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ABSTRACT
In plants and nematodes, RNAi can spread from cells from which it is initiated to
other cells in the organism. The underlying mechanism controlling the mobility of
RNAi signals is not known, especially in the case of plants. A genetic screen designed
to recover plants impaired in the movement but not the production or effectiveness
of the RNAi signal identified RCI3, which encodes a hydrogen peroxide (H2O2)-
producing type III peroxidase, as a key regulator of silencing mobility in Arabidopsis
thaliana. Silencing initiated in the roots of rci3 plants failed to spread into leaf tissue
or floral tissue. Application of exogenous H2O2 reinstated the spread in rci3 plants
and accelerated it in wild-type plants. The addition of catalase or MnO2, which
breaks down H2O2, slowed the spread of silencing in wild-type plants. We propose
that endogenous H2O2, under the control of peroxidases, regulates the spread of gene
silencing by altering plasmodesmata permeability through remodelling of local cell
wall structure, and may play a role in regulating systemic viral defence.

Subjects Cell Biology, Developmental Biology, Molecular Biology, Plant Science
Keywords Mobile silencing, Arabidopsis, Type III peroxidase, Peroxide, Plasmodesmata, Catalase,
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INTRODUCTION
Growth and development in multi-cellular organisms is co-ordinated by local and

long-distance communication between cells and tissues. In plants, signaling molecules,

including RNAs, are transported locally between cells, and long-distance in the phloem to

provide developmental and defence information (Lough & Lucas, 2006; Sparks, Wachsman

& Benfey, 2013). Small RNAs are critical regulators of plant development and defense, and

can be mobile. For example, the endogenous miRNAs miR165/6, tasiRNA (tasiR-ARF),

and miR394 serve as morphogen-like signals, forming gradients to determine cell fate

during leaf and root development (Chitwood et al., 2009; Carlsbecker et al., 2010; Skopelitis,

Husbands & Timmermans, 2012; Knauer et al., 2013). Plant virus-induced small interfering

RNAs (siRNAs) can also move throughout the plant from the original site of infection

to prime the defence mechanism against further virus invasion (Nelson & Citovsky, 2005;

Voinnet, 2005).

Small interfering RNAs derived from transgenic hairpin RNAs also spread both locally

and over long distances (Palauqui et al., 1997; Voinnet & Baulcombe, 1997; Himber

et al., 2003; Brosnan et al., 2007; Liang, White & Waterhouse, 2012). Experiments in
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Arabidopsis thaliana showed that these siRNAs will move from rootstocks expressing a

hairpin RNA targeting a green fluorescent protein (GFP) sequence across graft junctions

to silence GFP expression in grafted shoot tissue (Brosnan et al., 2007). Although the

hairpin-derived silencing signals generated in roots have been shown to move gradually

from cell to cell into the shoot, rather than moving through the phloem (Liang, White &

Waterhouse, 2012), the factors controlling silencing mobility in plants are unknown.

In the nematode Coenorhabditis elegans, the movement of silencing signals is facilitated

by the dsRNA-channels SID-1 and SID-2 (Winston, Molodowitch & Hunter, 2002; Feinberg

& Hunter, 2003), but there is no clear homologue in Arabidopsis. Instead, the spread of

silencing in plants is thought to be regulated, in part, by transport through plasmodesmata

(PD), the channels that link the cytoplasm of adjacent plant cells, although direct

genetic evidence is lacking (Melnyk, Molnar & Baulcombe, 2011). We sought to identify

components that influence RNAi mobility in plants using a mutagenesis approach.

