

# On the presence of *Dipturus nidarosiensis* (Storm, 1881) in the Central Mediterranean area

Pierluigi Carbonara<sup>Corresp. 1</sup>, Rita Cannas<sup>2</sup>, Marilena Donnaloia<sup>1</sup>, Riccardo Melis<sup>2</sup>, Cristina Porcu<sup>2</sup>, Maria Teresa Spedicato<sup>1</sup>, Walter Zupa<sup>1</sup>, Maria Cristina Follesa<sup>2</sup>

<sup>1</sup> COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare, Bari, Italy

<sup>2</sup> Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy

Corresponding Author: Pierluigi Carbonara  
Email address: carbonara@coispa.it

The Norwegian skate *Dipturus nidarosiensis* (Storm, 1881) has only recently been recorded in the western Mediterranean Sea (along the coast of southern Sardinia, off Algeria and the Alboran Sea). The present study confirms the presence of the species in the Central Mediterranean Sea by means of morphometric, morphological features and molecular markers. Biological sampling was conducted on 8 specimens collected through commercial landings, offshore observer programme and scientific surveys, in Adriatic and Ionian waters at depths between 320 and 720 m, from 2010 to 2016. Specimens (juveniles and adults) had total lengths ranging from 268 to 1422 mm and body weights from 44.5 to 12,510 g. They showed morphometric features corresponding to those of Norwegian skates from the Northeast Atlantic and the Western Mediterranean. As previously analysed molecular data were obtained by mitochondrial COI sequences. The haplotype network showed the occurrence of a common haplotype (Hap\_1) shared by the individuals from North Atlantic, Sardinian, Algerian and Spanish areas except for South Africa. The occurrence of individuals in different stages of life (juveniles, sub-adults, adults) and sexual development (immature and matures) suggested the presence of a species with a permanent reproductive allocation in the deep waters of Mediterranean water, exposed to a low level of fishing exploitation. Indeed, the deep depth distribution of the species could be the source of the data absence in onshore or offshore fishery data collection programmes and scientific surveys.

1    **On the presence of *Dipturus nidarosiensis* (Storm, 1881) in**  
2    **the Central Mediterranean area**

3

4    **Pierluigi Carbonara<sup>1</sup>, Rita Cannas<sup>2</sup>, Marilena Donnaloia<sup>1</sup>, Riccardo Melis<sup>2</sup>,**  
5    **Cristina Porcu<sup>2</sup>, Maria Teresa Spedicato<sup>1</sup>, Walter Zupa<sup>1</sup> and Maria Cristina**  
6    **Follesa<sup>2</sup>**

7

8    **<sup>1</sup> COISPA Tecnologia & Ricerca, Stazione Sperimentale per lo Studio delle Risorse del Mare,**  
9    **via dei Trulli 18-20, Bari, (BA), 70126, Italy.**

10    **<sup>2</sup> Department of Life and Environmental Sciences, University of Cagliari, Cagliari, Italy, Via**  
11    **T. Fiorelli 1, Cagliari, (CA), 09126, Italy.**

12

13    Corresponding author:

14    Pierluigi Carbonara<sup>1</sup>  
15    via dei Trulli 18–20, Bari, (BA), 70126, Italy  
16    Email address: carbonara@coispa.it

17

18

19 **ABSTRACT**

20 The Norwegian skate *Dipturus nidarosiensis* (Storm, 1881) has only recently been recorded in the  
21 western Mediterranean Sea (along the coast of southern Sardinia, off Algeria and the Alboran Sea).

22 The present study confirms the presence of the species in the Central Mediterranean Sea by means  
23 of morphometric, morphological features and molecular markers.

24 Biological sampling was conducted on 8 specimens collected through commercial landings,  
25 offshore observer programme and scientific surveys, in Adriatic and Ionian waters at depths  
26 between 320 and 720 m, from 2010 to 2016. Specimens (juveniles and adults) had total lengths  
27 ranging from 268 to 1422 mm and body weights from 44.5 to 12,510 g. They showed  
28 morphometric features corresponding to those of Norwegian skates from the Northeast Atlantic  
29 and the Western Mediterranean. As previously analysed molecular data were obtained by  
30 mitochondrial COI sequences. The haplotype network showed the occurrence of a common  
31 haplotype (Hap\_1) shared by the individuals from North Atlantic, Sardinian, Algerian and Spanish  
32 areas except for South Africa 

33 The occurrence of individuals in different stages of life (juveniles, sub-adults, adults) and sexual  
34 development (immatures and matures) suggested the presence of a species with a permanent  
35 reproductive allocation in the deep waters of Mediterranean water, exposed to a low level of fishing  
36 exploitation. Indeed, the deep depth distribution of the species could be the source of the data  
37 absence in onshore or offshore fishery data collection programmes and scientific surveys.

38

39 **INTRODUCTION**

40 Species discrimination is a challenging issue largely because it is based only on morphological  
41 diagnoses. Indeed, species classifications errors are frequent due to several factors, such as  
42 phenotypic plasticity, the presence of cryptic taxa, morphological changes linked to life stage and  
43 the high level of expertise requested for this kind of analysis (Herbert *et al.*, 2003a).

44 The misclassification of skates is common (e.g. Serena, 2005; Frodella *et al.*, 2016; Iglesias *et al.*,  
45 2010). It has been estimated that about 50 known species are still only partially described or  
46 completely undescribed (Coulson *et al.*, 2011). Consequently, in the last decades, DNA-based  
47 species discrimination has been applied (Herbert *et al.*, 2003b) in an increasing number of cases  
48 (Spouge, 2016). The use of molecular markers and specifically the cytochrome *c* oxidase I gene  
49 (COI) has proven to be very helpful on several occasions for the identification of ray and skate

50 species in the Mediterranean, Atlantic and worldwide (Ball *et al.*, 2016; Bineesh *et al.*, 2017;  
51 Cannas *et al.*, 2010; Cariani *et al.*, 2017; Cerutti-Pereyra *et al.*, 2012; Coulson *et al.*, 2011; Frodella  
52 *et al.*, 2016; Griffiths *et al.*, 2013; Iglesias, Toulhoat & Sellos, 2010; Landi *et al.*, 2014;  
53 Lynghammar *et al.*, 2014; Mabragana *et al.*, 2011; Ordines *et al.*, 2017; Ramirez-Amaro *et al.*,  
54 2017; Serra-Pereira *et al.*, 2011; Spies *et al.*, 2006; Vargas-Caro *et al.*, 2016; Vella, Vella &  
55 Schembri, 2017; Ward *et al.*, 2008; Ward *et al.*, 2005).

56 In this context, Rajidae display conservative morphological traits both among and between alive  
57 and fossil species (Valsecchi *et al.*, 2005). Hence, particularly for this taxonomic group, DNA  
58 barcoding has been used to describe new species (e.g. Last & Séret, 2016), extirpation (e.g. Ball  
59 *et al.*, 2016) as well as well as species' expansion range (e.g. Ordines *et al.*, 2017).

60 In particular, taking into consideration the genus *Dipturus*, the misclassification problem is  
61 particularly crucial (Griffiths *et al.*, 2010; Iglésias *et al.*, 2010). In eastern Atlantic Ocean and in  
62 the Mediterranean basin, it includes *Dipturus batis* (Linnaeus, 1758), *Dipturus oxyrinchus*  
63 (Linnaeus, 1758) and *Dipturus nidorosiensis* (Storm, 1881) with a high percentage of  
64 misclassification in the fishery data as reported for the French coast (Iglésias *et al.*, 2010). mainly  
65 among *D. oxyrinchus*, *D. batis*, *D. nidorosiensis* and *Rostroraja alba* (Lacepede, 1803). These  
66 findings could have led to underestimation of the risk of a dramatic decline and collapse of the  
67 spawning stock (Griffiths *et al.*, 2010; Iglésias *et al.*, 2010). Hence, the risk of extinction of these  
68 species might be higher than previously calculated (Iglésias *et al.*, 2010).

69 *D. nidorosiensis* is one of the species that is often misclassified in both the Atlantic and the  
70 Mediterranean Basin (Cannas *et al.*, 2010; Cariani *et al.*, 2017; Ramírez-Amaro *et al.*, 2017). The  
71 geographical distribution of the Norwegian skate *D. nidorosiensis* is known to occur along the  
72 northeast Atlantic, from Iceland, Faroe and northern Norway to Madeira and northern Mauritania  
73 (Stehmann, 1990). This species is considered endemic in the northeast Atlantic and the Bay of  
74 Biscay (Priede *et al.*, 2010; Stehmann & Bürkel, 1984; Rodríguez-Cabello *et al.*, 2013). However,  
75 more recently, it has been recorded in the western Mediterranean Sea, along the southern Sardinia  
76 coast (Cannas *et al.*, 2010; Follesa *et al.*, 2012, Cariani *et al.*, 2017, Marongiu *et al.*, 2017; Porcu  
77 *et al.*, 2017), off Algeria (Cariani *et al.*, 2017), in the Alboran Sea (Ramírez-Amaro *et al.*, 2017)  
78 and in the southern Adriatic and Ionian seas (Cariani *et al.*, 2017). The first catch of Norwegian  
79 skate specimens in the western Mediterranean waters (2005) was reported to occur in Sardinia

80 (Cannas *et al.*, 2010), while the records from the Alboran Sea are more recent (2012–2016;  
81 Ramírez-Amaro *et al.*, 2017).  
82 The abovementioned authors hypothesised an ancient presence of the Norwegian skate, which was  
83 not detected due to a misclassification between *D. nidarosiensis* and *D. batis* (Cannas *et al.*, 2010).  
84 Following the IUCN Red List, the Norwegian skate *D. nidarosiensis* is listed as near threatened  
85 (Stehmann *et al.*, 2015), and in both the northeast Atlantic and the Mediterranean areas, this species  
86 is rare (Williams *et al.*, 2008; Cannas *et al.*, 2010). Moreover, the Norwegian skate has some  
87 similar biological characteristics to other elasmobranchs, such as low fecundity, slow growth and  
88 high length at first maturity (Follesa *et al.*, 2012), making it particularly vulnerable to  
89 environmental and anthropogenic pressures. Until now, information on the life history of the  
90 Norwegian skate in the Mediterranean Basin has been limited and based only on specimens caught  
91 around Sardinia Island (central-western Mediterranean) (Follesa *et al.*, 2012).  
92 For the first time, the present study describes and characterises, both from morphological and  
93 genetic point of view, the Norwegian skate specimens caught in the southern Adriatic Sea and  
94 northwestern Ionian Sea (Central Mediterranean Basin), where this species had never been  
95 reported (Marano *et al.*, 2002; Sion *et al.*, 2003; Sion *et al.*, 2004; Zupa *et al.*, 2010, Relini *et al.*,  
96 2000, 2010) until very recently (Cariani *et al.*, 2017). This study could further inform on  
97 geographical distribution and life-history traits of this species. Morphological comparisons with  
98 specimens from Sardinian waters and the Alboran Sea were made in order to provide a correct  
99 classification of this species in the Mediterranean Basin (Cannas *et al.*, 2010; Follesa *et al.*, 2012;  
100 Ramírez-Amaro *et al.*, 2017).

