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Monitoring of species and populations is essential for biodiversity observation and
reporting at local, national and global scales, but can be an exceedingly difficult task for
many, if not most, species. We tested the viability of using Google EarthTM imagery to
manually map and monitor all individuals of the critically endangered Clanwilliam cedar,
Widdringtonia cedarbergensis Marsh, across its global native distribution; the remote and
rugged Cederberg mountains. Comparison with sampling from field surveys reveals this to
be a highly efficient and effective method for mapping healthy adult tree localities, but it
fails to detect small or unhealthy individuals with green canopies <4 m2, or discern the
number of individuals in clumps. This approach is clearly viable as a monitoring tool for
this species and, with the rapid progress being made in machine learning approaches and
satellite technology, will only become easier and more feasible for a greater number of
species in the near future. Sadly, our field surveys revealed that the number of trees that
have recently died (dead leaves still present) outnumbered live trees by a ratio of 2:1.
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19 Abstract

20 Monitoring of species and populations is essential for biodiversity observation and reporting at 

21 local, national and global scales, but can be an exceedingly difficult task for many, if not most, 

22 species. We tested the viability of using Google EarthTM imagery to manually map and monitor 

23 all individuals of the critically endangered Clanwilliam cedar, Widdringtonia cedarbergensis 

24 Marsh, across its global native distribution; the remote and rugged Cederberg mountains. 

25 Comparison with sampling from field surveys reveals this to be a highly efficient and effective 

26 method for mapping healthy adult tree localities, but it fails to detect small or unhealthy 

27 individuals with green canopies <4 m2, or discern the number of individuals in clumps. This 

28 approach is clearly viable as a monitoring tool for this species and, with the rapid progress being 

29 made in machine learning approaches and satellite technology, will only become easier and more 

30 feasible for a greater number of species in the near future. Sadly, our field surveys revealed that 

31 the number of trees that have recently died (dead leaves still present) outnumbered live trees by a 

32 ratio of 2:1.

33
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34 Introduction 

35

36 The charismatic Clanwilliam cedar, Widdringtonia cedarbergensis Marsh, a narrow endemic 

37 within the Cederberg mountains, Fynbos Biome, South Africa (32°18'S 19°06'E), has shown 

38 precipitous decline in population numbers over the past two centuries. While there are anecdotes 

39 of overexploitation in the early 1800s (Smith, 1955), recent evidence from analysis of repeat 

40 photographs suggests that mortality has been exacerbated by anthropogenic climate change, 

41 particularly over the past 30 years (White et al., 2016). This is consistent with a global analysis 

42 revealing increased climate-induced tree mortality over the past 40 years (Allen et al., 2010), 

43 with conifer species being especially vulnerable. With increasing evidence of climate change 

44 impacts on South African vegetation (Foden et al., 2007; Slingsby et al., 2017; White et al., 

45 2016), it is key that we improve our ability to detect and track these impacts, both to raise public 

46 awareness and to improve our understanding of anticipated environmental change.

47 While the monitoring of species and populations is one of the six major classes of 

48 Essential Biodiversity Variables “required to study, report, and manage biodiversity change” 

49 (Pereira et al., 2013), this can be an exceedingly difficult task in rugged and remote landscapes, 

50 or where species are difficult to detect. Fortunately, freely available, high resolution satellite 

51 imagery is making this more feasible for large organisms such as trees (Visser et al., 2014; Geller 

52 et al., 2017). Here we test the viability of using Google EarthTM imagery to map and monitor all 

53 individuals of the Clanwilliam cedar across its global native distribution.

54

55 Material & methods 

56
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57 Tree localities for the entire species’ distribution were manually mapped from high-resolution 

58 CNES/Airbus satellite imagery available from Google EarthTM for the year 2013. Trees were 

59 identified based on canopy colour, size, shape and shadows, and, where possible, verified with 

60 ground photographs from the publicly contributed archives accessible through Google EarthTM 

61 and a personal collection of ~19 000 georeferenced images from research for the Cederberg 

62 hiking map (Slingsby, 2015). Early tests found that we could not detect dead trees, likely because 

63 they cast very little shadow and their stems are mostly white and cannot be discerned from the 

64 high cover of white rock in the area. Trees with brown canopies were ignored as they were likely 

65 dead and/or other species. For visual identification and mapping, Google EarthTM scenes were 

66 exported to CorelDRAW® (Corel Corporation, 2016), the colour balance adjusted, and trees 

67 marked as points in a layer. The tree points layer was then exported as a vector image and 

68 georeferenced and converted to Keyhole Markup Language (KML) in ArcGIS 10.2 (ESRI, 

69 2011). Minimum horizontal mapping accuracy was established by opening the KML in Google 

70 EarthTM and measuring the distance between 200 mapped points and the trees they represent 

71 using the measuring tool. Dense areas were avoided to reduce confusion between target trees.