MATERIALS AND METHODS
EMS (ethyl methane sulfonate) mutagenesis and screening
As our starting material we used a transgenic Arabidopsis thaliana line, RtSS (Root to Shoot

Silencing), in which 35S-GFP is expressed in all tissues. This line also expresses a root-

specific promoter from tobacco, TobRb7, which controls the expression of LhG4-GR in the

cell cytoplasm. When Dexamethasone (Dex) is present, the transcriptional activator, GR,

enters the nucleus and binds to the 6xOp promoter, inducing bidirectional transcription

of a GFP-silencing hairpin, hpGF, together with a GUS reporter, as described previously

(Liang, White & Waterhouse, 2012). GFP silencing was then monitored using both fluo-

rescence dissecting (Leica MZFLIII or Zeiss Stereo Lumar) and compound microscopes

(Zeiss Axioimager) (Liang, White & Waterhouse, 2012), and all images were assembled and

adjusted using Adobe Photoshop. EMS mutagenesis of RtSS was essentially performed as

described by Kim, Schumaker & Zhu (2006). Initial trials showed that most of the potential

mutants could not transmit the phenotype to the next generation. Hence, we used a higher

concentration of EMS (2.5% ethanol and 0.6% EMS) to generate the M1 plants that

formed the basis of this mutant screen. We pooled 200–300 M1 plants to provide M2 seeds.

Around 100–150 M2 seeds were sown in each plate (150 cm2) onto 10 µM Dex-containing

MS medium, grown for three weeks, then transferred to soil to screen for shoot silencing.

In total, we screened 90,000 M2 seedlings derived from 110,000 M1 seeds, and identified

93 individual M2 plants showing root silencing but with no shoot silencing or very delayed

shoot silencing. Potential mutants were allowed to self-fertilise for at least three genera-

tions to exclude environmental influences. Only one mutant, M397, showed stable genetic

inheritance of the delayed silencing phenotype in 5 continuous self-fertilised generations.

Genome sequencing and genetic mapping
Both the M4 generation of M397 and the parent RtSS plants were subjected to Next

Generation Sequencing using a protocol provided by the Australian Genome Research
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Facility (AGRF NGS Submission Guide). A total of 2.56 Gb and 5.60 Gb Paired-End

100-bp sequence was generated using the Illumina Hiseq-2000 platform for M397 and

RtSS, respectively. Primers used are listed in Table S1. Bioinformatic analyses identified

4,522 and 7,470 potential SNPs from each genome, respectively, compared to the reference

wild-type Columbia genome. Genetic tests showed M397 to be a single recessive mutant,

therefore we reduced the total unique homozygous SNPs between M397 and the parent

RtSS to 1,551 (File S1). We next used these SNPs to map the mutation in F3 families

by Sanger sequencing, which showed that the mutation was strongly associated with

Chr. 1 according to Wright’s fixation index with Fst > 0.1 (Wright, 1965) (Fig. S1). We

then selected 20 SNPs across Chr.1 to genotype all 142 F3 families. A linkage group

was constructed on Chr.1 by calculating the allele frequency (Fig. S1). Only one SNP

(AT1G05260, Chr. 1 position: 1530461; G to A) showed 100% frequency. Further genetic

complementation confirmed that this SNP was the causal mutation.

H2O2 detection and breakdown
The H2O2-specific fluorescent probes, Peroxy Orange 1 (PO1, SML0688-5MG; Sigma)

(Dickinson, Huynh & Chang, 2010) and 2,7-dichlorodihydrofluorescein diacetate (H2

DCFDA, D6883-250MG; Sigma) (Kristiansen et al., 2009) were used to detect H2O2 in

RtSS and wild-type Columbia and in rci3-1 and rci3-2 mutants. Roots of 10 to 13-day old

plants were placed into 1.5 cm diameter wells, made with a core-borer, in MS agar medium.

Each well was then filled with 100 µl of 50 µM PO1 (diluted from 5 mM stock solution in

DMSO into pH 6.4 perfusion solution Brauer et al., 1996), to submerge the roots. Plates

were then sealed with parafilm and placed into growth rooms (16 h light/8 h dark at 22 ◦C)

and stained overnight. After 16–18 h of staining, plants were briefly rinsed with water

before beginning the longitudinal sectioning and observation using a Zeiss Axioimager

fluorescence microscope with a DsRed filter to detect the PO1 signal, and an AF488 filter to

detect GFP and chlorophyll autofluorescence. Identical camera and software settings were

used for all images. Fluorescence intensity over each hypocotyl was measured using ImageJ

(http://rsb.info.nih.gov/ij/), and statistical significance was assessed using a Student’s t test,

as in Dickinson, Huynh & Chang (2010).