101

## 102 METHODS

### 103 Sampling

104 Samples of *D. nidarosiensis* were collected onshore (e.g. market sampling), along the port of  
105 Apulia region, from offshore observers (discard monitoring) for a fishery sampling programme  
106 (Data Collection Framework – DCF; EU Reg. 1543/2000, 1639/2001, 1581/2004, 199/2008 and  
107 1004/2017) and from fisheries/independent scientific surveys (Mediterranean International Trawl  
108 Survey, MEDIT) (AAVV, 2017) (Fig. 1).

109 In total, eight specimens were morphologically analysed and preserved in the deep freezer (-20  
110 °C) of COISPA Institute Laboratory. Morphology and colour analysis as well as morphometric

111 measurements (nearest 1 mm) (Fig. 2), weights (nearest 1 g) and meristic counts were performed,  
112 following the previous descriptions of skate species (Ebert & Stehmann, 2013; Serena, 2005).

113 All measurements and meristic counts are listed in Figure 2 and Table 1.

114 Sex and maturity were determined macroscopically, and the gonad weights were recorded to the  
115 nearest 0.1 g. Gonadal maturity was classified using the MEDITS maturity scale (AAVV, 2017;  
116 Follesa and Carbonara, 2019), and the results are reported in Table 2 as follows: Stage 1 (virgin  
117 immature); Stage 2 (maturing); Stage 3A (mature); Stage 3B (mature/extruding active); Stage 4A  
118 (resting); Stage 4B (regenerating).

119

## 120 **Genetic analyses**

121 Eight specimens were used for the genetic analysis, with four previously analysed by Cariani *et*  
122 *al.* (2017) (codes 1–4 – Table 1) while the remaining four specimens (codes 5–8 – Table 1)  
123 analysed for the first time here.

124 Total genomic DNA was extracted from tissues samples using a salting-out protocol (Miller *et al.*,  
125 1988), these samples (skin, white muscle) were collected from the ventral side of the pectoral fin  
126 (ca. 0.5 cm<sup>3</sup> in size). The tissue samples were preserved in 80% ethanol at 4°C.

127 The primers for the amplifications of the mitochondrial COI gene (COI-3 primer cocktail) were  
128 obtained from Ivanova *et al.* (2007). The PCR reactions were set up in a 25µl reaction volume  
129 containing 2.5µl of 10X Taq Buffer (Thermo Scientific), 2.5µl of 2mM dNTPs, 2.5µl of 25mM of  
130 MgCl<sub>2</sub>, 0.1µl of each (forward and reverse) 20mM primers, 0.16µl of Taq polymerase (Dream  
131 Taq® Thermo Scientific) and 1µl of DNA (50–100ng). The amplification was based on the  
132 following cyclic parameters: 5 min at 94°C for the initial denaturation, followed by 40 cycles of  
133 30 sec at 94°C, 40 sec at 53°C for the annealing of primers, 50 sec at 72°C for extension and then  
134 7 min at 72°C for the final extension. PCR products were outsourced to Macrogen Europe  
135 (Netherlands) for sequencing. The sequences were obtained in both directions and submitted to  
136 GenBank under accession number MG699904-07. The sequences were edited and aligned in  
137 MEGA v. 6 (Tamura *et al.*, 2013) and translated into aminoacidic sequences using the vertebrate  
138 genetic code to exclude the occurrence of codon stop and nuclear pseudogenes.

139 The number of haplotypes, haplotype diversity [hd], average number of nucleotide differences [k]  
140 and nucleotide diversity [ $\pi$ ] were retrieved using DnaSP v. 5.1 (Librado & Rozas, 2009).

141 Graphically, the haplotypes were arranged in a network with PopART (<http://popart.otago.ac.nz>)  
142 using the Median-Joining method (Bandelt, Forster & Röhl, 1999).

143 The sequences obtained in this study were compared to COI sequences published for the species  
144 from Mediterranean and eastern Atlantic Ocean individuals of the genus *Dipturus* (*D.*  
145 *nidarosiensis*, *D. oxyrinchus*, *D. batis*, *D. cf flossada*, *D. cf intermedia*) available in GenBank  
146 (<https://www.ncbi.nlm.nih.gov/genbank>) and BOLD (<http://www.boldsystems.org/>). *Rostroraja*  
147 *alba* was used as the outgroup. The list and details of the sequences used in the analyses are  
148 provided as a supplementary table (Table S1). At least three sequences per species were used for  
149 species such as *D. intermediate* and *D. flossada*, up to a maximum of 42 sequences for *D.*  
150 *oxyrinchus*.

151 The relationships among haplotypes were investigated using two approaches: the Bayesian method  
152 using MrBayes v. 3.1 (Huelsenbeck & Ronquist, 2001; Ronquist & Huelsenbeck, 2003) and the  
153 Neighbour-Joining method in MEGA using Kimura 2-parameter genetic distances (K2P; Kimura  
154 1980) and a bootstrap test with 1000 replicates. In MrBayes, the analyses were performed using  
155 two parallel runs of two million generations each, using four chains, sampling every 100  
156 generations, burn-in of 0.25 and saving branch lengths. The performance of the analyses was  
157 evaluated using Tracer v. 1.6 (Rambaut *et al.*, 2014). The trees were visualised with MEGA.

158

### 159 **Ethical compliance**

160 All Norwegian skate (*Dipturus nidarosiensis*) analysed in this study from commercial fishing  
161 activity (DCF; EU Reg. 1004/2017), do not fit under the European Commission recommendations  
162 (Directive 2010/63/EU of the European Parliament and of the Council of 22 September 2010) or  
163 Italian National Law (Decree Law n. 26 of 4 March 2014) regarding the protection of animals used  
164 for scientific experiments. Moreover following the welfare guidelines under the Decree Law n. 26  
165 of 4 March 2014 (Italian Ministry of Health) and the protocol approved by the Committee on the  
166 Ethics of Animal Experiments of COISPA (Italian Ministry of Health 15/2015-UT), the specimens  
167 brought on-board alive, during the scientific survey or the monitoring on the commercial fishing  
168 vessel, should be killed with an overdose of anaesthetic. However all the animals sampled in this  
169 study were already dead at the time of sampling both the specimens sampled at the landing and on  
170 board (discard monitoring and scientific survey when the specimens brought on-board).

### 171 **RESULTS**

172 The Norwegian skate specimens were captured around the pit of Bari and in the northwest part of  
173 the Ionian Sea (Fig. 2) at depths ranging between 320 and 720 m.

174 All measurements, meristic counts, sex and maturity are presented in Table 1. All specimens  
175 caught showed, uniformly dark ventral sides, including the ampullary pores (Fig. 3). The disc was  
176 wider (WD 64.0-74.0% of TL) than long (LD 52.5-59.7% of TL), covered uniformly by darkish  
177 mucous on both side (Fig. 3). The teeth were pointed in parallel rows in males and molar-like sets  
178 in pavement in females (Fig. 4), with a number of tooth rows on the upper and lower jaw between  
179 42-45 and 39-43, respectively. It seemed that the number of thorns on the tail increased with the  
180 total length of the specimens as shown in Table 1. Moreover, both dorsal and ventral sides were  
181 prickly in the area of snout (Fig. 5). A morphometric variability between juveniles and adults has  
182 been detected for the relationship between the Length Tail (Ltail)/ Total Length and Distance  
183 interorbital (Dorb)/Total Length (Table 1). The Ltail is longer in terms of percentage on TL in  
184 juveniles about half of the TL, and one-third of the TL in sub-adults and adults (Fig. 2). On the  
185 contrary, the Dorb increased with TL. Moreover, juveniles did not showed spines on the median  
186 line of the disc and on both lateral sides of the tail, present in adults (Table 1).

187 Juveniles (maturity stage 1) were caught in shallow waters between 320 and 377 m, while sub-  
188 adult (maturity stage 2) and adult specimens (maturity stage 3A and 3B) in deeper bottoms ranging  
189 between 550 and 720 m..

190 Furthermore, all samples  caught during the MEDITS trawl survey were associated with a  
191 biocenosis typical of compact bathyal muds. In particular, juveniles (specimens 5, 7, 8, Table 1),  
192 caught at upper depths, were found in association with a biocoenosis characterised by tall sea pen  
193 *Funiculina quadrangularis* facies.

194

## 195 **Genetic analyses**

196 A 633 bp fragment of the COI gene was obtained from eight individuals from the South Adriatic  
197 and Ionian seas.

198 The combination of these data with those available for *D. nidarosiensis* from other areas within  
199 the Mediterranean and adjacent Atlantic Ocean, provided with a final alignment of 38 sequences  
200 and seven haplotypes (555 bp; Hd: 0.515; k: 0.586;  $\pi$ : 0.00106). The haplotype network (Fig. 6)  
201 showed the occurrence of a common haplotype (Hap\_1) shared by 26 individuals from all

202 investigated areas except for South Africa. It also showed six additional haplotypes, with four  
203 exclusive to the Mediterranean (Hap\_2-Hap\_5) and two exclusive to the Atlantic (Hap\_6-Hap\_7).  
204 The phylogenetic analyses (Fig. 7) further confirmed the identification of the Ionian–Adriatic  
205 specimens as *D. nidarosiensis*. They clustered in a strongly supported clade, clearly  
206 distinguishable from the other species of *Dipturus* found in the Mediterranean and eastern Atlantic  
207 Ocean. The most similar sequences to *D. nidarosiensis* were those of *D. cf flossada* (95% base  
208 pair similarity), and the least similar were those of *R. alba* (87.82% base pair similarity).

