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ABSTRACT
Simulated data are invaluable for assessing a computational method’s ability to
distinguish signal from noise. Although many biological systems show rhythmicity,
there is no general-purpose tool to simulate large-scale, rhythmic data. Here we
present Simphony, an R package for simulating data from experiments in which the
abundances of rhythmic and non-rhythmic features (e.g., genes) are measured at
multiple time points in multiple conditions. Simphony has parameters for specifying
experimental design and each feature’s rhythmic properties (e.g., amplitude and phase).
In addition, Simphony can samplemeasurements fromGaussian and negative binomial
distributions, the latter of which approximates read counts from RNA-seq data. We
show an example of using Simphony to evaluate the accuracy of rhythm detection.
Our results suggest that Simphony will aid experimental design and computational
method development. Simphony is thoroughly documented and freely available at
https://github.com/hugheylab/simphony.
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INTRODUCTION
Rhythms are ubiquitous across domains of life and across timescales, from hourly division
of bacteria (Cooper & Helmstetter, 1968) to seasonal growth of trees (Kramer, 1936). These
biological rhythms are often driven by systems of genes and proteins. Prominent examples
are the systems underlying circadian rhythms, which have a period of approximately
24 h and have been observed in species across the biosphere (Young & Kay, 2001) and
throughout the body of multicellular organisms (Yoo et al., 2004; Zhang et al., 2014).

To interrogate these rhythmic biological systems, researchers are increasingly
using technologies that measure the abundance of thousands of molecules in parallel
(e.g., quantifying the transcriptome by RNA-Seq). The critical decisions then become
how to design the experiments and how to analyze the data. For example, there are now
numerous methods for detecting rhythms in high-dimensional data (Yang & Su, 2010;
Hughes, Hogenesch & Kornacker, 2010; Thaben & Westermark, 2014; Wu et al., 2016). A
valuable aid to such decisions is simulation. In simulated data, unlike in experimental data,
the ground truth is known (e.g., whether a gene is rhythmic). Consequently, to the extent
that simulated data possess the essential features of experimental data, simulation can be
used to estimate a method’s ability to distinguish signal from noise (Deckard et al., 2013).
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Simulated data are also typically faster and less expensive to generate than experimental
data, especially omics data from high-resolution time courses.

Unfortunately, there is a shortage of publicly available tools for simulating rhythmic
data. This forces researchers to create their own simulations from scratch (Deckard et al.,
2013; Singer & Hughey, 2018) or to forgo simulations altogether. Although several tools
exist to simulate particular types of transcriptome data (Dembélé, 2013; Frazee et al., 2015;
Zappia, Phipson & Oshlack, 2017), most are not designed to simulate data from time-course
experiments. One exception is Polyester (Frazee et al., 2015), which can simulate RNA-seq
reads from multiple time points and conditions. However, Polyester models many aspects
of the sequencing process, which incurs a computational burden and may not be directly
relevant for designing experiments to collect rhythmic data or evaluating methods to
analyze such data. Recognizing a gap,Hughes et al. (2017) recently developed CircaInSilico,
a web-based application for simulating rhythmic data. Although CircaInSilico has a
convenient user interface, it has several limitations—for example, the simulated rhythms
can only be sinusoidal. In addition, even though read counts from RNA-seq data are often
modeled using a negative binomial distribution (Robinson & Smyth, 2007), CircaInSilico
can only simulate Gaussian noise. Thus, there is still a need for a flexible tool to simulate
large-scale, rhythmic data.

To address this need, we developed a simulation package called Simphony. Simphony
has adjustable parameters for specifying experimental design and modeling rhythms,
including the ability to sample from Gaussian and negative binomial distributions.
Simphony is implemented in R, thoroughly documented, and freely available at
https://github.com/hugheylab/simphony .

MATERIALS AND METHODS
Simulating rhythmic data using Simphony
Simphony simulates experiments in which the abundances of rhythmic and non-rhythmic
features (e.g., genes) are measured at multiple time points in one or more conditions
(Table 1).Within a given simulated experiment (i.e., a simulation), the expected abundance
m of feature i in condition k at time t is modeled as

mik (t )= aik(t ) · fik(
2π
τik
·(t+φik))+bik(t ),

where a is the amplitude, f is a periodic function with period 2π (by default, f (θ)= sin(θ)),
τ is the period of rhythmic changes in abundance (by default, 24), φ is the phase, and b is
the baseline abundance. If a and b are constant and f (θ)= sin(θ), the model is equivalent
to cosinor. Time-dependent a can create damped rhythms, whereas time-dependent b can
create drift. Non-rhythmicity is defined by a= 0.

Given mik (t ), Simphony samples measurements from one of two families of
distributions: Gaussian and negative binomial. The former represents an idealized
experimental scenario, whereas the latter approximates read counts from RNA-seq. For
Gaussian sampling, the abundance of feature i in sample j belonging to condition k follows

Yij ∼N (mik(tj),σ 2
ik),
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Table 1 Available options in Simphony.