Treatments to modify PD or peroxide levels
Treatment media were prepared by adding chemicals directly to warm liquid MS agar

medium. For H2O2 treatment, aliquots of 35% stock solution (Sigma, 349887-500ML)

were added to Dex-containing MS agar medium just prior to setting. Catalase was

filter-sterilized and added to near room temperature MS medium from 100 mg/ml stock

in 50 mM potassium phosphate to give a final concentration of 1 mg/ml. For MnO2

treatment, approximately 1 g autoclaved MnO2 (529664-5G) powder was sprinkled onto

the surface of Dex-containing MS medium before seeds were sown. For n-ethyl maleimide

(NEM) treatment, plants germinated on medium with or without Dex for 4 days were

transferred to 50 µM or 100 µM NEM-containing MS medium, with corresponding Dex

treatment. Control plants were transferred to normal MS medium, and other controls

were never treated with Dex. The number of plants showing silencing were recorded,
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providing binary data (presence or absence of silencing) which were subjected to logistic

regression analysis. Odds ratios greater than 1.0 indicate that a treatment is more likely to

induce silencing than in controls, while odds ratios less than 1.0 indicate that a treatment

is less likely to induce silencing, at calculated levels of significance (p value). In cases where

percentage data were used to compare two treatments, the Wilcoxon signed rank test was

applied to assess the significance of observed differences.

RESULTS
Implementation and spread of RNAi can be genetically uncoupled
To investigate genetic factors involved in regulating silencing mobility, we generated a

Root-to-Shoot mobile Silencing System (RtSS) in which a green fluorescent protein

(GFP) reporter transgene is expressed throughout the plant but is specifically silenced

in root tissue following the application of Dex. The system, triggered by localized hairpin

RNA expression in the roots, generates a signal that moves cell-to-cell from the root,

through the hypocotyl and into the shoot, visibly silencing the green fluorescence (Liang,

White & Waterhouse, 2012). Treating seed from our RtSS line (T5 generation) with a

chemical mutagen (EMS) and screening the Dex-induced progeny yielded plant lines with

accelerated, retarded or abolished spread of silencing into the shoot tissue. From 110,000

seeds, 93 lines displayed root silencing that failed to spread into the shoots. The silencing

in the root tissue demonstrated that components of the RNAi generation mechanism

had not been compromised in these mutants and that they were likely to be defective in

either signal mobility or the ability to respond to the signal. Of these lines, one showed

stable inheritance of the trait for 5 generations. Longitudinal sections (Fig. 1A) revealed

that the induction and initial shootward spread of silencing at the base of the hypocotyl

in the mutant and wild-type RtSS plants were almost indistinguishable up to 5 days post

induction (dpi). However, at 11 dpi there was a marked difference in spread, and by 21

dpi all of the wild-type RtSS plants but none of the mutant plants displayed silencing in

the rosette leaves (Fig. 1 and Figs. S2E, S2F). In the wild-type, the silencing front migrated

from the root-hypocotyl junction to the hypocotyl-epicotyl junction at a rate of 373 ± 65

µm per day (N = 9, similar to the rate of 377 ± 96, N = 12, observed in Liang, White &

Waterhouse (2012)), whereas in the mutant this was reduced to 110 ± 20 µm (N = 9) per

day. Once the silencing front reached the hypocotyl-epicotyl junction, it migrated slowly

towards the meristem at a rate of 56 ± 22 µm per day (N = 14) in the wild-type (Liang,

White & Waterhouse, 2012), which was reduced to 20 ± 7 µm per day (N = 9) in the

mutant. The rate of spread in the epicotyl of the mutant was so slow that the silencing front

never reached the shoot apical meristem, and as a result neither the rosette leaves nor the

floral bolt were silenced.