209

## 210 DISCUSSION

211 The present study confirms the presence of the Norwegian skate *Dipturus nidarosiensis* in the  
212 Central Mediterranean Sea by means of morphometric and morphological features and molecular  
213 markers. The morphological parameters described are in line with the data collected in Sardinian  
214 waters (Cannas *et al.*, 2010) and the Alboran Sea (Ramírez-Amaro *et al.*, 2017). In particular, the  
215 relationship between the morphometric measurements and total length is similar to the data  
216 reported in the Alboran Sea (Ramírez-Amaro *et al.*, 2017). Specifically, the measurements of the  
217 juveniles from the Spanish area (Ramírez-Amaro *et al.*, 2017) are in accordance with those of the  
218 Adriatic basin. Furthermore, the high variability in Length Tail during the different stages of life,  
219 reported in the paper, seems to be common to other Rajidae species as well, including *R. clavata*,  
220 *D. oxyrinchus* and *Amblyraja radiata* (Mnasri *et al.*, 2009; Capapé *et al.*, 2015; Templeman, 1987)  
221 Genetic analysis of the mitochondrial gene COI made possible to confirm the morphological  
222 identification of the Adriatic–Ionian samples as *D. nidarosiensis*. In particular, in this study,  
223 molecular data highlighted the fact that Mediterranean specimens of *D. nidarosiensis* (from  
224 Sardinia, Algeria and Alboran Sea) share COI mitochondrial haplotypes with Atlantic specimens  
225 (see Table S1 for details). However, additional analyses based on more powerful markers (i.e.,  
226 microsatellites and SNPs) and larger numbers of individuals are needed to investigate possible  
227 intraspecific differences and the genetic connectivity among the different areas within the  
228 Mediterranean and between the Mediterranean and the Atlantic populations (Griffiths *et al.*, 2011).  
229 The captures of *D. nidarosiensis*, reported in this paper, are mostly located around the Bari Pit  
230 (maximum depth of 1233 m) in an area between the western Italian coast and the eastern  
231 Montenegrin and Albanian coasts. This area is connected with the northern part of the Ionian Sea  
232 through the Otranto Channel, and it is part of a system of currents that exchanges and mixes deep

233 water coming from the eastern part of the Mediterranean Sea and the northern part of the Adriatic  
234 Sea (Vilibic & Orlic, 2002). Although the capture locations of Norwegian skates are dispersed  
235 over 200 miles, all these areas are connected by deep-water currents (Artegiani *et al.*, 1997). The  
236 southern Adriatic and Ionian bathyal system show the absence of barriers to gene flow for deep  
237 species as well as *Aristeus antennatus* (Marra *et al.*, 2015). In the case of *A. antennatus*, it was  
238 hypothesised that the presence of the population could be structured into two layers: a deeper stock,  
239 not affected by fishing, which preserves genetic homogeneity, and an upper stock living on the  
240 fishing ground. The larval dispersal, adult migration and continuous movements of individuals  
241 from deeper grounds to upper areas could explain their genetic homogeneity throughout the  
242 Adriatic and Ionian system (Marra *et al.*, 2015). In the same way, the partial overlap between the  
243 Norwegian skate's habitat and fishing grounds in the Adriatic and Ionian Seas suggests that the  
244 Adriatic and Ionian *D. nidarosiensis* specimens are part of one population.

245 The occurrence of the Norwegian skate in the southern Adriatic Sea and northern Ionian Sea sheds  
246 new light on the dispersion of this species in the Mediterranean basin. Through interviews with  
247 fishermen in the southern Adriatic, it emerged that the occurrence of this species, called with the  
248 local name 'black monk', is not unusual.

249 However, the unnoticed presence of this species in the Mediterranean up to 2010 (Cannas *et al.*,  
250 2010) can be attributed to two main reasons. Firstly, it has been misclassified with others species  
251 of the *Dipturus* genus (Cannas *et al.*, 2010) as reported for the French coast (Iglésias *et al.*, 2010).  
252 Indeed, the presence of *Dipturus* species is not recent (Griffits *et al.*, 2011): in the southern  
253 Adriatic, catches of *D. oxyrinchus* were reported in 1994–1995 (Relini *et al.*, 2000; Marano *et al.*,  
254 2003), in the Western Ionian, catches of *D. batis* and *D. oxyrinchus* were recorded in 1992 and  
255 2000–2001, respectively (Relini *et al.*, 2000; Sion *et al.*, 2003) while in Central Western part of  
256 the basin, *D. oxyrinchus* has been caught since the first surveys funded by the DCF in the middle  
257 of 1980 (Relini *et al.*, 2000, 2010). Secondly, considering that in the southern Adriatic the bottom  
258 trawl fleet fishing grounds are concentrated mostly on the shelf and the upper part of slope  
259 (Sabatella & Maninni, 2013) and in the western Ionian, as in the other part of the basin, they are  
260 located mainly on the slope until 800 m depth (Russo *et al.*, 2017), the catches of *D. nidarosiensis*  
261 characterized by a wider depth distribution (between 300 and 1700 m) (Cannas *et al.*, 2010; Follesa  
262 *et al.*, 2012; Ramírez-Amaro *et al.*, 2017) could be unrecorded. Hence, in the studied areas, the  
263 depth of the fishing activity only partially overlaps with the deep distribution of the Norwegian

264 skate. In addition, in the Mediterranean sites where *D. nidarosiensis* were found, the seabed  
265 presents similar characteristics (e.g. canyons and slopes with high depths), favourable to this  
266 species but unfavourable to trawling activity for both commercial (Sabatella & Maninni, 2013)  
267 and research vessels (AAVV, 2017).

268 The presence of maturing and mature males and females in early autumn (end of  
269 September/beginning of October) and summer, respectively, could support the preliminary  
270 observations on the reproductive biology of the species in Sardinian waters (Follesa *et al.*, 2012).  
271 Furthermore, the collection of empty egg cases on the sea floor as well as of individuals in different  
272 life stages (embryos within egg case, juveniles, sub-adults and adults) of both sexes suggests the  
273 presence of a species with a permanent reproductive allocation in the Mediterranean Sea (Cannas  
274 *et al.*, 2010; Follesa *et al.*, 2012; Cariani *et al.*, 2017, Porcu *et al.*, 2017, Ramírez-Amaro *et al.*,  
275 2017).

276 From the data recorded, despite the few specimens analysed, the Norwegian skate shows a  
277 bathymetric segregation with juveniles, only occurred on the upper part of the slope, and sub-  
278 adults and adults in lower depth as reported for Sardinian waters (Follesa *et al.*, 2012). This deep  
279 segregation by ontogenetic phase has been observed in other species of skates as well, including  
280 *Raja clavata*, *Raja asterias* and *Rhinoptera bonasus* (Rouset, 1990; Ferrà *et al.*, 2016; Fisher *et*  
281 *al.*, 2013).

282 In addition, the finding of Ionian and Adriatic *D. nidarosiensis* specimens on compact mud  
283 bottoms confirmed as the species shows preference for this type of sea bed as observed also by  
284 Follesa *et al.* (2012) off Sardinia. Moreover, for the first time, the presence of juveniles in  
285 association with a biocoenosis characterised by bathyal muds with tall sea pen *Funiculina*  
286 *quadrangularis* facies, is recorded.

287 Several aspects of *D. nidarosiensis* are still poor investigated. For this reason, it will be useful to  
288 continue the monitoring and sampling on this species in order to collect additional data to clarify  
289 aspects on its biology (e.g. reproduction and growth) and ecology (e.g. trophic relationship and  
290 geographical distribution).

291

## 292 CONCLUSION

293 The data reported in this study confirms the presence of *D. nidarosiensis* in the Central  
294 Mediterranean Sea (southern Adriatic and northwest Ionian Seas), contribute to inform on its

295 geographical distribution and life-history traits **a** in the Mediterranean basin and improve the  
296 understanding of its morphological traits. Indeed, misclassification has occurred frequently with  
297 the Mediterranean skate species (Iglésias *et al.*, 2010), resulting in the misinterpretation of several  
298 biological characteristics. The morphological data are similar with data reported in Sardinia and  
299 Alboran Sea (Cannas *et al.*, 2010; Ramirez-Amaro *et al.*, 2017). Moreover, the morphological  
300 differences between juveniles and adults were highlighted in term of morphological and meristic  
301 characteristics.

302 Genetic analysis carried out through the mitochondrial gene COI was useful (Spouge, 2016) and  
303 made it possible to confirm the morphological identification of the Adriatic–Ionian samples as *D.*  
304 *nidarosiensis*.

305

## 306 **ACKNOWLEDGEMENT**

307 The authors are grateful to the Academic Editor Dr. Antonina Dos Santos and three anonymous  
308 reviewers for the constructive comments and suggestions that greatly helped to improve the  
309 manuscript.

310

## 311 **REFERENCES**

312 AAVV. 2017. MEDITS-Handbook. Version n.9, MEDITS Working Group : 106 pp. Available at:  
313 <http://www.sibm.it/MEDITS%202011/principaledownload.htm> (accessed 26 January 2018).

314 Artegiani A, Bregant D, Paschini E, Pinardi N, Raicich F, Russo A. 1997. The Adriatic Sea general  
315 circulation. Part I: air-sea interaction and water mass structure. *Journal of Physical Oceanography*  
316 27:1492-1514. DOI: 10.1175/1520-0485(1997)027<1492:TASGCP>2.0.CO;2

317 Ball RE, Serra-Pereira B, Ellis J, Genner MJ, Iglésias S, Johnson AF, Jones CS, Leslie R, Lewis  
318 J, Mariani S, Menezes G, Neat F, Noble L R, Sims D W, Griffiths AM. 2016. Resolving taxonomic  
319 uncertainty in vulnerable elasmobranchs: are the Madeira skate (*Raja maderensis*) and the  
320 thornback ray (*Raja clavata*) distinct species? *Conservation Genetics* 17(3):565-576. DOI:  
321 10.1007/s10592-015-0806-1.