Type of parameter Parameters

Experimental design Time points:
• First and last time points, interval, and number of
samples per time point
• Specified time points and number of samples per time
point
• Drawn from a uniform distribution, first and last
possible time points, and total number of samples

Number of conditions
Number of features in each group
Rhythmic shape
Period
Phase
Amplitude (can be time-dependent)

Properties of abundance
(per feature group per
condition)

Baseline (can be time-dependent)
Sampling measurements Family:

• Gaussian
• Negative binomial

Standard deviation (if Gaussian)
Mean-dispersion relationship (if negative binomial)

where σ 2 is the variance (by default, 1). For negative binomial sampling, we follow a
similar strategy to DESeq2 (Love, Huber & Anders, 2014) and Polyester (Frazee et al., 2015),
such that

Yij ∼NB(µ= 2mik (tj ),α= gik(2mik(tj))),

where µ is the expected counts, α is the dispersion (the variance of a negative binomial
distribution is Var (Y )=µ+αµ2), and g is a function that maps expected counts to
dispersion. The default g was estimated from RNA-seq data from mouse liver (see the next
section for details).

Experimental design in Simphony is specified in one of three ways: (1) first and last
time points, interval between time points, and number of samples per time point per
condition, (2) exact time points and number of samples per time point per condition, or
(3) time points sampled from a uniform distribution, range of possible time points, and
total number of samples per condition. By default, Simphony uses option (1), with first
and last time points of 0 and 48, interval between time points of 3, and number of samples
per time point of 2.

The Simphony R package has two dependencies: data.table (Dowle & Srinivasan, 2018)
and foreach (Calaway, Microsoft & Weston, 2017).

Estimating statistical properties of experimental RNA-seq data
To estimate the relationship between expected counts and dispersion in real RNA-seq
data, we used PRJNA297287 (Atger et al., 2015). We used the samples that were collected
in quadruplicate from livers of wild-type, ad libitum-fed mice every 2 h for 24 h in LD
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12:12 (48 samples total). We downloaded the raw reads, then quantified gene-level counts
using Salmon v0.11.3 (Patro et al., 2017) and tximport v1.8.0 (Soneson, Love & Robinson,
2015). We kept the 15,069 genes that had at least 10 counts in half of the samples. We used
DESeq2 v1.20.0 to estimate parametric and local regression-based mean-dispersion curves
(Love, Huber & Anders, 2014) (Fig. S1A). The input to DESeq2 included a design matrix
based on cosinor regression, so that dispersion estimates were not biased by variation
in expression due to a daily rhythm. Compared to the parametric mean-dispersion
curve, the local regression-based curve had a considerably lower root-mean-squared
error (0.94 compared to 1.09, in units of log dispersion), so we set it as the default in
Simphony (g in the equation above). DESeq2 also provided an estimate of the variance
of the residual log dispersion (around the curve). Finally, we used fitdistrplus v1.0-14
(Delignette-Muller & Dutang, 2015) to approximate the distribution of mean normalized
counts as log-normal. The Simphony documentation includes an example of how to sample
from the estimated distributions of residual log dispersion and mean normalized counts
(Fig. S1B).

Validating statistical properties of simulated data
We performed multiple simulations to validate the statistical properties of data generated
by Simphony. Each simulation had time points spaced 0.1 h apart (period of 24 h), 100
samples per time point, and one feature for each combination of parameter values related to
measurements. Simulations based on negative binomial sampling used the default function
for calculating dispersion.

To validate mean and standard deviation, we simulated non-rhythmic abundance
(amplitude of 0) based on Gaussian and negative binomial sampling. For the simulation
using Gaussian sampling, we varied the desired mean and standard deviation. For the
simulation using negative binomial sampling, we varied the desired mean log2 counts. In
both cases, we then calculated the empirical mean and standard deviation (Table S1).

To validate amplitude and phase, we simulated rhythmic abundance based on Gaussian
and negative binomial sampling (using the default f (θ)= sin(θ)). For both types of
sampling, we varied the desired amplitude and phase. For the simulation based on Gaussian
sampling, we used the limma R package v3.38.3 (Smyth, 2004; Ritchie et al., 2015) to fit each
feature’s abundance to a linear model that had terms for cos

( 2π
τ
t
)
and sin

( 2π
τ
t
)
(cosinor

regression). We then used the model coefficients to estimate each feature’s amplitude
and phase according to the trigonometric identity a · cosθ+b · sinθ = c · sin(θ+φ), where
c =
√
a2+b2 and φ = π

2 −atan2(b,a) (Table S2). For the simulation based on negative
binomial sampling, we followed a similar procedure, except we log-transformed the counts
before passing them to limma.

Detecting rhythmicity in simulated data
We calculated gene-wise p-values of rhythmicity using JTK_CYCLE v3.1 (Hughes,
Hogenesch & Kornacker, 2010) after transforming the expression values, sampled from
the negative binomial family, using log2(counts+1). We used the p-values and the precrec
R package v0.9.1 (Saito & Rehmsmeier, 2017) to calculate the area under the receiver
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operating characteristic (ROC) curve for distinguishing non-rhythmic genes from each
group of rhythmic genes (specified by rhythm amplitude and baseline in log2 counts).