In Arabidopsis grafts or RtSS constructs, the silencing hairpin construct in the roots,

which is against the first 400-bp fragment (the GF fragment) of the GFP gene, shows

transitivity, such that silencing siRNAs in the graft scion or RtSS shoot are mostly against

the 3′ region of the gene (the P fragment) (Brosnan et al., 2007; Liang, White & Waterhouse,

2012). The roots contain both GF- and P-derived siRNAs (Liang, White & Waterhouse,
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Figure 1 Silencing progress in mutant and wild-type RtSS Arabidopsis lines. (A) Median longitudinal
sections of 5-, 11- and 21-day-old and intact 27-day-old RtSS germinated and grown on Dex-containing
medium. (B) Median longitudinal sections of 5-, 11-, and 21-day-old and intact 27-day-old rci3-2 germi-
nated and grown on Dex. Arrowheads, hypocotyl-epicotyl junction; dashed line, root-hypocotyl junction;
long arrows indicate the extent of silencing; stem, floral bolt stem. Bar = 200 µM for 5–21-day-old plants;
1 cm for 27-day-old plants. (C) Small RNA northern blot of root and shoot tissue from WT-RtSS and
rci3-2 plants showing hairpin-derived secondary small RNA targeting the “P” region of GFP mRNA in
all Dex-induced tissues except rci3-2 shoots. U6, loading control.

2012). The abundant P region-derived siRNAs in both wild-type RtSS and mutant roots,

and their presence in RtSS but not in the mutant shoots, confirmed that the mutants could

generate but not mobilise these silencing signals (Fig. 1B). Apart from the reduced spread

of Dex-induced silencing, mutant plants were phenotypically almost indistinguishable

from wild-type plants, and showed normal induction of GUS expression by Dex (Fig. S3).
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RCI3 (Rare Cold Inducible 3), a type III peroxidase, is required for
mobile RNAi
In order to identify the mutated gene responsible for this loss of silencing spread into

aerial tissues, we backcrossed our homozygous mutant line with its wild-type RtSS parent,

deep sequenced the parental lines, and deep sequenced a pool of 44 F2 plants expressing

the mutant phenotype. We identified 1,551 single nucleotide polymorphisms (SNPs)

between the parental wild-type RtSS and the mutant (Table S1, Fig. S1), and mapped

the mutation to the top arm of chromosome 1 between nucleotide position 863625 and

17192682. Further Sanger sequencing analysis using 20 SNPs and 12 F3 families refined

this to a zone between SNP markers 1g001 and 1g012 (Table S1, Fig. S1) and ultimately

to one mutation, at 1530461, in the RCI3 gene (At1g05260), which encodes a type III

peroxidase. The mutation causes an Arg145 to Lys substitution in a motif of the protein

that is highly conserved from bryophytes to eudicots (Attwood et al., 1994) (Fig. 2A) and

substitution of this amino acid within the invariant GRRDG sequence seemed highly likely

to compromise the function of the enzyme (Welinder et al., 2002). To confirm that this was

the cause of the significantly slowed silencing spread, we re-introduced a functional copy

of RCI3 into the mutant background. A 4.5 kb genomic fragment containing the wild-type

promoter, coding region and terminator sequence was used and restored root-to-shoot

mobile silencing in 14 out of 20 transformants (Fig. S4). This demonstrates that RCI3 is

required for silencing mobility in Arabidopsis.

H2O2 is an endogenous signal that regulates mobile RNAi
RCI3 is involved in the production of reactive oxygen species (ROS) (Llorente et al., 2002;

Kim, Ciani & Schachtman, 2010), so we analyzed our mutant (now termed rci3-2) and

rci3-1 (Kim, Ciani & Schachtman, 2010), a T-DNA insertion mutant, with H2O2-detecting

dyes (Dickinson, Huynh & Chang, 2010). This revealed that H2O2 is endogenously

produced and readily detectable in the wild-type RtSS parental line, whereas it is barely

detectable in rci3-1 and almost undetectable in rci3-2 plants (Fig. 2B and Fig. S5).