322 Bandelt H-J, Forster P, Röhl A. 1999. Median-Joining Networks for Inferring Intraspecific  
323 Phylogenies. *Molecular Biology and Evolution* 6(1):37–48. DOI:  
324 10.1093/oxfordjournals.molbev.a026036

325 Bineesh KK, Gopalakrishnan A, Akhilesh KV, Sajeela K A, Abdussamad EM, Pillai NGK,  
326 Basheer V S, Jena J K, Ward R D. 2017. DNA barcoding reveals species composition of sharks  
327 and rays in the Indian commercial fishery. *Mitochondrial DNA Part A DNA Mapping, Sequencing,  
328 and Analysis* 28(4):458-472. DOI: 10.3109/19401736.2015.1137900.

329 Cannas R, Follesa M C, Cabiddu S, Porcu C, Salvadori S, Iglesias S P, Deiana AM, Cau A. 2010.  
330 Molecular and morphological evidence of the occurrence of the Norwegian skate *Dipturus*  
331 *nidarosiensis* (Storm, 1881) in the Mediterranean Sea. *Marine Biology Research* 6(4):341-350.  
332 DOI: 10.1080/17451000903428496.

333 Capapé C, Ali M, Saad A, Alkusairy H, Reynaud C. 2015. Atypical characteristics in the longnosed  
334 skate *Dipturus oxyrinchus* (Linnaeus, 1758) from the coast of Syria (Eastern Mediterranean).  
335 *Thalassia Salentina* 37: 71-80. DOI 10.1285/i15910725v37p71

336 Cariani A, Messinetti S, Ferrari A, Arculeo M, Bonello J J, Bonnici L, Cannas R, Carbonara P,  
337 Cau A, Charilaou C, El Ouamari N, Fiorentino F, Follesa MC, Garofalo G, Golani D, Guarniero  
338 I, Hanner R, Hemida F, Kada O, Lo Brutto S, Mancusi C, Morey G, Schembri P J, Serena F, Sion  
339 L, Stagioni M, Tursi A, Vrgoc N, Steinke D, Tinti F. 2017. Improving the Conservation of  
340 Mediterranean Chondrichthyans: The ELASMOMED DNA Barcode Reference Library. *PLoS*  
341 *One* 12(1):e0170244. DOI:10.1371/journal.pone.0170244.

342 Cerutti-Pereyra F, Meekan MG, Wei N W, O'Shea O, Bradshaw CJ, Austin CM. 2012.  
343 Identification of rays through DNA barcoding: an application for ecologists. *PLoS One*  
344 7(6):e36479. DOI:10.1371/journal.pone.0036479.

345 Coulson M, Denti W, Van Guelpen L, Miri C, Kenchington E, Bentzen P. 2011. DNA barcoding  
346 of Canada's skates. *Molecular Ecology Resources* 11(6):968-978. DOI: 10.1111/j.1755-  
347 0998.2011.03034.x.

348 Ebert DA, Stehmann. MFW. 2013. Sharks, batoids, and chimaeras of the North Atlantic FAO  
349 Species Catalogue for Fishery Purposes. No. 7. Rome, FAO. 523 pp.

350 Ellis JR, Cruz-Martinez A, Rackham BD, Rogers SI. 2005. The distribution of chondrichthyan  
351 fishes around the British Isles and implications for conservation. *Journal of Northwest Atlantic*  
352 *Fishery Science*, 35:

353 Fisher RA, Call GC, Grubbs RD. 2013. Age, Growth, and Reproductive Biology of Cownose Rays  
354 in Chesapeake Bay. *Marine and Coastal Fisheries*, 5 (1): 224-235. DOI:  
355 10.1080/19425120.2013.812587

356 Follesa MC, Cannas R, Cabiddu S, Cau Al, Mulas A, Porcu C, Cau A. 2012. Preliminary  
357 observations of the reproductive biology and diet for the Norwegian skate *Dipturus nidarosiensis*  
358 (Rajidae) from the Central Western Mediterranean Sea. *Cybium* 36(3): 473-477.

359 Follesa MC, Carbonara P. 2019. Atlas of the maturity stages of Mediterranean fishery resources.  
360 Studies and Reviews n. 99. Rome, FAO. 268 pp. Available at  
361 [www.fao.org/3/CA2740EN/ca2740en.pdf](http://www.fao.org/3/CA2740EN/ca2740en.pdf)

362 Frodella N, Cannas R, Velonà A, Carbonara P, Farrell E D, Fiorentino F, Follesa M C, Garofalo  
363 G, Hemida F, Mancusi C, Stagioni M, Ungaro N, Serena F, Tinti F, Cariani A. 2016. Population  
364 connectivity and phylogeography of the Mediterranean endemic skate *Raja polystigma* and  
365 evidence of its hybridization with the parapatric sibling *R. montagui*. *Marine Ecology Progress Series*  
366 554:99-113. DOI: 10.3354/meps11799

367 Griffiths AM, Sims DW, Cotterell SP, El Nagar A, Ellis JR, Lynghammar A, McHugh M, Neat  
368 FC, Pade NG, Queiroz1 N, Serra-Pereira B, Rapp T, Wearmouth VJ, Genner MJ. 2010. Molecular  
369 markers reveal spatially segregated cryptic species in a critically endangered fish, the common  
370 skate (*Dipturus batis*) *Proceeding of the Royal Society B* 277: 1497–1503. DOI:  
371 10.1098/rspb.2009.2111

372 Griffiths AM, Sims DW, Johnson A, Lynghammar A, McHugh M, Bakken T, Genner MJ. 2011.  
373 Levels of connectivity between longnose skate (*Dipturus oxyrinchus*) in the Mediterranean Sea  
374 and the north-eastern Atlantic Ocean. *Conservation Genetics* 12:577–582. DOI: 10.1007/s10592-  
375 010-0127-3

376 Griffiths AM, Miller DD, Egan A, Fox J, Greenfield A, Mariani S. 2013. DNA barcoding unveils  
377 skate (Chondrichthyes: Rajidae) species diversity in 'ray' products sold across Ireland and the UK.  
378 *PeerJ* 1:e129. DOI:10.7717/peerj.129.

379 Huelsenbeck JP, Ronquist F. 2001. MRBAYES: Bayesian inference of phylogeny. *Bioinformatics*  
380 17:754-755. DOI: 10.1093/bioinformatics/17.8.754

381 Iglesias SP, Toulhoat L, Sellos DY. 2010. Taxonomic confusion and market mislabelling of  
382 threatened skates: important consequences for their conservation status. *Aquatic Conservation-  
383 Marine and Freshwater Ecosystems* 20(3):319-333. DOI: 10.1002/aqc.1083.

384 Kimura M. 1980. A simple method for estimating evolutionary rates of base substitutions through  
385 comparative studies of nucleotide sequences. *Journal of Molecular Evolution* 16:111–120.

386 Landi M, Dimech M, Arculeo M, Biondo G, Martins R, Carneiro M, Carvalho G R, Brutto S L,  
387 Costa F O. 2014. DNA Barcoding for Species Assignment: The Case of Mediterranean Marine  
388 Fishes. *PLoS One* 9(9):e106135. DOI:10.1371/journal.pone.0106135.

389 Librado P, Rozas J. 2009. DnaSP v5: a software for comprehensive analysis of DNA  
390 polymorphism data *Bioinformatics*, 25, (11): 1451–1452. DOI: 10.1093/bioinformatics/btp187

391 Lynghammar A, Christiansen J S, Griffiths A M, Fevolden S-E, Hop H, Bakken T. 2014. DNA  
392 barcoding of the northern Northeast Atlantic skates (Chondrichthyes, Rajiformes), with remarks  
393 on the widely distributed starry ray. *Zoologica Scripta* 43(5):485-495. DOI: 10.1111/zsc.12064.

394 Mabragana E, Martin Diaz de Astarloa J, Hanner R, Zhang J, Gonzalez Castro M. 2011. DNA  
395 Barcoding Identifies Argentine Fishes from Marine and Brackish Waters. *PLoS One* 6(12). DOI:  
396 10.1371/journal.pone.0028655.

397 Marano CA, Manfrin Piccinetti G, Pasolini P, Tinti F, Ungaro N. 2002. Annotated checklist of the  
398 skates (Chondrichthyes, Rajidae) in the Adriatic Sea. *Biologia Marina Mediterranea* 10 (2): 856–  
399 862.

400 Marongiu MF., Porcu C, Bellodi A, Cannas R, Cau A, Cuccu D, Mulas A, Follesa M C. 2017.  
401 Temporal dynamics of demersal chondrichthyan species in the central western Mediterranean Sea:  
402 The case study in Sardinia Island. *Fisheries Research* 193:81–94. DOI:  
403 10.1016/j.fishres.2017.04.001

404 Martin Diaz De Astarloa J, Mabragana E, Hanner R, Figueroa D E. 2008. Morphological and  
405 molecular evidence for a new species of longnose skate (Rajiformes: Rajidae: Dipturus) from  
406 Argentinean waters based on DNA barcoding. *Zootaxa* 1921:35-46. DOI:  
407 10.5281/zenodo.184713.

408 Marra A, Mona S, Sà RM, D'Onghia G, Maiorano P. 2015. Population Genetic History of *Aristeus*  
409 *antennatus* (Crustacea: Decapoda) in the Western and Central Mediterranean Sea. *PLoS One* 10(5):  
410 e0128609. DOI: 10.1371/journal.pone.0128609

411 Mnasri N, Boumaïza M, Ben Amor MM, Capapé C. 2009. Polychromatism in the thornback ray,  
412 *Raja clavata* (Chondrichthyes: Rajidae) off northern Tunisian coast (central Mediterranean). *Pan-*  
413 *American Journal of Aquatic Sciences* 4(4): 572-579.

414 Ordines F, Baro J, Ramírez-Amaro S, Serena F, Sobrino I. 2017. First substantiated record of *Raja*  
415 *asterias* Delaroche, 1809 (Elasmobranchii: Rajiformes: Rajidae) in the Gulf of Cádiz, North-  
416 eastern Atlantic. *Acta Ichthyologica et Piscatoria* 47(1):101-106. DOI: 10.3750/aiep/02161.