72 To validate our satellite enumeration approach on the ground, we mapped the GPS 

73 location and size class (adult = canopy >4 m2, sub-adult = canopy >1 and <4 m2, and seedlings = 

74 canopy <1 m2) of all cedar trees found within three circumscribed field sites across the species’ 

75 range. We then compared our field survey results with population estimates from our satellite 

76 image analysis, exploring the influence of size class on detection from satellite. Since our first 

77 site survey revealed that the trees can survive substantial canopy dieback, we also recorded the 

78 size of the live canopy of trees for the two subsequent field sites to explore the effect of live 

79 canopy size on detection from satellite.
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80

81 Results 

82

83 We mapped 13419 cedar tree localities (Fig. 1), taking an estimated 200 working hours. None of 

84 our 200 sample trees fell more than 20 metres from the mapped point, suggesting a horizontal 

85 mapping accuracy <20m (~ 1:24 000).

86 Our ground surveys took five days for a team of two to cover 1/20 000th of the 

87 Clanwilliam cedar’s range. We found 123 live trees (61 adults, 24 subadults and 38 seedlings), 

88 while our satellite approach detected only 21 healthy green canopies in the same area (Fig. 1). 

89 Our canopy health data from two of the three field sites revealed that of the 25 live adult trees 

90 only 10 had healthy green canopies >4 m2, while our satellite approach counted 9 trees. Our field 

91 survey also revealed 237 dead trees (i.e. a ratio of two dead to every live tree), made up of 109 

92 adults, 82 sub-adults and 46 seedlings, still bearing dead leaves. 

93

94 Discussion 

95

96 Our satellite-based approach did very well to provide a near-perfect fine-scale description of the 

97 Clanwilliam cedar’s distribution, providing a detailed baseline that allows monitoring of future 

98 change, and allowing inference of fine-scale habitat preferences that could lead to a better 

99 understanding of the species’ ecology and causes of its decline. While the satellite image 

100 analysis clearly missed smaller individuals and those with unhealthy canopies, and cannot 

101 discern between clumps of trees and single individuals, it provides a very good indication of the 

102 locations of adult trees with live canopies. We achieved a horizontal mapping accuracy suitable 
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103 for most applications, but it could likely be improved if all analyses were performed directly in 

104 Google EarthTM or Geographic Information System (GIS). This would likely require the ability 

105 to modify the colour balance of images directly in the software to aid visual detection. With good 

106 field estimates of the species’ size class distribution and canopy health it would be feasible to 

107 provide a relatively accurate estimate of population numbers based on the locality data. Our 

108 small field survey and work by White et al. (2016) both suggest that population structure, canopy 

109 health, recruitment (presence of seedlings) and mortality (presence of dead stems) are highly 

110 varied across the Cederberg, cautioning against extrapolation without sufficient sampling, 

111 stratified across environmental gradients and spanning the species’ full range.

112 There was no evidence to suggest there were any errors of commission, whereby 

113 individuals of other species were mistaken for Widdringtonia cedarbergensis. The most likely 

114 species would have been Heeria argentea (Thunb.) Meisn. or Podocarpus elongatus (Aiton) 

115 L'Hér. ex Pers., but these were readily distinguishable by differences in canopy colour, shape, 

116 shadow and habitat. Omission rates may vary depending on topography and the recent 

117 occurrence of fire; but error rates for localities with adult trees or clumps >4 m2 are likely to be 

118 low.

119 This observation method is clearly highly efficient and effective, and has great potential 

120 for application to other important plant species worldwide, especially large trees or shrubs that 

121 occur in sparse vegetation. Key species in South Africa include the declining Aloidendron 

122 dichotomum (Masson) Klopper & Gideon (Foden et al., 2007), large species in the Proteaceae 

123 Juss. (Schurr et al., 2012), or savanna trees. 

124 While our approach is far cheaper and more time-efficient than an exhaustive (and 

125 exhausting!) field survey, the field of image analysis with machine learning approaches is 
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126 moving incredibly rapidly (Demir et al., 2018) and will greatly reduce the need for and time 

127 spent doing manual digitization of individual localities. This, combined with the growing record 

128 of satellite and aerial imagery with continually improving spatial and spectral resolution will 

129 soon allow for rapid and cost effective monitoring of many species across their global 

130 distribution ranges (Geller et al., 2017).

131

132 Acknowledgements

133

134 The authors would like to thank Google for making their imagery freely available. We also thank 

135 Amy Slingsby, Glenn Moncrieff, Nicky Allsopp and Abri de Buys for assistance with field work, 

136 and Thomas Slingsby for converting the tree layer into Keyhole Markup Language (KML) 

137 format.

138

139 References

140 Allen, C.D., Macalady, A.K., Chenchouni, H., Bachelet, D., McDowell, N., Vennetier, M., 

141 Kitzberger, T., Rigling, A., Breshears, D.D., Hogg, E.H. (ted), Gonzalez, P., Fensham, R., 

142 Zhang, Z., Castro, J., Demidova, N., Lim, J.-H., Allard, G., Running, S.W., Semerci, A., 

143 Cobb, N., 2010. A global overview of drought and heat-induced tree mortality reveals 

144 emerging climate change risks for forests. For. Ecol. Manage. 259, 660–684.