Overexpression of RCI3 increases ROS production (Kim, Ciani & Schachtman, 2010);

therefore, we wondered whether treatment with H2O2 could restore silencing spread in

rci3-2 plants. Although slower to reach the shoots than in wild-type RtSS plants, 42 of

46 Dex-induced rci3-2 plants treated with 1.5 mM H2O2 displayed shoot silencing by 36

dpi (Figs. 3A, 3B and 3E). Furthermore, H2O2 treatment accelerated the rate of silencing

spread in wild-type RtSS plants (Figs. 3A, 3B and 3E). A logistic regression analysis of the

data in Fig. 3E showed that increasing H2O2 concentration was significantly associated

with shoot silencing (odds ratio = 1.78, 95% confidence interval = 1.51–2.10; p < 0.001),

although the highest concentrations were sub-optimal. Peroxide treatment also increased

the distance of spread from a vascularly-expressed silencing signal targeting phytoene

desaturase (AtSuc2:PDS) (Smith et al., 2007), which results in leaf bleaching (Figs. 3C

and 3D). Indeed, all 66 Dex-induced RtSS plants growing on H2O2-containing medium

showed accelerated silencing into the shoots 13 days later (Fig. 3F). However, if catalase

was added to this medium to eliminate H2O2, none of 74 plants displayed any shoot
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Figure 2 Mutation in RCI3/AtPrx03 reduces peroxide in rci3-2. (A) Protein structure and conserved
motifs. Red boxes indicate the conserved motifs in plant type III peroxidases. rci3-2 has an R-to-K
mutation in the GRRDG sequence within the fifth motif (number of conserved terminal serine residue
in this motif indicated at right), which is conserved in all land plants. Stars indicate conserved amino
acid residues. (B) Longitudinal median sections of wild-type 12-day-old RtSS and Col show strong
orange fluorescence after staining with H2O2-specific indicator PO1, whereas rci3-2 and rci3-1 show
weak fluorescence. Bar = 200 µM. (C) PO1 fluorescence was quantified; to account for any differences in
background fluorescence from GFP, RtSS was normalised with respect to rci3-2, and Col0 was normalised
with respect to rci3-1. Bars = 95% confidence intervals; P value from two-tailed unpaired Student’s t test.
N, number of plants.
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Figure 3 Effects of H2O2 or its breakdown catalysts on silencing in RtSS or rci3-2. (A) RtSS and
(B) rci3-2 plants grown for 26 d on Dex medium only. (C) RtSS and (D) rci3-2 plants grown on
medium containing H2O2 for 26 d after Dex-induction of silencing. (E) AtSuc2:PDS plants on MS
medium. (F) AtSuc2:PDS plants grown on 1.5 mM H2O2 showed enhanced spread of silencing.
(G) Effect of different concentrations of H2O2 on the percentage of shoots showing silencing in Dex-
induced RtSS and rci3-2 plants. (H) H2O2 accelerated, and blocking H2O2 with catalase or MnO2 slowed,
the percentage of shoots showing silencing in Dex-induced RtSS plants. N, number of plants.

Liang et al. (2014), PeerJ, DOI 10.7717/peerj.701 8/15

https://peerj.com
http://dx.doi.org/10.7717/peerj.701


silencing after the same time period (Fig. 3F). Furthermore, medium containing catalase

also delayed silencing spread in Dex-induced wild-type-RtSS (Fig. 3F and Fig. S6). In

this case, a logistic regression analysis of the data in Fig. 3F showed that the presence of

catalase was significantly associated with reduced shoot silencing (odds ratio = 0.01, 95%

confidence interval = 0.005–0.029; p < 0.001).

We interpreted this to be a consequence of the catalase accelerating the breakdown of

endogenous pools of H2O2 in the plants. Applying a different H2O2-breakdown catalyst

(MnO2) also caused slower silencing spread in both Dex-induced wild-type-RtSS (Fig.