417 Porcu C, Marongiu MF, Bellodi A, Cannas R, Cau A, Melis R, Mulas A, Soldovilla G, Vacca L,  
418 Follesa MC. 2017. Morphological descriptions of the eggcases of skates (Rajidae) from the central-  
419 western Mediterranean, with notes on their distribution. *Helgoland Marine Research* 71:10..  
420 DOI:10.1186/s10152-017-0490-2.

421 Priede I, Godbold JA, King NJ, Collins MA, Baile Y DM, Gordon JDM. 2010. Deep-sea demersal  
422 fish species richness in the Porcupine Seabight, NE Atlantic Ocean: global and regional patterns.  
423 *Marine Ecology* 31: 247-260. DOI: 10.1111/j.1439-0485.2009.00330.x

424 Rambaut A, Suchard MA, Xie D, Drummond AJ. 2014. Tracer v1.6, Available at  
425 <http://tree.bio.ed.ac.uk/software/tracer/> (accessed 26 January 2018).

426 Ramírez-Amaro S, Ordines F, Puerto M Á, García C, Ramon C, Terrasa B, Massutí E. 2017. New  
427 morphological and molecular evidence confirm the presence of the Norwegian skate *Dipturus*  
428 *nidarosiensis* (Storm, 1881) in the Mediterranean Sea and extend its distribution to the western  
429 basin. *Mediterranean Marine Science* 18(2):251-259. DOI: 10.12681/mms.1950.

430 Relini G, Biagi F, Serena F, Belluscio A, Spedicato M T, Rinelli P, Follesa MC, Piccinetti C,  
431 Ungaro N, Sion L, Levi D. 2000. I selaci pescati con lo strascico nei mari italiani. *Biologia Marina*  
432 *Mediterranea* 7 (1): 347-384.

433 Relini G, Mannini A, De Ranieri S, Bitetto I, Follesa MC, Gancitano V, Manfredi C, Casciaro L,  
434 Sion L. 2010. Chondrichthyes caught during the Medits surveys in Italian waters. *Biologia Marina*  
435 *Mediterranea* 17(1): 186-204.

436 Rodríguez-Cabello C, Pérez M, Sánchez F. 2013. New records of chondrichthysans species caught  
437 in the Cantabrian Sea (southern Bay of Biscay). *Journal of the Marine Biological Association of*  
438 *the United Kingdom* 93(07):1929-1939. DOI:10.1017/s0025315413000271.

439 Ronquist, F. and J. P. Huelsenbeck. 2003. MrBayes 3: Bayesian phylogenetic inference under  
440 mixed models. *Bioinformatics* 19:1572-1574. DOI: 10.1093/bioinformatics/btg180

441 Rousset J. 1990. Population structure of Thornback Rays *Raja clavata* and their movements in the  
442 Bay of Douarnenez. *Journal of the Marine Biological Association of the United Kingdom* 70:261–  
443 268.

444 Russo T, Bitetto I, Carbonara P, Carlucci R, D'Andrea L, Facchini MT, Lembo G, Maiorano P,  
445 Sion L, Spedicato MT, Tursi A, Cataudella S. 2017. A Holistic Approach to Fishery Management:  
446 Evidence and Insights from a Central Mediterranean Case Study (Western Ionian Sea). *Frontiers  
447 in Marine Science* 4:193. DOI: 10.3389/fmars.2017.00193

448 Serena F. 2005. Field identification guide to the sharks and rays of the Mediterranean and Black  
449 Sea - FAO Species Identification Guide for Fishery Purposes. Rome: FAO 97p. Available at  
450 <http://www.fao.org/docrep/009/y5945e/y5945e00.htm> (accessed 26 January 2018).

451 Serra-Pereira B, Moura T, Griffiths A M, Serrano Gordo L, Figueiredo I. 2011. Molecular  
452 barcoding of skates (Chondrichthyes: Rajidae) from the southern Northeast Atlantic. *Zoologica  
453 Scripta* 40(1):76-84. DOI: 10.1111/j.1463-6409.2010.00461.x.

454 Sion L, Bozzano A, D'Onghia G, Capezzuto F, Panza M. 2004. Chondrichthyes species in deep  
455 waters of the Mediterranean Sea. *Scientia Marina* 68 (Suppl 3): 153–162.

456 Sion L, D'Onghia G, Tursi A, Matarrese A. 2003. Annotated check list of the skates  
457 (Chondrichthyes, Rajidae) in the North-Western Ionian Sea. *Biologia Marina Mediterranea*, 10  
458 (2): 935–940.

459 Spies I B, Gaichas S, Stevenson D E, Orr J W, Canino M F. 2006. DNA-based identification of  
460 Alaska skates (*Amblyraja*, *Bathyraja* and *Raja*: Rajidae) using cytochrome c oxidase subunit I (colI)  
461 variation. *Journal of Fish Biology* 69:283–292. DOI:10.1111/j.1095-8649.2006.01286.x.

462 Spouge J.L. 2016 Measurement of a Barcode's Accuracy in Identifying Species. In: Trivedi S.,  
463 Ansari A., Ghosh S., Rehman H. (eds) DNA Barcoding in Marine Perspectives. Springer, Cham

464 Stehmann M, Bürkel DL. 1984. Rajidae. In: Whitehead PJ., Bauchot ML, Hureau JC, Tortonese  
465 E, ed. *Fishes of the Northeastern Atlantic and Mediterranean*. Paris: Unesco, 163-196.

466 Stehmann, MFW, Ellis J, Walls R, Lynghammar A. 2015. *Dipturus nidarosiensis* The IUCN Red  
467 List of Threatened Species 2015: e.T161729A48927468. DOI:  
468 <http://dx.doi.org/10.2305/IUCN.UK.2015-1.RLTS.T161729A48927468.en>. (accessed 25 February  
469 2018)

470 Stehmann, M. 1990. Rajidae. In J.C. Quero, J.C. Hureau, C. Karrer, A. Post and L. Saldanha  
471 (eds.) Check-list of the fishes of the eastern tropical Atlantic. Junta Nacional de Investigaçao  
472 Cientifica e Tecnológica, Lisbon, Portugal. Vol. 1: 29-50

473 Templeman W. 1987. Length-weight relationship, Morphometric characteristics and Thorniness  
474 of Thorny skate (*Raja radiata*) from Northwest Atlantic. *Journal of Northwest Atlantic Fishery  
475 Science* 7:89-98.

476 Vargas-Caro C, Bustamante C, Lamilla J, Bennett M B, Ovenden J R. 2016. The phylogenetic  
477 position of the roughskin skate *Dipturus trachyderma* (Krefft & Stehmann, 1975) (Rajiformes,

478 Rajidae) inferred from the mitochondrial genome. *Mitochondrial DNA Part A DNA Mapping, Sequencing, and Analysis* 27(4):2965-2966. DOI:10.3109/19401736.2015.1060462.

479

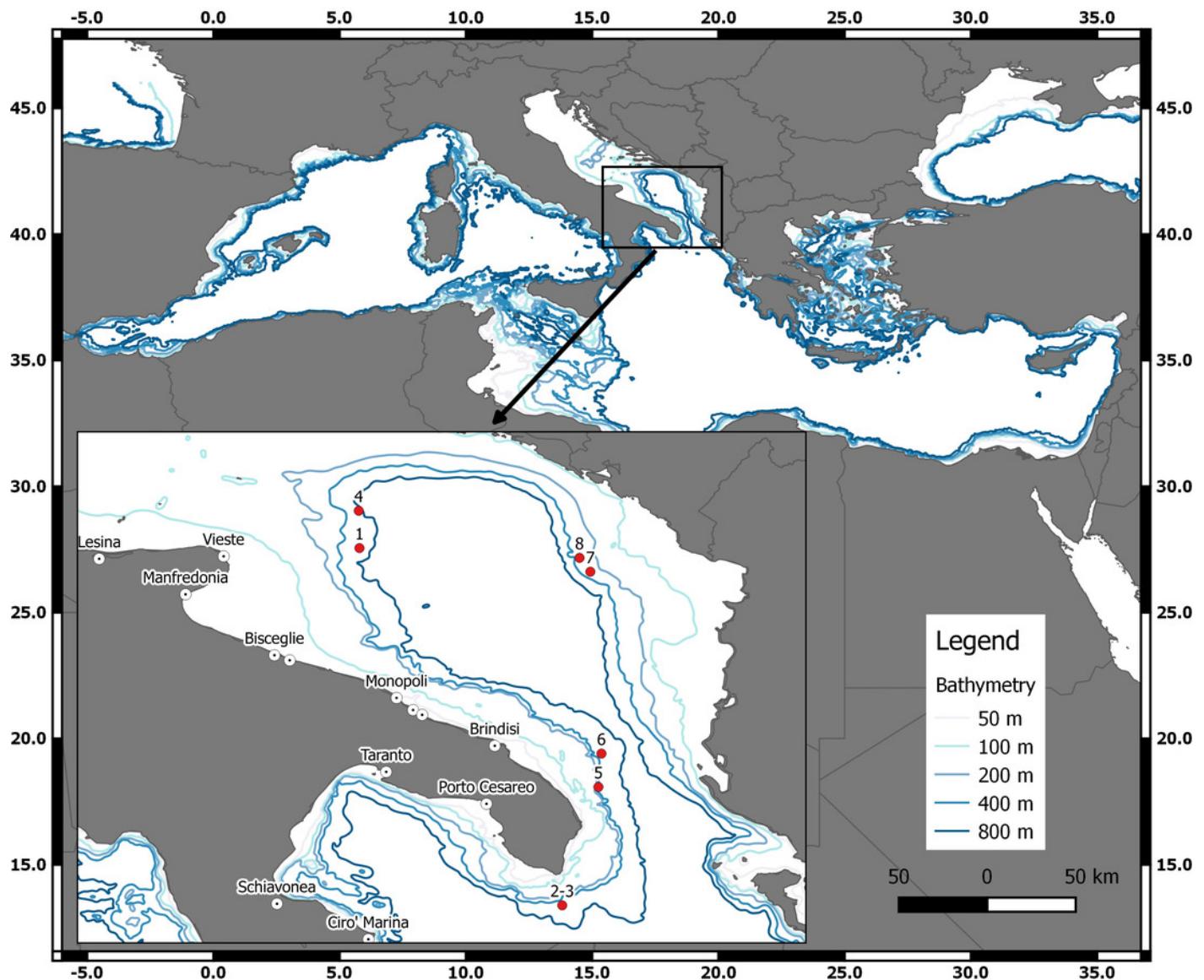
480 Vella A, Vella N, Schembri S. 2017. A molecular approach towards taxonomic identification of  
481 elasmobranch species from Maltese fisheries landings. *Marine Genomics* 36:17-23. DOI:  
482 10.1016/j.margen.2017.08.008.