RESULTS
To validate the statistical properties of data generated by Simphony, we simulated data
covering a range of parameter values for the Gaussian and negative binomial families. To
ensure that the properties approached their asymptotic values, time points were spaced
0.1 h apart (period of 24 h), each with 100 samples. For non-rhythmic abundance, we
verified that the observed mean and standard deviation corresponded to the expected
values (Table S1). For rhythmic abundance, we verified that the observed amplitude and
phase corresponded to the expected values (Table S2).

To highlight Simphony’s flexibility, we simulated gene expression from a variety of
patterns, including ones in which the rhythm amplitude or baseline expression was time-
dependent (i.e., non-stationary). For each pattern, we sampled expression values from
the Gaussian and negative binomial families (Fig. 1). These patterns are only examples—
Simphony can simulate data fromany rhythmicwaveformor non-stationary trendprovided
as a function in R. We also simulated an experiment in which each of 200 genes had a
different rhythm amplitude and phase (Fig. 2), and an experiment having two conditions,
in which genes’ rhythms had a different amplitude, phase, or period in each condition
(Fig. S2).

To show an example of Simphony’s utility, we created simulations to quantify how
the accuracy of rhythm detection depends on experimental and biological parameters.
We simulated experiments having various intervals between time points and one sample
per time point. Each simulation included 20,000 genes spanning a range of values for
baseline expression and rhythm amplitude (including amplitude 0 for non-rhythmic
genes) (Fig. S3A). Because Simphony is not designed to detect rhythmicity, we calculated
each gene’s p-value of rhythmicity in each simulation using JTK_CYCLE, then calculated
the area under the ROC curve for distinguishing non-rhythmic genes from each group of
rhythmic genes. As expected, rhythm detection improved as rhythm amplitude increased
or the interval between time points decreased (Fig. 3A). Rhythm detection also improved
as baseline expression increased (and thus as the standard deviation of log-transformed
counts of non-rhythmic genes decreased; Fig. 3B and Fig. S3B).

DISCUSSION
Simphony is a versatile framework for simulating rhythmic data. Although Simphony
is especially apt for simulating transcriptome data, it is general enough to simulate data
of various types (e.g., bioluminescence). A future objective is to use simulated data
from Simphony to comprehensively benchmark computational methods for detecting
rhythmicity. Simphony’s flexibility will be key to mimicking the diversity of rhythms seen
in practice. Simphony’s ability to simulate non-stationary trends in particular is critical,
since the possibility of non-stationarity is one reason the guidelines for genome-scale
analysis of biological rhythms recommend collecting data from at least two cycles (Hughes
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Figure 1 Examples of rhythmic data generated by Simphony.Gene expression values (i.e., abundances)
were sampled from the (A) Gaussian or (B) negative binomial family. Time points were spaced 3 h apart,
with 1 sample per time point. Circles show the sampled gene expression values, black lines show the ex-
pected expression over time, and gray ribbons show the corresponding 90% prediction intervals. The pre-
diction intervals for negative binomial sampling have discontinuities because the sampled values can only
be integers greater than or equal to zero. The prediction intervals for negative binomial sampling also
shrink as expected expression increases, due to the mean-dispersion relationship.

Full-size DOI: 10.7717/peerj.6985/fig-1

et al., 2017). Ultimately, we anticipate that Simphony will inform the design of experiments
for interrogating rhythmic biological systems and the development ofmethods for analyzing
data containing rhythmic signals.
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Figure 2 Example of medium-scale simulation in Simphony. Expression values of 200 rhythmic genes,
each gene with its own amplitude and phase, were sampled from the Gaussian family. Rhythms followed a
sinusoid. Each row in the heatmap corresponds to a gene, each column to a time point. For ease of visual-
ization, sampled expression values were cropped to be between−4 and 4.
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Figure 3 Example of evaluating rhythm detection using data generated by Simphony. Simulations had
various values of the interval between time points and one replicate per time point. Each simulation in-
cluded 20,000 genes having various values of baseline expression and rhythm amplitude (including am-
plitude 0). Rhythms followed a sinusoid of period 24 h. Expression values were sampled from the negative
binomial family. Gene-wise p-values of rhythmicity from JTK_CYCLE were used to calculate the area un-
der the ROC curve (AUROC) for distinguishing non-rhythmic genes from each group of rhythmic genes.
(A) AUROC vs. rhythm amplitude and interval, for genes with a baseline log2 counts of 8. (B) AUROC vs.
rhythm amplitude and baseline expression, for the simulation with an interval of 2 h. AUROC of 0.5 cor-
responds to random detection, while AUROC of 1 corresponds to perfect detection.

Full-size DOI: 10.7717/peerj.6985/fig-3
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