3F; logistic regression; odds ratio <0.001; p < 0.001) and in plants with vascular-pattern

PDS silencing, both catalase and MnO2 reduced the distance of silencing spread from veins

(Fig. S6). Collectively, the results demonstrate that H2O2 is an endogenous signal that

regulates the rate of silencing mobility in plants.

Increased PD permeability requires RCI3
Previous work has shown that H2O2 enhances PD permeability to a symplastic dye

(Rutschow, Baskin & Kramer, 2011). Therefore, the restoration of silencing in rci3-2 by

H2O2 treatment might be a result of enlarged PD. To test this idea, we applied n-ethyl

maleimide (NEM), which can increase transport via PD (White & Barton, 2011; Liang,

White & Waterhouse, 2012). As previously reported (Liang, White & Waterhouse, 2012),

100 µM NEM enhanced the rate of spread of gene silencing in RtSS plants (Fig. S7), but did

not restore silencing spread into the shoots of rci3-2 plants (Fig. S7). This suggests that the

rescue of silencing spread in rci3-2 plants by H2O2 treatment is due to a specific effect of

H2O2 and that NEM cannot cause PD enlargement without the enzymatic activity of RCI3.

DISCUSSION
We have demonstrated that H2O2 regulates the mobility of small RNA-mediated gene

silencing, and extensive studies have shown that H2O2 and/or peroxidase-generated

reactive oxygen species (ROS) can cause cell wall loosening (Fry, 1998; Schweikert, Liszkay

& Schopfer, 2000; Schopfer, 2001; Liszkay, van der Zalm & Schopfer, 2004; Passardi, Penel &

Dunand, 2004; Muller et al., 2009; Kunieda et al., 2013). We postulate that localised increase

in H2O2 concentration relaxes the cell wall structure, enabling cell wall-embedded PD

remodelling and opening and thus changing their transport capacity (Fig. 4). Evidence of

localising peroxidases at the plasma membrane and PD in tomato cambial cell walls (Ehlers

& van Bel, 2010) supports this suggestion, and mutants showing altered PD transport, such

as ise1 (Stonebloom et al., 2009), ise2 (Stonebloom et al., 2012) and gat1 (Benitez-Alfonso

et al., 2009) are also associated with changes in ROS production. Moreover, since grafted

rootstocks and scions show bursts of H2O2, peroxidase and catalase activity a few days after

grafting (Fernandez-Garcia, Carvajal & Olmos, 2004), their effects on PD may contribute

to the variation in success rates of transmitting silencing signals across graft junctions

(Voinnet et al., 1998; Crete et al., 2001; Liang, White & Waterhouse, 2012).

Peroxide signalling plays a significant role in many cell processes, and may influence

the expression of certain miRNAs (Li et al., 2011). One possibility is that peroxide levels

regulate components of the silencing pathway. However, in Arabidopsis, a whole-genome
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Figure 4 Working model for regulation of silencing spread by peroxidases around PD. Each panel
represents a single PD traversing the cell wall. (A) Cell wall-localised Type III peroxidases maintain H2O2
through hydroxylic and peroxidative cycles (reviewed in Passardi, Penel & Dunand, 2004), in which H2O2
modifies cell wall components via cross-linking and depolymerization, thus maintaining a functional
cell wall network and PD size. (B) With increased H2O2, the cell wall undergoes depolymerization and
loosening, allowing PD to enlarge, with increased transport capability through the cytoplasmic sleeve
(data based on this work and Benitez-Alfonso et al., 2009; Stonebloom et al., 2009; Stonebloom et al., 2012).
(C) Reduced H2O2 or mutation in peroxidase-dependent cross-linking or depolymerization causes cell
wall stiffening, and presumably also reduces PD apertures (this work and Fry, 1998; Schweikert, Liszkay
& Schopfer, 2000; Schopfer, 2001; Liszkay, van der Zalm & Schopfer, 2004; Passardi, Penel & Dunand, 2004;
Muller et al., 2009).

microarray screen of responses to exogenous H2O2 found no change in transcriptome level

of RDR1, RDR6, DCL4 or AGO1 (Cheng, Zhang & Guo, 2013), which are key genes required

for post-transcriptional gene silencing. Therefore, we conclude that the reduced silencing

spread we observed in the rci3-2 mutant was due to effects on cell-to-cell transport of the

silencing signal, rather than to any effects on the silencing machinery itself.