483 Vilibic I, Orlic M. 2002. Adriatic water masses, their rates of formation and transport through the  
484 Otranto Strait. *Deep Sea Research Part I: Oceanographic Research Papers* 16: 171-178. DOI:  
485 10.1016/S0967-0637(02)00028-6

486 Ward R D, Holmes B H, White W T, Last P R. 2008. DNA barcoding Australasian  
487 chondrichthyans: results and potential uses in conservation. *Marine and Freshwater Research*  
488 59(1):57-71. DOI: 10.1071/MF07148.

489 Ward R D, Zemlak T S, Innes B H, Last P R, Hebert P D. 2005. DNA barcoding Australia's fish  
490 species. *Philosophical transactions of the Royal Society of London Series B, Biological sciences*  
491 360(1462):1847-57. DOI:10.1098/rstb.2005.1716.

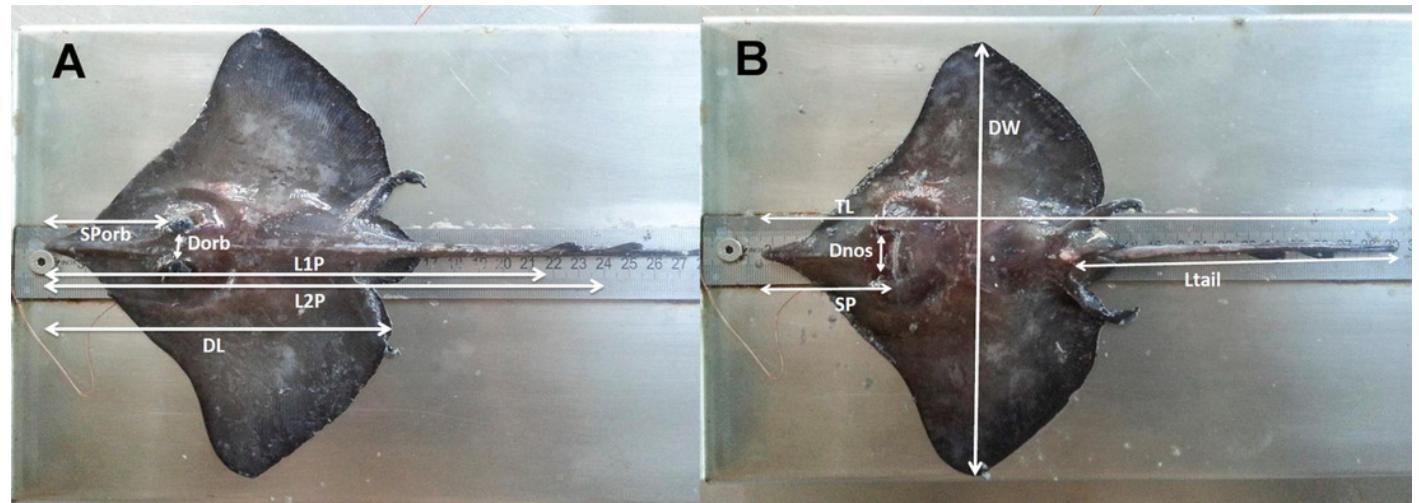
492 Williams T, Helle K, Aschan M. 2008. The distribution of chondrichthyans along the northern  
493 coast of Norway. *ICES Journal of Marine Science* 65: 1161-1174. DOI: 10.1093/icesjms/fsn103


494 Zupa W, Donnaloia M, Gaudio P, Intini S, Carbonara P. 2010. Occurrence of *Leucoraja fullonica*  
495 (Linnaeus, 1758) in the south Adriatic sea. *Biologia Marina Mediterranea* 17 (1): 260-261

496

# Figure 1

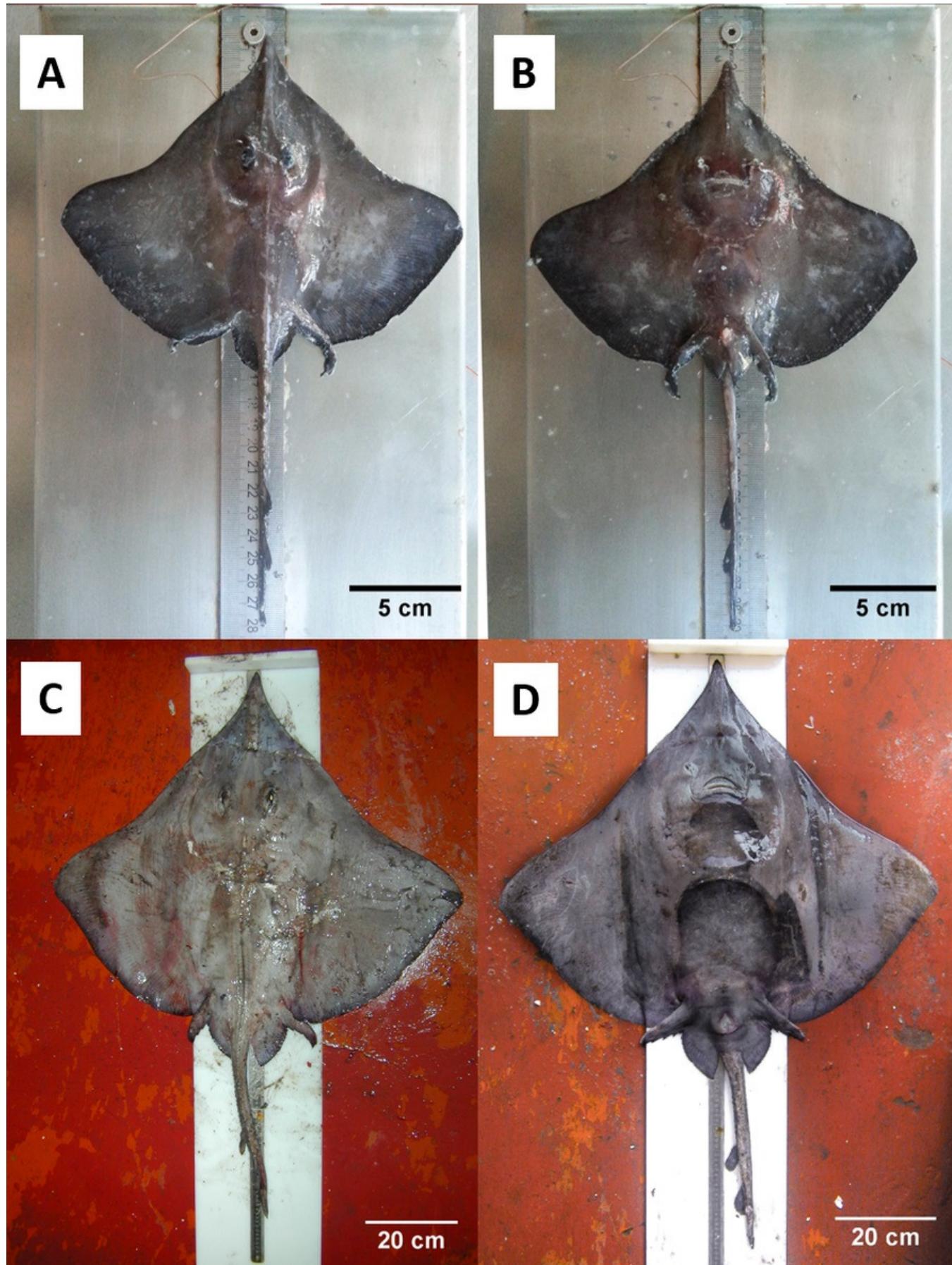
The geographical locations of the *D. nidarosiensis* catches are shown in figure 1


Figure 1. Spatial distribution of Norwegian skate *Dipturus nidarosiensis* caught during 2010–2016. The numbers correspond to the specimen codes reported in Table 1.



## Figure 2

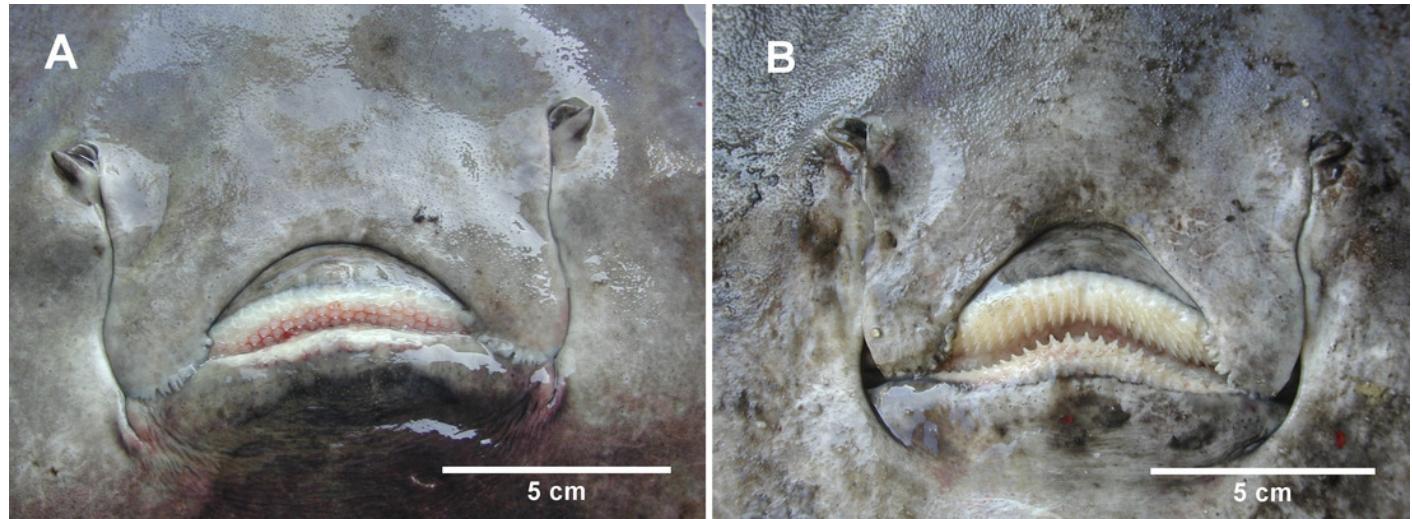
The morphometric measurements recorded for *D. nidarosiensis* specimens are represented in figure 2


Figure 2. Schematic representation of the morphometric measurements recorded for *Dipturus nidarosiensis* specimens caught in the central Mediterranean Sea. Dorsal view at left (A) and ventral view at right (B). Total Length (TL); Disc Length (DL); Pre 1° dorsal fin Length (L1P); Pre 2° dorsal fin Length (L2P); Preorbital or snout length (Sporb); Preoral Length (SP); Interorbital Length (Dorb); Internostril Length (Dnos), Disc Width (DW); Tail Length (Ltail).



