943563
http://dx.doi.org/10.2307/1218190
http://dx.doi.org/10.2307/2259551
http://dx.doi.org/10.1155/2014/407639
http://dx.doi.org/10.7717/peerj.7013