One puzzle in this explanation is that RCI3 is found predominantly in roots (Llorente et

al., 2002), with some expression seen in hypocotyl and leaf tissue only after cold treatment.

Yet we observed reduced peroxide levels (Figs. 2B, 2C and Fig. S5) and slower silencing

spread through the hypocotyl in the absence of cold treatment. The latter did not appear

to be a consequence of slower initiation of the signal in roots, since the length of silenced

hypocotyl was similar up to 5 days after induction of the signal by Dex (Fig. 1A), and the

roots appeared to become silenced at similar rates in both wildtype RtSS and mutant rci3-2

plants (Figs. S2B–S2D). If there were any effect of lower peroxide levels on RNAi signal

induction and amplification, it was too subtle to be detected in our experiments.

A major role of RNAi is to defend against virus infection (Waterhouse, Wang & Lough,

2001), and the ability of silencing signals to move and spread through the plant is a key

component of this defence (Dunoyer & Voinnet, 2005; Molnar, Melnyk & Baulcombe,

2011). As a counter-strategy, viruses encode silencing suppressor proteins (SSPs) that

neutralise the degradative and/or signal amplification components of the mechanism

(Ding & Voinnet, 2007). Recent studies have shown that the SSPs of some viruses can

physically interact with H2O2 scavenging enzymes; for example, the 2b SSP of CMV (Inaba

et al., 2011) and the p26 SSP of PepMV (Mathioudakis et al., 2013) both interact with a

catalase, which enhances virus accumulation. We showed here that exogenous H2O2 also

increased the rate of silencing spread, and that application of either catalase, or the H2O2
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breakdown catalyst MnO2, greatly reduced silencing spread. Therefore, we suggest that

the extracellular type III peroxidase, RCI3, as a regulator of peroxide levels and silencing

spread, may be involved in defence responses to virus infection. However, direct evidence

for its role in the plant defence network is currently lacking.

Regulation of symplastic cell-to-cell transport by type III peroxidases also has a broader

evolutionary relevance, since these cell wall enzymes are not found in aquatic algae but

exist in all land plants (Passardi, Penel & Dunand, 2004; Mathe et al., 2010). The ability

to modify transport via PD provides a means of adjusting both short- and long-distance

information flow through complex multicellular tissues; this ability appears to have been

hijacked by plant viruses, and, in turn, can be modified by the plant in viral defense. The

coincidence of type III peroxidases appearing only in the terrestrial plant line suggests to us

that it is a key evolutionary adaptation to life on land.

CONCLUSIONS
Increasing evidence demonstrates that redox states are critical for the regulation of

PD-mediated transport. Our findings have now unambigiously established a direct genetic

link between a hydrogen peroxide-producing type III peroxidase and the regulation of

small RNA-mediated silencing mobility. Manipulation of hydrogen peroxide levels in vivo

and in vitro altered silencing movement in two independent systems: our root-to-shoot

systemic silencing system; RtSS, and the cell-to-cell short distance silencing system; and

AtSuc2-PDS. These results strongly support the conclusion that hydrogen peroxide plays a

role in the control of silencing signal movement. Considering the role of ROS in regulating

the movement of other signals, we can reasonably envisage that this mechanism may be

more widespread than previously thought, extending beyond the role of H2O2 in stress

signalling. Future experiments should examine the idea that ROS production provoked by

different sorts of biotic or abiotic stimuli might be beneficial to cell survival, given its role

in ramping up the movement of associated endogenous biological signals.
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