## Figure 3

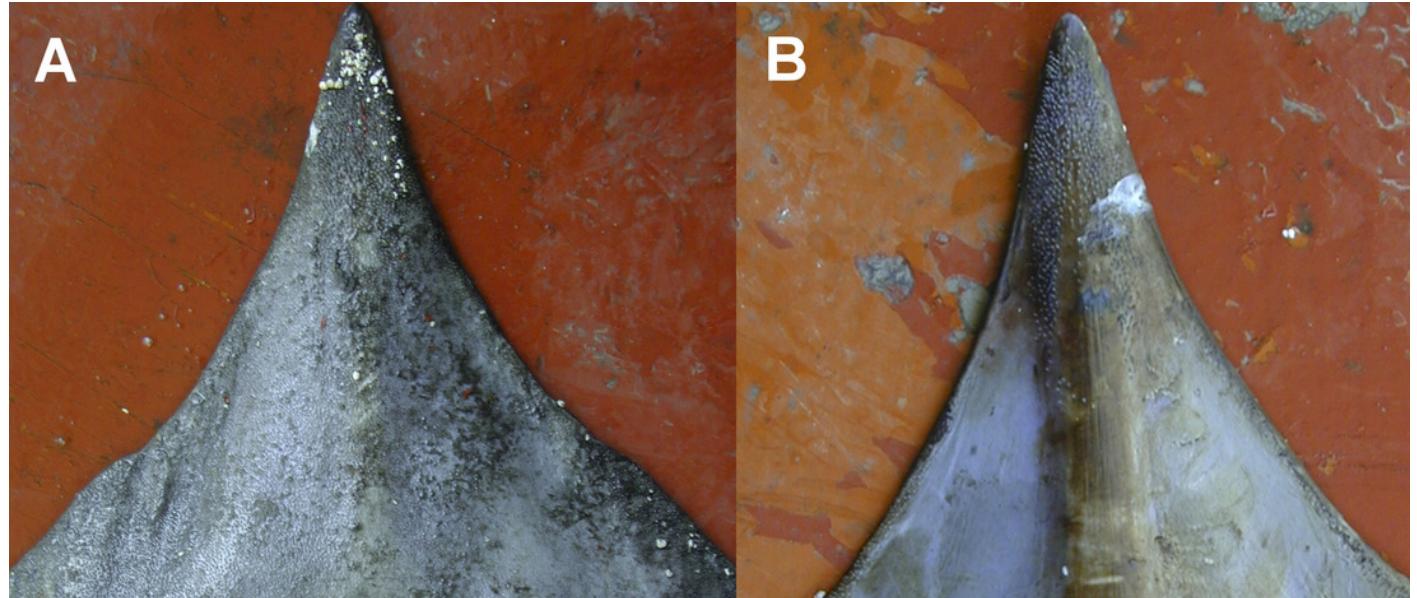
Juvenile and adult specimens (dorsal-ventral view) of *D. nidarosiensis* are shown in figure 3.


Figure 3. Juvenile (A: dorsal view; B: ventral view) and adult female (C: dorsal view; D: ventral view) of *Dipturus nidarosiensis*. Photo: Pierluigi Carbonara.



## Figure 4

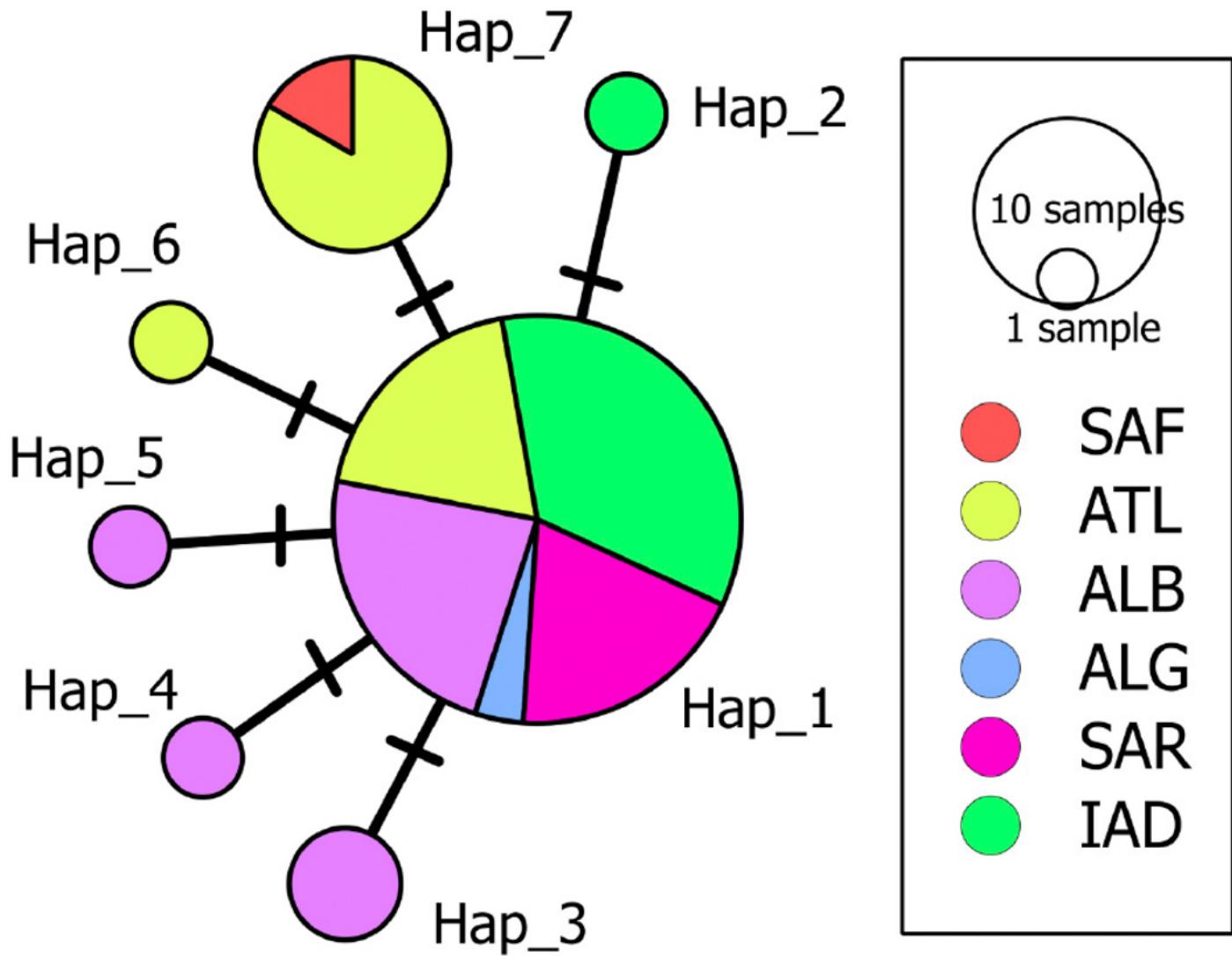
The mouth of female and male *D. nidarosiensis* specimens are shown in figure 4


Figure 4. Detail of the mouth of (A) female with molar-like teeth and (B) male with pointed teeth. Photo: Pierluigi Carbonara.



## Figure 5

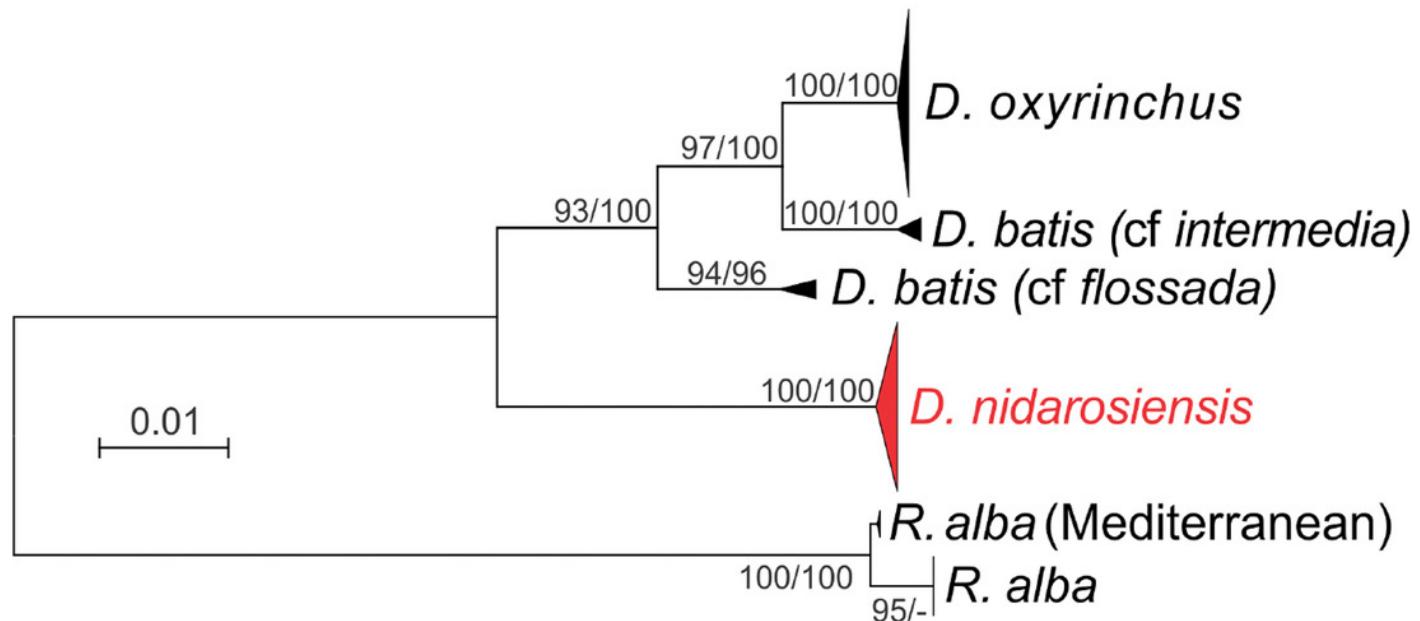
The snout of *D. nidarosiensis* is shown in figure 5


Figure 5. Detail of the snout (A) dorsal and (B) ventral side. Photo: Pierluigi Carbonara.