145 Corel Corporation, 2016. CorelDRAW.

146 Demir, I., Koperski, K., Lindenbaum, D., Pang, G., Huang, J., Basu, S., Hughes, F., Tuia, D., 

147 Raska, R., 2018. Deepglobe 2018: A challenge to parse the earth through satellite images, 

148 in: 2018 IEEE/CVF Conference on Computer Vision and Pattern Recognition Workshops 

PeerJ reviewing PDF | (2019:02:34903:1:0:NEW 19 Mar 2019)

Manuscript to be reviewed



149 (CVPRW). IEEE, pp. 172–17209.

150 ESRI, 2011. ArcGIS Desktop.

151 Foden, W., Midgley, G.F., Hughes, G., Bond, W.J., Thuiller, W., Hoffman, M.T., Kaleme, P., 

152 Underhill, L.G., Rebelo, A., Hannah, L., 2007. A changing climate is eroding the 

153 geographical range of the Namib Desert tree Aloe through population declines and dispersal 

154 lags: Namib Desert trees feel the heat of climate change. Diversity and Distributions 13, 

155 645–653.

156 Geller, G.N., Halpin, P.N., Helmuth, B., Hestir, E.L., Skidmore, A., Abrams, M.J., Aguirre, N., 

157 Blair, M., Botha, E., Colloff, M., Dawson, T., Franklin, J., Horning, N., James, C., 

158 Magnusson, W., Santos, M.J., Schill, S.R., Williams, K., 2017. Remote Sensing for 

159 Biodiversity, in: Walters, M., Scholes, R.J. (Eds.), The GEO Handbook on Biodiversity 

160 Observation Networks. Springer International Publishing, Cham, pp. 187–210.

161 Pereira, H.M., Ferrier, S., Walters, M., Geller, G.N., Jongman, R.H.G., Scholes, R.J., Bruford, 

162 M.W., Brummitt, N., Butchart, S.H.M., Cardoso, A.C., Coops, N.C., Dulloo, E., Faith, D.P., 

163 Freyhof, J., Gregory, R.D., Heip, C., Höft, R., Hurtt, G., Jetz, W., Karp, D.S., McGeoch, 

164 M.A., Obura, D., Onoda, Y., Pettorelli, N., Reyers, B., Sayre, R., Scharlemann, J.P.W., 

165 Stuart, S.N., Turak, E., Walpole, M., Wegmann, M., 2013. Essential biodiversity variables. 

166 Science 339, 277–278.

167 Schurr, F.M., Esler, K.J., Slingsby, J.A., Allsopp, N., 2012. Fynbos Proteaceae as model 

168 organisms for biodiversity research and conservation. S. Afr. J. Sci. 108, 12–16.

169 Slingsby, J.A., Merow, C., Aiello-Lammens, M., Allsopp, N., Hall, S., Kilroy Mollmann, H., 

170 Turner, R., Wilson, A.M., Silander, J.A., Jr, 2017. Intensifying postfire weather and 

171 biological invasion drive species loss in a Mediterranean-type biodiversity hotspot. Proc. 

PeerJ reviewing PDF | (2019:02:34903:1:0:NEW 19 Mar 2019)

Manuscript to be reviewed



172 Natl. Acad. Sci. U. S. A. 114, 4697–4702.

173 Slingsby, P., 2015. Hike the Cederberg Map, 2nd Edition.

174 Smith, C.A., 1955. Early 19th Century records of the Clanwilliam cedar (Widdringtonia 

175 juniperoides Endl.). Journal of the South African Forestry Association 25, 58–65.

176 Visser, V., Langdon, B., Pauchard, A., Richardson, D.M. 2014. Unlocking the potential of 

177 Google Earth as a tool in invasion science. Biol. Invasions 16, 513–534.

178 White, J.D.M., Jack, S.L., Hoffman, M.T., Puttick, J., Bonora, D., Visser, V., February, E.C., 

179 2016. Collapse of an iconic conifer: long-term changes in the demography of Widdringtonia 

180 cedarbergensis using repeat photography. BMC Ecol. 16, 53.

181

182

183

PeerJ reviewing PDF | (2019:02:34903:1:0:NEW 19 Mar 2019)

Manuscript to be reviewed



Figure 1(on next page)

Clanwilliam cedar size class distribution and tree localities

(A) Barplot of trees of different size classes (A = adult; canopy >4 m2, SA = sub-adult, canopy

>1 and <4 m2, S = seedling; canopy < 1 m2) within our field sites observed on the ground or

using satellite imagery from Google EarthTM. (B) Map of Clanwilliam cedar tree localities

(black points) mapped from 2013 Google EarthTM imagery showing the Cederberg Wilderness
Area boundary (dashed line), and field survey sites (white circles with black centre).
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