## Figure 6

Median-Joining network of the COI haplotypes is shown in figure 6


Figure 6. Median-Joining network of the COI haplotypes. Each circle represents a haplotype, and the area of the circle is proportional to the haplotype frequency. All mutational steps are equal to 1 and are represented with a vertical line. Colours correspond to different areas of origin of the sequence (SAF = South Africa; ATL: Northeast Atlantic; ALB = Alboran Sea; ALG = Algeria; SAR = Sardinia; IAD = Ionian + Adriatic seas). Haplotype code correspondence is shown in Table S1.



## Figure 7

Phylogenetic tree is shown in figure 7

Figure 7. Phylogenetic tree based on mitochondrial COI sequences. Bootstrap/posterior probability values >70 are shown next to the nodes for the Neighbour Joining and Bayesian methods, respectively. In red the clade were the Ionian-Adriatic sequences clustered.



**Table 1**(on next page)

The morphometrics, meristics, sexes, maturity, depth, dates of capture and origins data are reported in the Table 1

Table 1. Summary of data collected from commercial landings and scientific surveys, NA: not available.

| Code specimens | 1                   | 2                     | 3                     | 4                   | 5          | 6          | 7          | 8          |
|----------------|---------------------|-----------------------|-----------------------|---------------------|------------|------------|------------|------------|
| Date           | 29/09/2010          | 31/07/2011            | 31/07/2011            | 06/10/2011          | 13/08/2014 | 13/08/2014 | 02/08/2015 | 01/08/2016 |
| Source         | Landing<br>(Market) | Landing<br>(Discards) | Landing<br>(Discards) | Landing<br>(Market) | MEDITS     | MEDITS     | MEDITS     | MEDITS     |
| Depth (m)      | 610                 | 600                   | 600                   | 720                 | 377        | 550        | 373        | 320        |

#### Morphometric measurements (mm) – Percentage of total length (%)

|                                       |             |            |            |             |            |             |            |            |
|---------------------------------------|-------------|------------|------------|-------------|------------|-------------|------------|------------|
| <b>Total Length (TL)</b>              | 1235        | 705        | 912        | 1194        | 269        | 1422        | 356        | 305        |
| <b>Width Disc (WD)</b>                | 855 - 69.2  | 511 – 72.5 | 653 – 71.6 | 884 – 74.0  | 186 – 69.1 | 1003 – 70.5 | 228 – 64.0 | 215 – 70.5 |
| <b>Length Disc (LD)</b>               | 720 - 58.3  | 415 – 58.9 | 524 – 57.5 | 713 – 59.7  | 146 – 54.3 | 842 – 59.2  | 187 – 52.5 | 172 – 56.4 |
| <b>Length 1° dorsal fin (L1P)</b>     | 1020 - 82.6 | 560 – 79.3 | 723 – 79.3 | 977 – 81.8  | 206 – 76.6 | 1162 – 81.7 | 252 – 70.8 | 237 – 77.7 |
| <b>Length 2° dorsal fin (L2P)</b>     | 1087 - 88   | 622 – 88.2 | 802 87.9   | 1049 – 87.9 | 229 – 85.1 | 1259 – 88.5 | 282 – 79.2 | 266 – 87.2 |
| <b>Distance interorbital (Dorb)</b>   | 63 - 5.1    | 34 – 4.8   | 46 – 5     | 59 – 4.9    | 12 – 4.5   | 75 – 5.3    | 15 – 4.2   | 14 – 4.6   |
| <b>Distance internostril (Dnos)</b>   | 99 - 8      | 55 – 7.8   | 74 – 8.1   | 98 – 8.2    | 19 – 7.1   | 114 – 8     | 25 – 7     | 20 – 6.6   |
| <b>Snout preorbital Sporb (Sporb)</b> | 246 - 19.9  | 141 – 20   | 181 – 19.8 | 242 – 20.3  | 51 – 18.9  | 286 – 20.1  | 67 – 18.8  | 63 – 20.7  |
| <b>Snout preoral (SP)</b>             | 228 - 18.5  | 133 – 18.9 | 173 – 19   | 215 – 18    | 56 – 20.8  | 314 – 22.1  | 69 – 19.4  | 68 – 22.3  |
| <b>Length Tail (Ltail)</b>            | 416 - 33.7  | 240 - 34   | 309 – 33.9 | 412 – 34.5  | 136 – 50.6 | 568 – 39.9  | 160 – 44.9 | 157 – 51.5 |

#### Meristic counts (N°)

|                                  |    |    |    |    |    |    |    |    |
|----------------------------------|----|----|----|----|----|----|----|----|
| <b>Thorns on median row disc</b> | 20 | 12 | 12 | 15 | 0  | 19 | 0  | 0  |
| <b>Median thorns on tail</b>     | 32 | 18 | 23 | 33 | 9  | 35 | 10 | 11 |
| <b>Lateral torn on tail</b>      | 35 | 30 | 34 | 37 | 0  | 33 | 0  | 0  |
| <b>Rows of teeth upper</b>       | 44 | 45 | 43 | 44 | 44 | 45 | 42 | 42 |

|                                |    |    |    |    |    |    |    |    |
|--------------------------------|----|----|----|----|----|----|----|----|
| <b>jaw</b>                     |    |    |    |    |    |    |    |    |
| <b>Rows of teeth lower jaw</b> | 42 | 43 | 41 | 42 | 42 | 43 | 39 | 39 |
| <b>Gill slits</b>              | 5  | 5  | 5  | 5  | 5  | 5  | 5  | 5  |

| <b>Weight (g)</b>    |       |        |        |       |      |       |      |      |
|----------------------|-------|--------|--------|-------|------|-------|------|------|
| <b>Total Weight</b>  | 10043 | 1138   | 2596   | 9200  | 45   | 12540 | 105  | 75   |
| <b>Gonad weight</b>  | 60    | 1.9    | 6.9    | 400   | NA   | 58    | NA   | NA   |
| <b>Liver weight</b>  | 560   | 44.4   | 133.6  | 495.7 | 1.4  | 62.7  | 1.8  | 1.6  |
| <b>Gutted weight</b> | 8140  | 1023.1 | 2250.4 | 8580  | 39.6 | 11090 | 71.8 | 62.2 |

**Sex and Maturity**

|                 |      |      |      |        |        |        |      |        |
|-----------------|------|------|------|--------|--------|--------|------|--------|
| <b>Sex</b>      | Male | Male | Male | Female | Female | Female | Male | Female |
| <b>Maturity</b> | 3B   | 3A   | 3A   | 3A     | 1      | 2      | 1    | 1      |

**Table 2**(on next page)

The description of the maturity scale, used in this study, is reported in the table 2.

Table 2. Maturity scale for the Elasmobranch oviparous species (AAVV, 2017; Follesa and Carbonara, 2019)

1

| STAGE | MATURATION STATE         | REPRODUCTIVE APPARATUS ASPECT                                                                                                                            |                                                                                                                                                                                                              |
|-------|--------------------------|----------------------------------------------------------------------------------------------------------------------------------------------------------|--------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------------|
|       |                          | FEMALES                                                                                                                                                  | MALES                                                                                                                                                                                                        |
| 1     | IMMATURE/VIRGIN          | Ovaries barely discernible with small isodiametric follicles. Distal part of oviducts thick-walled and whitish. Oviducal glands not clearly visible.     | Small and flaccid claspers not reaching the posterior edge of the pelvic fins. Spermducts not differentiated. Small and narrow testes..                                                                      |
| 2     | MATURING                 | Whitish and/or few yellow maturing follicles visible in the ovary. Distal part of oviducts (uteri) well developed but empty. Developing oviducal glands. | Clasper extending past the posterior edge of the pelvic fins. Spermducts well developed, and starting to meander.                                                                                            |
| 3A    | MATURE                   | Ovaries with yellow follicles (large yolk follicles). Enlarged oviducal glands and distended oviducts.                                                   | Hard and ossified claspers extending well beyond the posterior edge of the pelvic fin. with internal structure is generally. Testes greatly enlarged. Spermducts meandering over almost their entire length. |
| 3B    | MATURE/EXTRUDING/ ACTIVE | Ovaries walls transparent. White or yellow follicles. Large oviducal glands. Egg-cases more or less formed in the oviducts (Extruding Stage).            | Clasper longer than tips of posterior pelvic fin lobes, skeleton hardened with axial cartilages hardened and pointed. Spermducts largely. Sperm flowing on pressure from cloaca (Active Stage).              |
| 4A    | RESTING                  | Ovaries walls transparent. White or yellow follicles. Enlarged oviducts, collapsed and empty. Reduced oviducal glands diameter.                          | Clasper longer than tips of posterior pelvic fin lobes, skeleton hardened with axial cartilages still hardened. Spermducts empty and flaccid.                                                                |
| 4B    | REGENERATING             | Ovaries full of small follicles similar to stage 2, enlarged oviducal glands and uteri                                                                   | Clasper longer than tips of posterior pelvic fin lobes, skeleton hardened with axial cartilages still hardened. Spermducts empty and flaccid.                                                                |

2

3